Spaces:
Runtime error
Runtime error
| import asyncio | |
| import logging | |
| from typing import Dict, Any | |
| from functools import partial | |
| import warnings | |
| from flask import Flask, request, jsonify | |
| from transformers import pipeline | |
| # Suppress the FutureWarning | |
| warnings.filterwarnings("ignore", category=FutureWarning) | |
| logging.basicConfig(level=logging.INFO) | |
| # Define core component classes | |
| class Task: | |
| def __init__(self, task_name: str, input_data: Any, agent_name: str): | |
| self.task_name = task_name | |
| self.input_data = input_data | |
| self.agent_name = agent_name | |
| class ModelManager: | |
| def __init__(self): | |
| self.model = None | |
| async def start(self): | |
| logging.info("Starting model.") | |
| await asyncio.sleep(1) # Simulate loading time | |
| async def stop(self): | |
| logging.info("Unloading model.") | |
| class CodeArchitect: | |
| def __init__(self, model_manager: ModelManager, model=None): | |
| self.model_manager = model_manager | |
| self.generator = model if model else pipeline("text-generation", model="gpt2") | |
| async def start(self): | |
| await self.model_manager.start() | |
| async def stop(self): | |
| await self.model_manager.stop() | |
| async def generate_code(self, text_input: str) -> str: | |
| response = self.generator(text_input, max_length=5000, num_return_sequences=1)[0]['generated_text'] | |
| return response | |
| class UIUXWizard: | |
| def __init__(self, model_manager: ModelManager, vector_store=None): | |
| self.model_manager = model_manager | |
| self.vector_store = vector_store | |
| self.conversation_chain = pipeline("text-generation", model="gpt2") | |
| async def start(self): | |
| await self.model_manager.start() | |
| async def stop(self): | |
| await self.model_manager.stop() | |
| def get_memory_response(self, query): | |
| if self.vector_store is None: | |
| return "No memory available." | |
| else: | |
| results = self.vector_store.similarity_search(query, k=3) | |
| return "\n".join(results) | |
| def get_conversation_response(self, query): | |
| response = self.conversation_chain(query, max_length=5000, num_return_sequences=1)[0]['generated_text'] | |
| return response | |
| # Define VersionControl class | |
| class VersionControl: | |
| def __init__(self, system_name: str): | |
| self.system_name = system_name | |
| async def start(self): | |
| logging.info(f"Starting version control system: {self.system_name}") | |
| await asyncio.sleep(1) # Simulate initialization time | |
| async def stop(self): | |
| logging.info(f"Stopping version control system: {self.system_name}") | |
| # Define Documentation class | |
| class Documentation: | |
| def __init__(self, system_name: str): | |
| self.system_name = system_name | |
| async def start(self): | |
| logging.info(f"Starting documentation system: {self.system_name}") | |
| await asyncio.sleep(1) # Simulate initialization time | |
| async def stop(self): | |
| logging.info(f"Stopping documentation system: {self.system_name}") | |
| class BuildAutomation: | |
| def __init__(self, system_name: str): | |
| self.system_name = system_name | |
| async def start(self): | |
| logging.info(f"Starting build automation system: {self.system_name}") | |
| await asyncio.sleep(1) # Simulate initialization time | |
| async def stop(self): | |
| logging.info(f"Stopping build automation system: {self.system_name}") | |
| # Define EliteDeveloperCluster class | |
| class EliteDeveloperCluster: | |
| def __init__(self, config: Dict[str, Any], model): | |
| self.config = config | |
| self.model_manager = ModelManager() | |
| self.code_architect = CodeArchitect(self.model_manager, model) | |
| self.uiux_wizard = UIUXWizard(self.model_manager) | |
| self.version_control = VersionControl(config["version_control_system"]) | |
| self.documentation = Documentation(config["documentation_system"]) | |
| self.build_automation = BuildAutomation(config["build_automation_system"]) | |
| self.task_queue = asyncio.Queue() | |
| async def start(self): | |
| await self.code_architect.start() | |
| await self.uiux_wizard.start() | |
| await self.version_control.start() | |
| await self.documentation.start() | |
| await self.build_automation.start() | |
| async def stop(self): | |
| await self.code_architect.stop() | |
| await self.uiux_wizard.stop() | |
| await self.version_control.stop() | |
| await self.documentation.stop() | |
| await self.build_automation.stop() | |
| async def process_task(self, task: Task): | |
| if task.task_name == "generate_code": | |
| response = await self.code_architect.generate_code(task.input_data) | |
| return response | |
| elif task.task_name == "get_memory_response": | |
| response = self.uiux_wizard.get_memory_response(task.input_data) | |
| return response | |
| elif task.task_name == "get_conversation_response": | |
| response = self.uiux_wizard.get_conversation_response(task.input_data) | |
| return response | |
| else: | |
| return f"Unknown task: {task.task_name}" | |
| async def process_tasks(self): | |
| while True: | |
| task = await self.task_queue.get() | |
| response = await self.process_task(task) | |
| logging.info(f"Processed task: {task.task_name} for agent: {task.agent_name}") | |
| self.task_queue.task_done() | |
| yield response | |
| def route_request(self, query: str) -> str: | |
| # TODO: Implement logic to determine the appropriate agent based on query | |
| # For now, assume all requests are for the UIUXWizard | |
| return self.uiux_wizard.get_conversation_response(query) | |
| # Flask App for handling agent requests | |
| app = Flask(__name__) | |
| async def agent_request(): | |
| data = request.get_json() | |
| if data.get('input_value'): | |
| # Process request from any agent (Agent 2, Agent 3, etc.) | |
| task = Task(f"Process request from {data.get('agent_name', 'unknown agent')}", data.get('input_value'), data.get('agent_name', 'unknown agent')) | |
| await cluster.task_queue.put(task) | |
| return jsonify({'response': 'Received input: from an agent, task added to queue.'}) | |
| else: | |
| return jsonify({'response': 'Invalid input'}) | |
| # Chat Interface | |
| async def get_response(query: str) -> str: | |
| return await cluster.route_request(query) | |
| def response_streaming(text: str): | |
| try: | |
| for char in text: | |
| yield char | |
| except Exception as e: | |
| logging.error(f"Error in response streaming: {e}") | |
| yield "Error occurred while streaming the response." | |
| class ChatApp: | |
| def __init__(self, cluster: EliteDeveloperCluster): | |
| self.cluster = cluster | |
| async def start(self): | |
| await self.cluster.start() | |
| async def stop(self): | |
| await self.cluster.stop() | |
| async def handle_request(self, query: str) -> str: | |
| response = await anext(self.cluster.process_tasks()) | |
| return response | |
| # Configuration | |
| config = { | |
| "version_control_system": "Git", | |
| "testing_framework": "PyTest", | |
| "documentation_system": "Sphinx", | |
| "build_automation_system": "Jenkins", | |
| "redis_host": "localhost", | |
| "redis_port": 6379, | |
| "max_workers": 4, | |
| } | |
| async def main(): | |
| global cluster | |
| # Initialize the cluster | |
| cluster = EliteDeveloperCluster(config, model=None) | |
| # Start the cluster | |
| await cluster.start() | |
| # Create a task for processing tasks | |
| asyncio.create_task(anext(cluster.process_tasks())) | |
| # Run Flask app | |
| from hypercorn.asyncio import serve | |
| from hypercorn.config import Config | |
| config = Config() | |
| config.bind = ["localhost:5000"] | |
| await serve(app, config) | |
| if __name__ == "__main__": | |
| asyncio.run(main()) |