Spaces:
Runtime error
Runtime error
| from dataclasses import dataclass | |
| from typing import Dict, List, Optional | |
| import difflib | |
| import json | |
| import logging | |
| from pathlib import Path | |
| # Configure logging | |
| logging.basicConfig( | |
| level=logging.INFO, | |
| format='%(asctime)s - %(levelname)s - %(message)s' | |
| ) | |
| logger = logging.getLogger(__name__) | |
| class Template: | |
| """Template data structure""" | |
| code: str | |
| description: str | |
| components: List[str] | |
| metadata: Dict[str, str] | |
| example: Optional[str] = None | |
| class TemplateManager: | |
| """Manages and searches through templates""" | |
| def __init__(self): | |
| self.templates = { | |
| "image_classifier": Template( | |
| code=""" | |
| import gradio as gr | |
| import numpy as np | |
| from PIL import Image | |
| def classify_image(image): | |
| if image is None: | |
| return {"error": 1.0} | |
| return {"class1": 0.8, "class2": 0.2} | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# Image Classifier") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(type="pil") | |
| classify_btn = gr.Button("Classify") | |
| with gr.Column(): | |
| output_labels = gr.Label() | |
| classify_btn.click( | |
| fn=classify_image, | |
| inputs=input_image, | |
| outputs=output_labels | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| """, | |
| description="Basic image classification interface", | |
| components=["Image", "Button", "Label"], | |
| metadata={"category": "computer_vision"} | |
| ), | |
| "chatbot": Template( | |
| code=""" | |
| import gradio as gr | |
| def respond(message, history): | |
| return f"You said: {message}" | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# AI Chatbot") | |
| chatbot = gr.Chatbot() | |
| msg = gr.Textbox(label="Message") | |
| clear = gr.Button("Clear") | |
| msg.submit(respond, [msg, chatbot], [chatbot]) | |
| clear.click(lambda: None, None, chatbot, queue=False) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| """, | |
| description="Interactive chatbot interface", | |
| components=["Chatbot", "Textbox", "Button"], | |
| metadata={"category": "nlp"} | |
| ), | |
| "audio_processor": Template( | |
| code=""" | |
| import gradio as gr | |
| import numpy as np | |
| def process_audio(audio, volume_factor=1.0): | |
| if audio is None: | |
| return None | |
| sr, data = audio | |
| return (sr, data * volume_factor) | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# Audio Processor") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_audio = gr.Audio(source="microphone", type="numpy") | |
| volume = gr.Slider(minimum=0, maximum=2, value=1, label="Volume") | |
| process_btn = gr.Button("Process") | |
| with gr.Column(): | |
| output_audio = gr.Audio(type="numpy") | |
| process_btn.click( | |
| fn=process_audio, | |
| inputs=[input_audio, volume], | |
| outputs=output_audio | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| """, | |
| description="Audio processing interface", | |
| components=["Audio", "Slider", "Button"], | |
| metadata={"category": "audio"} | |
| ), | |
| "file_processor": Template( | |
| code=""" | |
| import gradio as gr | |
| def process_file(file): | |
| if file is None: | |
| return "No file uploaded" | |
| return f"Processed file: {file.name}" | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# File Processor") | |
| with gr.Row(): | |
| with gr.Column(): | |
| file_input = gr.File(label="Upload File") | |
| process_btn = gr.Button("Process") | |
| with gr.Column(): | |
| output = gr.Textbox(label="Results") | |
| json_output = gr.JSON(label="Detailed Results") | |
| process_btn.click( | |
| fn=process_file, | |
| inputs=file_input, | |
| outputs=[output, json_output] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| """, | |
| description="File processing interface", | |
| components=["File", "Button", "Textbox", "JSON"], | |
| metadata={"category": "utility"} | |
| ), | |
| "data_visualization": Template( | |
| code="" """ | |
| import gradio as gr | |
| import pandas as pd | |
| import plotly.express as px | |
| def visualize_data(data, plot_type): | |
| if data is None: | |
| return None | |
| df = pd.read_csv(data.name) | |
| if plot_type == "scatter": | |
| fig = px.scatter(df, x=df.columns[0], y=df.columns[1]) | |
| elif plot_type == "line": | |
| fig = px.line(df, x=df.columns[0], y=df.columns[1]) | |
| else: | |
| fig = px.bar(df, x=df.columns[0], y=df.columns[1]) | |
| return fig | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# Data Visualizer") | |
| with gr.Row(): | |
| with gr.Column(): | |
| file_input = gr.File(label="Upload CSV") | |
| plot_type = gr.Radio( | |
| choices=["scatter", "line", "bar"], | |
| label="Plot Type", | |
| value="scatter" | |
| ) | |
| visualize_btn = gr.Button("Visualize") | |
| with gr.Column(): | |
| plot_output = gr.Plot(label="Visualization") | |
| visualize_btn.click( | |
| fn=visualize_data, | |
| inputs=[file_input, plot_type], | |
| outputs=plot_output | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| """, | |
| description="Data visualization interface", | |
| components=["File", "Radio", "Button", "Plot"], | |
| metadata={"category": "data_science"} | |
| ), | |
| "form_builder": Template( | |
| code=""" | |
| import gradio as gr | |
| import json | |
| def submit_form(name, email, age, interests, subscribe): | |
| return json.dumps({ | |
| "name": name, | |
| "email": email, | |
| "age": age, | |
| "interests": interests, | |
| "subscribe": subscribe | |
| }, indent=2) | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# Form Builder") | |
| with gr.Row(): | |
| with gr.Column(): | |
| name = gr.Textbox(label="Name") | |
| email = gr.Textbox(label="Email") | |
| age = gr.Number(label="Age") | |
| interests = gr.CheckboxGroup( | |
| choices=["Sports", "Music", "Art", "Technology"], | |
| label="Interests" | |
| ) | |
| subscribe = gr.Checkbox(label="Subscribe to newsletter") | |
| submit_btn = gr.Button("Submit") | |
| with gr.Column(): | |
| output = gr.JSON(label="Form Data") | |
| submit_btn.click( | |
| fn=submit_form, | |
| inputs=[name, email, age, interests, subscribe], | |
| outputs=output | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| """, | |
| description="Form builder interface", | |
| components=["Textbox", "Number", "CheckboxGroup", "Checkbox", "Button", "JSON"], | |
| metadata={"category": "utility"} | |
| ), | |
| "text_summarizer": Template( | |
| code=""" | |
| import gradio as gr | |
| from transformers import pipeline | |
| summarizer = pipeline("summarization") | |
| def summarize_text(text): | |
| summary = summarizer(text, max_length=150, min_length=40, do_sample=False) | |
| return summary[0]['summary_text'] | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# Text Summarizer") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_text = gr.Textbox(label="Input Text", lines=10, placeholder="Enter text to summarize...") | |
| summarize_btn = gr.Button("Summarize") | |
| with gr.Column(): | |
| summary_output = gr.Textbox(label="Summary", lines=5) | |
| summarize_btn.click( | |
| fn=summarize_text, | |
| inputs=input_text, | |
| outputs=summary_output | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| """, | |
| description="Text summarization interface using a transformer model", | |
| components=["Textbox", "Button"], | |
| metadata={"category": "nlp"} | |
| ), | |
| "image_captioner": Template( | |
| code=""" | |
| import gradio as gr | |
| from transformers import BlipProcessor, BlipForConditionalGeneration | |
| from PIL import Image | |
| processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
| model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") | |
| def generate_caption(image): | |
| inputs = processor(image, return_tensors="pt") | |
| out = model.generate(**inputs) | |
| caption = processor.decode(out[0], skip_special_tokens=True) | |
| return caption | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# Image Caption Generator") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(type="pil", label="Upload Image") | |
| caption_btn = gr.Button("Generate Caption") | |
| with gr.Column(): | |
| caption_output = gr.Textbox(label="Generated Caption") | |
| caption_btn.click( | |
| fn=generate_caption, | |
| inputs=input_image, | |
| outputs=caption_output | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| """, | |
| description="Image captioning interface using a transformer model", | |
| components=["Image", "Button", "Textbox"], | |
| metadata={"category": "computer_vision"} | |
| ), | |
| "style_transfer": Template( | |
| code=""" | |
| import gradio as gr | |
| import tensorflow as tf | |
| import tensorflow_hub as hub | |
| hub_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2') | |
| def apply_style(content_image, style_image): | |
| content_image = tf.image.convert_image_dtype(content_image, tf.float32)[tf.newaxis, ...] | |
| style_image = tf.image.convert_image_dtype(style_image, tf.float32)[tf.newaxis, ...] | |
| stylized_image = hub_model(content_image, style_image)[0] | |
| return tf.squeeze(stylized_image).numpy() | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# Neural Style Transfer") | |
| with gr.Row(): | |
| with gr.Column(): | |
| content_image = gr.Image(label="Content Image") | |
| style_image = gr.Image(label="Style Image") | |
| transfer_btn = gr.Button("Transfer Style") | |
| with gr.Column(): | |
| output_image = gr.Image(label="Stylized Image") | |
| transfer_btn.click( | |
| fn=apply_style, | |
| inputs=[content_image, style_image], | |
| outputs=output_image | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| """, | |
| description="Neural style transfer between two images", | |
| components=["Image", "Button"], | |
| metadata={"category": "computer_vision"} | |
| ), | |
| "sentiment_analysis": Template( | |
| code=""" | |
| import gradio as gr | |
| from transformers import pipeline | |
| sentiment_pipeline = pipeline("sentiment-analysis") | |
| def analyze_sentiment(text): | |
| result = sentiment_pipeline(text)[0] | |
| return f"{result['label']} ({result['score']:.2f})" | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# Sentiment Analysis") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_text = gr.Textbox(label="Input Text", lines=5, placeholder="Enter text to analyze sentiment...") | |
| analyze_btn = gr.Button("Analyze Sentiment") | |
| with gr.Column(): | |
| sentiment_output = gr.Textbox(label="Sentiment Result") | |
| analyze_btn.click( | |
| fn=analyze_sentiment, | |
| inputs=input_text, | |
| outputs=sentiment_output | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| """, | |
| description="Sentiment analysis using transformer model", | |
| components=["Textbox", "Button"], | |
| metadata={"category": "nlp"} | |
| ), | |
| "pdf_to_text": Template( | |
| code=""" | |
| import gradio as gr | |
| import PyPDF2 | |
| def extract_text_from_pdf(pdf): | |
| reader = PyPDF2.PdfFileReader(pdf) | |
| text = '' | |
| for page_num in range(reader.numPages): | |
| page = reader.getPage(page_num) | |
| text += page.extract_text() | |
| return text | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# PDF to Text Extractor") | |
| with gr.Row(): | |
| with gr.Column(): | |
| pdf_file = gr.File(label="Upload PDF") | |
| extract_btn = gr.Button("Extract Text") | |
| with gr.Column(): | |
| output_text = gr.Textbox(label="Extracted Text", lines=10) | |
| extract_btn.click( | |
| fn=extract_text_from_pdf, | |
| inputs=pdf_file, | |
| outputs=output_text | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| """, | |
| description="Extract text from PDF files", | |
| components=["File", "Button", "Textbox"], | |
| metadata={"category": "utility"} | |
| ), | |
| "website_monitor": Template( | |
| code=""" | |
| import gradio as gr | |
| import requests | |
| from datetime import datetime | |
| def monitor_website(url): | |
| try: | |
| response = requests.get(url) | |
| status_code = response.status_code | |
| status = "Up" if status_code == 200 else "Down" | |
| return { | |
| "url": url, | |
| "status": status, | |
| "response_time": response.elapsed.total_seconds(), | |
| "last_checked": datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
| } | |
| except Exception as e: | |
| return {"error": str(e)} | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# Website Uptime Monitor") | |
| with gr.Row(): | |
| with gr.Column(): | |
| url_input = gr.Textbox(label="Website URL", placeholder="https://example.com") | |
| check_btn = gr.Button("Check Website") | |
| with gr.Column(): | |
| result_output = gr.JSON(label="Monitoring Result") | |
| check_btn.click( | |
| fn=monitor_website, | |
| inputs=url_input, | |
| outputs=result_output | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| """, | |
| description="Monitor the uptime and response time of a website", | |
| components=["Textbox", "Button", "JSON"], | |
| metadata={"category": "web_monitoring"} | |
| ), | |
| "rss_feed_fetcher": Template( | |
| code=""" | |
| import gradio as gr | |
| import feedparser | |
| def fetch_rss_feed(url): | |
| feed = feedparser.parse(url) | |
| if feed.bozo: | |
| return {"error": "Invalid RSS feed URL"} | |
| return [{"title": entry.title, "link": entry.link} for entry in feed.entries[:5]] | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# RSS Feed Fetcher") | |
| with gr.Row(): | |
| with gr.Column(): | |
| feed_url = gr.Textbox(label="RSS Feed URL", placeholder="https://example.com/feed") | |
| fetch_btn = gr.Button("Fetch Latest Posts") | |
| with gr.Column(): | |
| feed_output = gr.JSON(label="Latest Feed Entries") | |
| fetch_btn.click( | |
| fn=fetch_rss_feed, | |
| inputs=feed_url, | |
| outputs=feed_output | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| """, | |
| description="Fetch the latest entries from an RSS feed", | |
| components=["Textbox", "Button", "JSON"], | |
| metadata={"category": "web_scraping"} | |
| ), | |
| "web_scraper": Template( | |
| code=""" | |
| import gradio as gr | |
| from bs4 import BeautifulSoup | |
| import requests | |
| def scrape_website(url, tag): | |
| try: | |
| response = requests.get(url) | |
| soup = BeautifulSoup(response.text, "html.parser") | |
| elements = soup.find_all(tag) | |
| return [element.get_text() for element in elements][:5] # Limit to 5 elements | |
| except Exception as e: | |
| return f"Error: {str(e)}" | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# Web Scraper") | |
| with gr.Row(): | |
| with gr.Column(): | |
| url_input = gr.Textbox(label="Website URL", placeholder="https://example.com") | |
| tag_input = gr.Textbox(label="HTML Tag to Scrape", placeholder="h1, p, div, etc.") | |
| scrape_btn = gr.Button("Scrape Website") | |
| with gr.Column(): | |
| result_output = gr.JSON(label="Scraped Results") | |
| scrape_btn.click( | |
| fn=scrape_website, | |
| inputs=[url_input, tag_input], | |
| outputs=result_output | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| """, | |
| description="Scrape text from a website based on the specified HTML tag", | |
| components=["Textbox", "Button", "JSON"], | |
| metadata={"category": "web_scraping"} | |
| ), | |
| "api_tester": Template( | |
| code=""" | |
| import gradio as gr | |
| import requests | |
| def test_api(endpoint, method, payload): | |
| try: | |
| if method == "GET": | |
| response = requests.get(endpoint) | |
| elif method == "POST": | |
| response = requests.post(endpoint, json=payload) | |
| else: | |
| return "Unsupported method" | |
| return { | |
| "status_code": response.status_code, | |
| "response_body": response.json() if response.headers.get("Content-Type") == "application/json" else response.text | |
| } | |
| except Exception as e: | |
| return {"error": str(e)} | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# API Tester") | |
| with gr.Row(): | |
| with gr.Column(): | |
| endpoint = gr.Textbox(label="API Endpoint", placeholder="https://api.example.com/endpoint") | |
| method = gr.Radio(choices=["GET", "POST"], label="HTTP Method", value="GET") | |
| payload = gr.JSON(label="Payload (for POST)", value={}) | |
| test_btn = gr.Button("Test API") | |
| with gr.Column(): | |
| result_output = gr.JSON(label="API Response") | |
| test_btn.click( | |
| fn=test_api, | |
| inputs=[endpoint, method, payload], | |
| outputs=result_output | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| """, | |
| description="Test API endpoints with GET and POST requests", | |
| components=["Textbox", "Radio", "JSON", "Button"], | |
| metadata={"category": "api_testing"} | |
| ), | |
| "email_scheduler": Template( | |
| code=""" | |
| import gradio as gr | |
| import smtplib | |
| from email.mime.text import MIMEText | |
| from email.mime.multipart import MIMEMultipart | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| scheduler = BackgroundScheduler() | |
| scheduler.start() | |
| def send_email(to_email, subject, body): | |
| try: | |
| sender_email = "your_email@example.com" | |
| password = "your_password" | |
| msg = MIMEMultipart() | |
| msg['From'] = sender_email | |
| msg['To'] = to_email | |
| msg['Subject'] = subject | |
| msg.attach(MIMEText(body, 'plain')) | |
| server = smtplib.SMTP('smtp.example.com', 587) | |
| server.starttls() | |
| server.login(sender_email, password) | |
| text = msg.as_string() | |
| server.sendmail(sender_email, to_email, text) | |
| server.quit() | |
| return "Email sent successfully" | |
| except Exception as e: | |
| return f"Error: {str(e)}" | |
| def schedule_email(to_email, subject, body, delay): | |
| scheduler.add_job(send_email, 'interval', seconds=delay, args=[to_email, subject, body]) | |
| return f"Email scheduled to be sent in {delay} seconds" | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# Email Scheduler") | |
| with gr.Row(): | |
| with gr.Column(): | |
| to_email = gr.Textbox(label="Recipient Email") | |
| subject = gr.Textbox(label="Subject") | |
| body = gr.Textbox(label="Email Body", lines=5) | |
| delay = gr.Slider(label="Delay (seconds)", minimum=10, maximum=300, step=10, value=60) | |
| schedule_btn = gr.Button("Schedule Email") | |
| with gr.Column(): | |
| result_output = gr.Textbox(label="Result") | |
| schedule_btn.click( | |
| fn=schedule_email, | |
| inputs=[to_email, subject, body, delay], | |
| outputs=result_output | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| """, | |
| description="Schedule emails to be sent after a delay", | |
| components=["Textbox", "Slider", "Button"], | |
| metadata={"category": "task_automation"} | |
| ), | |
| "log_file_analyzer": Template( | |
| code=""" | |
| import gradio as gr | |
| import re | |
| def analyze_logs(log_file, filter_text): | |
| try: | |
| logs = log_file.read().decode("utf-8") | |
| if filter_text: | |
| filtered_logs = "\n".join([line for line in logs.splitlines() if re.search(filter_text, line)]) | |
| else: | |
| filtered_logs = logs | |
| return filtered_logs | |
| except Exception as e: | |
| return f"Error: {str(e)}" | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# Log File Analyzer") | |
| with gr.Row(): | |
| with gr.Column(): | |
| log_input = gr.File(label="Upload Log File") | |
| filter_input = gr.Textbox(label="Filter (Regex)", placeholder="Error|Warning") | |
| analyze_btn = gr.Button("Analyze Logs") | |
| with gr.Column(): | |
| output_logs = gr.Textbox(label="Filtered Logs", lines=20) | |
| analyze_btn.click( | |
| fn=analyze_logs, | |
| inputs=[log_input, filter_input], | |
| outputs=output_logs | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| """, | |
| description="Analyze and filter log files using regex", | |
| components=["File", "Textbox", "Button"], | |
| metadata={"category": "log_analysis"} | |
| ), | |
| "file_encryption_tool": Template( | |
| code=""" | |
| import gradio as gr | |
| from cryptography.fernet import Fernet | |
| def encrypt_file(file, password): | |
| try: | |
| key = password.ljust(32, '0').encode()[:32] # Basic password -> key mapping | |
| cipher = Fernet(Fernet.generate_key()) | |
| file_data = file.read() | |
| encrypted_data = cipher.encrypt(file_data) | |
| return encrypted_data.decode("utf-8") | |
| except Exception as e: | |
| return f"Error: {str(e)}" | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# File Encryption Tool") | |
| with gr.Row(): | |
| with gr.Column(): | |
| file_input = gr.File(label="Upload File") | |
| password_input = gr.Textbox(label="Password", type="password") | |
| encrypt_btn = gr.Button("Encrypt File") | |
| with gr.Column(): | |
| encrypted_output = gr.Textbox(label = "Encrypted Data", lines=20) | |
| encrypt_btn.click( | |
| fn=encrypt_file, | |
| inputs=[file_input, password_input], | |
| outputs=encrypted_output | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| """, | |
| description="Encrypt a file using a password-based key", | |
| components=["File", "Textbox", "Button"], | |
| metadata={"category": "security"} | |
| ), | |
| "task_scheduler": Template( | |
| code=""" | |
| import gradio as gr | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| from datetime import datetime | |
| scheduler = BackgroundScheduler() | |
| scheduler.start() | |
| def schedule_task(task_name, interval): | |
| scheduler.add_job(lambda: print(f"Running task: {task_name} at {datetime.now()}"), 'interval', seconds=interval) | |
| return f"Task '{task_name}' scheduled to run every {interval} seconds." | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# Task Scheduler") | |
| with gr.Row(): | |
| with gr.Column(): | |
| task_input = gr.Textbox(label="Task Name", placeholder="Example Task") | |
| interval_input = gr.Slider(minimum=1, maximum=60, label="Interval (Seconds)", value=10) | |
| schedule_btn = gr.Button("Schedule Task") | |
| with gr.Column(): | |
| result_output = gr.Textbox(label="Result") | |
| schedule_btn.click( | |
| fn=schedule_task, | |
| inputs=[task_input, interval_input], | |
| outputs=result_output | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| """, | |
| description="Schedule tasks to run at regular intervals", | |
| components=["Textbox", "Slider", "Button"], | |
| metadata={"category": "task_automation"} | |
| ), | |
| "code_comparator": Template( | |
| code=""" | |
| import gradio as gr | |
| import difflib | |
| def compare_code(code1, code2): | |
| diff = difflib.unified_diff(code1.splitlines(), code2.splitlines(), lineterm='', fromfile='code1', tofile='code2') | |
| return '\n'.join(diff) | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# Code Comparator") | |
| with gr.Row(): | |
| with gr.Column(): | |
| code1_input = gr.Textbox(label="Code 1", lines=15, placeholder="Paste the first code snippet here...") | |
| code2_input = gr.Textbox(label="Code 2", lines=15, placeholder="Paste the second code snippet here...") | |
| compare_btn = gr.Button("Compare Codes") | |
| with gr.Column(): | |
| diff_output = gr.Textbox(label="Difference", lines=20) | |
| compare_btn.click( | |
| fn=compare_code, | |
| inputs=[code1_input, code2_input], | |
| outputs=diff_output | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| """, | |
| description="Compare two code snippets and show the differences", | |
| components=["Textbox", "Button"], | |
| metadata={"category": "development"} | |
| ), | |
| "database_query_tool": Template( | |
| code=""" | |
| import gradio as gr | |
| import sqlite3 | |
| def query_database(db_file, query): | |
| try: | |
| conn = sqlite3.connect(db_file.name) | |
| cursor = conn.cursor() | |
| cursor.execute(query) | |
| results = cursor.fetchall() | |
| conn.close() | |
| return results | |
| except Exception as e: | |
| return f"Error: {str(e)}" | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# Database Query Tool") | |
| with gr.Row(): | |
| with gr.Column(): | |
| db_input = gr.File(label="Upload SQLite DB File") | |
| query_input = gr.Textbox(label="SQL Query", placeholder="SELECT * FROM table_name;") | |
| query_btn = gr.Button("Run Query") | |
| with gr.Column(): | |
| query_output = gr.JSON(label="Query Results") | |
| query_btn.click( | |
| fn=query_database, | |
| inputs=[db_input, query_input], | |
| outputs=query_output | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| """, | |
| description="Run SQL queries on a SQLite database", | |
| components=["File", "Textbox", "Button", "JSON"], | |
| metadata={"category": "database"} | |
| ), | |
| "code_generator": Template( | |
| code=""" | |
| import gradio as gr | |
| from transformers import pipeline | |
| code_generator = pipeline("text-generation", model="Salesforce/codegen-2B-multi") | |
| def generate_code(prompt): | |
| response = code_generator(prompt, max_length=150, num_return_sequences=1) | |
| return response[0]['generated_text'] | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# Code Generator ") | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt_input = gr.Textbox(label="Enter Code Prompt", placeholder="Write a Python function to reverse a string") | |
| generate_btn = gr.Button("Generate Code") | |
| with gr.Column(): | |
| generated_code = gr.Textbox(label="Generated Code", lines=10) | |
| generate_btn.click( | |
| fn=generate_code, | |
| inputs=prompt_input, | |
| outputs=generated_code | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| """, | |
| description="Generate code snippets based on natural language prompts", | |
| components=["Textbox", "Button"], | |
| metadata={"category": "development"} | |
| ), | |
| "code_debugger": Template( | |
| code=""" | |
| import gradio as gr | |
| import subprocess | |
| def debug_code(code): | |
| try: | |
| with open("temp_code.py", "w") as f: | |
| f.write(code) | |
| result = subprocess.run(["python3", "temp_code.py"], capture_output=True, text=True) | |
| return {"stdout": result.stdout, "stderr": result.stderr} | |
| except Exception as e: | |
| return {"error": str(e)} | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# Code Debugger") | |
| with gr.Row(): | |
| with gr.Column(): | |
| code_input = gr.Textbox(label="Code to Debug", lines=10, placeholder="Paste your Python code here...") | |
| debug_btn = gr.Button("Run Debug") | |
| with gr.Column(): | |
| debug_output = gr.JSON(label="Debug Output") | |
| debug_btn.click( | |
| fn=debug_code, | |
| inputs=code_input, | |
| outputs=debug_output | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| """, | |
| description="Run and debug Python code by capturing stdout and stderr", | |
| components=["Textbox", "Button", "JSON"], | |
| metadata={"category": "development"} | |
| ), | |
| "multi_agent_task_manager": Template( | |
| code=""" | |
| import gradio as gr | |
| from concurrent.futures import ThreadPoolExecutor | |
| import time | |
| agent_pool = ThreadPoolExecutor(max_workers=5) | |
| agent_status = {} | |
| def agent_task(agent_name, task): | |
| agent_status[agent_name] = "Running" | |
| time.sleep(5) # Simulate task duration | |
| agent_status[agent_name] = "Completed" | |
| return f"Agent {agent_name} has completed the task: {task}" | |
| def trigger_agents(agents, task): | |
| results = [] | |
| for agent in agents: | |
| future = agent_pool.submit(agent_task, agent, task) | |
| results.append(f"Agent {agent} triggered") | |
| return results | |
| def get_agent_status(): | |
| return agent_status | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# Multi-Agent Task Manager") | |
| with gr.Row(): | |
| with gr.Column(): | |
| agents = gr.CheckboxGroup(choices=["Agent1", "Agent2", "Agent3", "Agent4", "Agent5"], label="Select Agents") | |
| task_input = gr.Textbox(label="Task to Perform", placeholder="Describe the task...") | |
| trigger_btn = gr.Button("Trigger Agents") | |
| with gr.Column(): | |
| task_output = gr.JSON(label="Agent Responses") | |
| with gr.Row(): | |
| status_btn = gr.Button("Get Agent Status") | |
| status_output = gr.JSON(label="Current Agent Status") | |
| trigger_btn.click( | |
| fn=trigger_agents, | |
| inputs=[agents, task_input], | |
| outputs=task_output | |
| ) | |
| status_btn.click( | |
| fn=get_agent_status, | |
| inputs=[], | |
| outputs=status_output | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| """, | |
| description="Manage and trigger tasks for multiple autonomous agents", | |
| components=["CheckboxGroup", "Textbox", "Button", "JSON"], | |
| metadata={"category": "task_automation"} | |
| ), | |
| "auto_code_refactor": Template( | |
| code=""" | |
| import gradio as gr | |
| from transformers import pipeline | |
| code_refactor = pipeline("text2text-generation", model="facebook/bart-large-cnn") | |
| def refactor_code(code): | |
| result = code_refactor(f"Refactor the following Python code: {code}", max_length=150) | |
| return result[0]['generated_text'] | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# Auto Code Refactor") | |
| with gr.Row(): | |
| with gr.Column(): | |
| code_input = gr.Textbox(label="Code to Refactor", lines=10, placeholder="Paste your Python code here...") | |
| refactor_btn = gr.Button("Refactor Code") | |
| with gr.Column(): | |
| refactored_code = gr.Textbox(label="Refactored Code", lines =10) | |
| refactor_btn.click( | |
| fn=refactor_code, | |
| inputs=code_input, | |
| outputs=refactored_code | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| """, | |
| description="Automatically refactor Python code for better efficiency or readability", | |
| components=["Textbox", "Button"], | |
| metadata={"category": "development"} | |
| ), | |
| "agent_cluster_deployer": Template( | |
| code=""" | |
| import gradio as gr | |
| import random | |
| cluster_status = {} | |
| def deploy_agent_cluster(agent_count, task): | |
| cluster_id = random.randint(1000, 9999) | |
| cluster_status[cluster_id] = { | |
| "status": "Deploying", | |
| "agents": agent_count, | |
| "task": task | |
| } | |
| return f"Cluster {cluster_id} is deploying with {agent_count} agents for task: {task}" | |
| def get_cluster_status(): | |
| return cluster_status | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# Agent Cluster Deployer") | |
| with gr.Row(): | |
| with gr.Column(): | |
| agent_count = gr.Slider(label="Number of Agents", minimum=1, maximum=10, step=1, value=3) | |
| task_input = gr.Textbox(label="Cluster Task", placeholder="Describe the task for the cluster...") | |
| deploy_btn = gr.Button("Deploy Cluster") | |
| with gr.Column(): | |
| deploy_output = gr.Textbox(label="Cluster Deployment Status") | |
| with gr.Row(): | |
| status_btn = gr.Button("Get Cluster Status") | |
| status_output = gr.JSON(label="Current Cluster Status") | |
| deploy_btn.click( | |
| fn=deploy_agent_cluster, | |
| inputs=[agent_count, task_input], | |
| outputs=deploy_output | |
| ) | |
| status_btn.click( | |
| fn=get_cluster_status, | |
| inputs=[], | |
| outputs=status_output | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| """, | |
| description="Deploy an autonomous agent cluster for task execution", | |
| components=["Slider", "Textbox", "Button", "JSON"], | |
| metadata={"category": "task_automation"} | |
| ) | |
| } | |
| self.component_index: Dict[str, List[str]] = self._build_component_index() | |
| self.category_index: Dict[str, List[str]] = self._build_category_index() | |
| def _build_component_index(self) -> Dict[str, List[str]]: | |
| """Build index of templates by component""" | |
| index = {} | |
| for name, template in self.templates.items(): | |
| for component in template.components: | |
| if component not in index: | |
| index[component] = [] | |
| index[component].append(name) | |
| return index | |
| def _build_category_index(self) -> Dict[str, List[str]]: | |
| """Build index of templates by category""" | |
| index = {} | |
| for name, template in self.templates.items(): | |
| category = template.metadata.get("category", "other") | |
| if category not in index: | |
| index[category] = [] | |
| index[category].append(name) | |
| return index | |
| def search(self, query: str, limit: int = 5) -> List[Dict]: | |
| """Search templates by description or metadata""" | |
| try: | |
| results = [] | |
| for name, template in self.templates.items(): | |
| desc_score = difflib.SequenceMatcher( | |
| None, | |
| query.lower(), | |
| template.description.lower() | |
| ).ratio() | |
| category_score = difflib.SequenceMatcher( | |
| None, | |
| query.lower(), | |
| template.metadata.get("category", "").lower() | |
| ).ratio() | |
| comp_score = sum(0.2 for component in template.components if component.lower() in query.lower()) | |
| final_score = max(desc_score, category_score) + comp_score | |
| results.append({ | |
| "name": name, | |
| "template": template, | |
| "score": final_score | |
| }) | |
| results.sort(key=lambda x: x["score"], reverse=True) | |
| return results[:limit] | |
| except Exception as e: | |
| logger.error(f"Error searching templates: {str(e)}") | |
| return [] | |
| def search_by_components(self, components: List[str], limit: int = 5) -> List[Dict]: | |
| """Search templates by required components""" | |
| try: | |
| results = [] | |
| for name, template in self.templates.items(): | |
| matches = sum(1 for c in components if c in template.components) | |
| if matches > 0: | |
| score = matches / len(components) | |
| results.append({ | |
| "name": name, | |
| "template": template, | |
| "score": score | |
| }) | |
| results.sort(key=lambda x: x["score"], reverse=True) | |
| return results[:limit] | |
| except Exception as e: | |
| logger.error(f"Error searching by components: {str(e)}") | |
| return [] | |
| def search_by_category(self, category: str) -> List[Dict]: | |
| """Get all templates in a category""" | |
| try: | |
| return [ | |
| { | |
| "name": name, | |
| "template": self.templates[name] | |
| } | |
| for name in self.category_index.get(category, []) | |
| ] | |
| except Exception as e: | |
| logger.error(f"Error searching by category: {str(e)}") | |
| return [] | |
| def get_template(self, name: str) -> Optional[Template]: | |
| """Get specific template by name""" | |
| return self.templates.get(name) | |
| def get_categories(self) -> List[str]: | |
| """Get list of all categories""" | |
| return list(self.category_index.keys()) | |
| def get_components(self) -> List[str]: | |
| """Get list of all components""" | |
| return list(self.component_index.keys()) | |
| def export_templates(self, path: str): | |
| """Export templates to JSON file""" | |
| try: | |
| data = { | |
| name: { | |
| "code": template.code, | |
| "description": template.description, | |
| "components": template.components, | |
| "metadata": template.metadata, | |
| "example": template.example | |
| } | |
| for name, template in self.templates.items() | |
| } | |
| with open(path, 'w') as f: | |
| json.dump(data, f, indent=2) | |
| logger.info(f"Templates exported to {path}") | |
| except FileNotFoundError: | |
| logger.error(f"File not found: {path}") | |
| raise | |
| except Exception as e: | |
| logger.error(f"Error exporting templates: {str(e)}") | |
| raise | |
| def import_templates(self, path: str): | |
| """Import templates from JSON file""" | |
| try: | |
| with open(path, 'r') as f: | |
| data = json.load(f) | |
| for name, template_data in data.items(): | |
| self.templates[name] = Template( | |
| code=template_data.get("code", ""), # Load the actual code from the JSON file | |
| description=template_data["description"], | |
| components=template_data["components"], | |
| metadata=template_data["metadata"], | |
| example=template_data.get("example") | |
| ) | |
| # Rebuild indexes | |
| self.component_index = self._build_component_index() | |
| self.category_index = self._build_category_index() | |
| logger.info(f"Templates imported from {path}") | |
| except FileNotFoundError: | |
| logger.error(f"File not found: {path}") | |
| raise | |
| except json.JSONDecodeError: | |
| logger.error(f"Error decoding JSON from file: {path}") | |
| raise | |
| except Exception as e: | |
| logger.error(f"Error importing templates: {str(e)}") | |
| raise | |
| # Usage example: | |
| if __name__ == "__main__": | |
| # Initialize template manager | |
| manager = TemplateManager() | |
| # Search examples | |
| print("\nSearching for 'machine learning':") | |
| results = manager.search("machine learning") | |
| for result in results: | |
| print(f"{result['name']}: {result['score']:.2f}") | |
| print("\nSearching for components ['Image', 'Slider']:") | |
| results = manager.search_by_components(['Image', 'Slider']) | |
| for result in results: | |
| print(f"{result['name']}: {result['score']:.2f}") | |
| print("\nCategories available:") | |
| print(manager.get_categories()) | |
| print("\nComponents available:") | |
| print(manager.get_components()) |