Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
|
@@ -21,50 +21,31 @@ transcribe_token_id = all_special_ids[-5]
|
|
| 21 |
translate_token_id = all_special_ids[-6]
|
| 22 |
|
| 23 |
|
| 24 |
-
def transcribe(microphone, task):
|
| 25 |
file = microphone
|
| 26 |
|
| 27 |
pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]]
|
| 28 |
|
| 29 |
text = pipe(file)["text"]
|
| 30 |
|
| 31 |
-
return
|
| 32 |
|
| 33 |
|
| 34 |
-
def _return_yt_html_embed(yt_url):
|
| 35 |
-
video_id = yt_url.split("?v=")[-1]
|
| 36 |
-
HTML_str = (
|
| 37 |
-
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
| 38 |
-
" </center>"
|
| 39 |
-
)
|
| 40 |
-
return HTML_str
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
def yt_transcribe(yt_url, task):
|
| 44 |
-
yt = pt.YouTube(yt_url)
|
| 45 |
-
html_embed_str = _return_yt_html_embed(yt_url)
|
| 46 |
-
stream = yt.streams.filter(only_audio=True)[0]
|
| 47 |
-
stream.download(filename="audio.mp3")
|
| 48 |
-
|
| 49 |
-
pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]]
|
| 50 |
-
|
| 51 |
-
text = pipe("audio.mp3")["text"]
|
| 52 |
-
|
| 53 |
-
return html_embed_str, text
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
demo = gr.Blocks()
|
| 57 |
|
| 58 |
mf_transcribe = gr.Interface(
|
| 59 |
fn=transcribe,
|
| 60 |
inputs=[
|
| 61 |
gr.Audio(source="microphone", type="filepath", optional=True),
|
| 62 |
-
gr.
|
| 63 |
],
|
| 64 |
-
outputs=
|
|
|
|
|
|
|
|
|
|
| 65 |
layout="horizontal",
|
| 66 |
theme="huggingface",
|
| 67 |
title="Whisper Large V2: Transcribe Audio",
|
|
|
|
| 68 |
description=(
|
| 69 |
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
| 70 |
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
|
@@ -76,5 +57,5 @@ mf_transcribe = gr.Interface(
|
|
| 76 |
|
| 77 |
|
| 78 |
|
| 79 |
-
|
| 80 |
|
|
|
|
| 21 |
translate_token_id = all_special_ids[-6]
|
| 22 |
|
| 23 |
|
| 24 |
+
def transcribe(microphone, state, task="transcribe"):
|
| 25 |
file = microphone
|
| 26 |
|
| 27 |
pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]]
|
| 28 |
|
| 29 |
text = pipe(file)["text"]
|
| 30 |
|
| 31 |
+
return state + "\n" text, state + "\n" text
|
| 32 |
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
mf_transcribe = gr.Interface(
|
| 36 |
fn=transcribe,
|
| 37 |
inputs=[
|
| 38 |
gr.Audio(source="microphone", type="filepath", optional=True),
|
| 39 |
+
gr.State()
|
| 40 |
],
|
| 41 |
+
outputs=[
|
| 42 |
+
gr.Textbox(lines=15),
|
| 43 |
+
gr.State()]
|
| 44 |
+
,
|
| 45 |
layout="horizontal",
|
| 46 |
theme="huggingface",
|
| 47 |
title="Whisper Large V2: Transcribe Audio",
|
| 48 |
+
live=True,
|
| 49 |
description=(
|
| 50 |
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
| 51 |
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
|
|
|
| 57 |
|
| 58 |
|
| 59 |
|
| 60 |
+
mf_transcribe.launch(enable_queue=True)
|
| 61 |
|