Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,6 +3,7 @@ from transformers import pipeline
|
|
| 3 |
from speechbrain.pretrained import Tacotron2, HIFIGAN, EncoderDecoderASR
|
| 4 |
import matplotlib.pyplot as plt
|
| 5 |
import pandas as pd
|
|
|
|
| 6 |
|
| 7 |
# Initialize psychometric model
|
| 8 |
psych_model_name = "KevSun/Personality_LM"
|
|
@@ -13,18 +14,6 @@ asr_model = EncoderDecoderASR.from_hparams(source="speechbrain/asr-crdnn-rnnlm-l
|
|
| 13 |
tts_model = Tacotron2.from_hparams(source="speechbrain/tts-tacotron2-ljspeech", savedir="tmp_tts")
|
| 14 |
voc_model = HIFIGAN.from_hparams(source="speechbrain/tts-hifigan-ljspeech", savedir="tmp_voc")
|
| 15 |
|
| 16 |
-
# Psychometric Test Questions
|
| 17 |
-
text_questions = [
|
| 18 |
-
"How do you handle criticism?",
|
| 19 |
-
"Describe a time when you overcame a challenge.",
|
| 20 |
-
"What motivates you to work hard?"
|
| 21 |
-
]
|
| 22 |
-
|
| 23 |
-
audio_questions = [
|
| 24 |
-
"What does teamwork mean to you?",
|
| 25 |
-
"How do you handle stressful situations?"
|
| 26 |
-
]
|
| 27 |
-
|
| 28 |
# Function to analyze text responses
|
| 29 |
def analyze_text_responses(responses):
|
| 30 |
analysis = [psych_model(response)[0] for response in responses]
|
|
@@ -37,6 +26,7 @@ def generate_audio_question(question):
|
|
| 37 |
waveforms = voc_model.decode_batch(mel_output)
|
| 38 |
return waveforms[0].numpy()
|
| 39 |
|
|
|
|
| 40 |
def process_audio_response(audio):
|
| 41 |
# Check if the audio input is None
|
| 42 |
if audio is None:
|
|
@@ -49,63 +39,49 @@ def process_audio_response(audio):
|
|
| 49 |
except Exception as e:
|
| 50 |
return f"Error processing audio: {str(e)}"
|
| 51 |
|
| 52 |
-
#
|
| 53 |
-
def
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
def audio_part(candidate_name, audio_responses):
|
| 66 |
-
# Check if any audio response is invalid (None)
|
| 67 |
-
valid_audio_responses = [process_audio_response(audio) for audio in audio_responses if audio is not None]
|
| 68 |
-
|
| 69 |
-
# If all responses are invalid, return an error message
|
| 70 |
-
if not valid_audio_responses:
|
| 71 |
-
return "No valid audio responses provided", None
|
| 72 |
|
| 73 |
-
|
| 74 |
-
df = pd.DataFrame(traits.items(), columns=["Trait", "Score"])
|
| 75 |
-
plt.figure(figsize=(8, 6))
|
| 76 |
-
plt.bar(df["Trait"], df["Score"], color="lightcoral")
|
| 77 |
-
plt.title(f"Audio Psychometric Analysis for {candidate_name}")
|
| 78 |
-
plt.xlabel("Traits")
|
| 79 |
-
plt.ylabel("Score")
|
| 80 |
-
plt.xticks(rotation=45)
|
| 81 |
-
plt.tight_layout()
|
| 82 |
-
return df, plt
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
# Gradio UI function
|
| 86 |
def chat_interface(candidate_name, *responses):
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
# Process text responses
|
| 93 |
-
text_df, text_plot = text_part(candidate_name,
|
| 94 |
|
| 95 |
# Process audio responses
|
| 96 |
-
audio_df, audio_plot = audio_part(candidate_name,
|
| 97 |
|
| 98 |
-
|
|
|
|
| 99 |
|
| 100 |
# Create text inputs and audio inputs
|
| 101 |
-
text_inputs = [gr.Textbox(label=f"Response to Q{i+1}:
|
| 102 |
-
audio_inputs = [gr.Audio(label=f"Response to Q{i+1}:
|
| 103 |
|
| 104 |
interface = gr.Interface(
|
| 105 |
fn=chat_interface,
|
| 106 |
inputs=[gr.Textbox(label="Candidate Name")] + text_inputs + audio_inputs,
|
| 107 |
-
outputs=["dataframe", "plot", "dataframe", "plot"],
|
| 108 |
-
title="Psychometric Analysis Chatbot"
|
| 109 |
)
|
| 110 |
|
| 111 |
# Launch the interface
|
|
|
|
| 3 |
from speechbrain.pretrained import Tacotron2, HIFIGAN, EncoderDecoderASR
|
| 4 |
import matplotlib.pyplot as plt
|
| 5 |
import pandas as pd
|
| 6 |
+
import random
|
| 7 |
|
| 8 |
# Initialize psychometric model
|
| 9 |
psych_model_name = "KevSun/Personality_LM"
|
|
|
|
| 14 |
tts_model = Tacotron2.from_hparams(source="speechbrain/tts-tacotron2-ljspeech", savedir="tmp_tts")
|
| 15 |
voc_model = HIFIGAN.from_hparams(source="speechbrain/tts-hifigan-ljspeech", savedir="tmp_voc")
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
# Function to analyze text responses
|
| 18 |
def analyze_text_responses(responses):
|
| 19 |
analysis = [psych_model(response)[0] for response in responses]
|
|
|
|
| 26 |
waveforms = voc_model.decode_batch(mel_output)
|
| 27 |
return waveforms[0].numpy()
|
| 28 |
|
| 29 |
+
# Function to process audio response
|
| 30 |
def process_audio_response(audio):
|
| 31 |
# Check if the audio input is None
|
| 32 |
if audio is None:
|
|
|
|
| 39 |
except Exception as e:
|
| 40 |
return f"Error processing audio: {str(e)}"
|
| 41 |
|
| 42 |
+
# Function to generate dynamic questions based on answers
|
| 43 |
+
def generate_dynamic_question(previous_answer):
|
| 44 |
+
# Example of simple follow-up questions based on the answer
|
| 45 |
+
if "teamwork" in previous_answer.lower():
|
| 46 |
+
return "Can you share a specific instance where you worked in a team?"
|
| 47 |
+
elif "challenge" in previous_answer.lower():
|
| 48 |
+
return "How did you overcome that challenge? What steps did you take?"
|
| 49 |
+
elif "stress" in previous_answer.lower():
|
| 50 |
+
return "How do you manage stress during high-pressure situations?"
|
| 51 |
+
else:
|
| 52 |
+
# Default follow-up question
|
| 53 |
+
return "Can you tell me more about that?"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
# Gradio UI function to handle dynamic conversation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
def chat_interface(candidate_name, *responses):
|
| 57 |
+
conversation_history = []
|
| 58 |
+
|
| 59 |
+
# Iterate through responses to generate follow-up questions
|
| 60 |
+
for i, response in enumerate(responses):
|
| 61 |
+
conversation_history.append(f"Q{i+1}: {response}")
|
| 62 |
+
|
| 63 |
+
# Generate dynamic question based on the previous response
|
| 64 |
+
dynamic_question = generate_dynamic_question(response)
|
| 65 |
+
conversation_history.append(f"Follow-up Question: {dynamic_question}")
|
| 66 |
|
| 67 |
# Process text responses
|
| 68 |
+
text_df, text_plot = text_part(candidate_name, responses)
|
| 69 |
|
| 70 |
# Process audio responses
|
| 71 |
+
audio_df, audio_plot = audio_part(candidate_name, responses)
|
| 72 |
|
| 73 |
+
# Return conversation history and analysis
|
| 74 |
+
return "\n".join(conversation_history), text_df, text_plot, audio_df, audio_plot
|
| 75 |
|
| 76 |
# Create text inputs and audio inputs
|
| 77 |
+
text_inputs = [gr.Textbox(label=f"Response to Q{i+1}:") for i in range(5)] # Assuming we have up to 5 text responses
|
| 78 |
+
audio_inputs = [gr.Audio(label=f"Response to Audio Q{i+1}:") for i in range(2)] # Assuming we have up to 2 audio responses
|
| 79 |
|
| 80 |
interface = gr.Interface(
|
| 81 |
fn=chat_interface,
|
| 82 |
inputs=[gr.Textbox(label="Candidate Name")] + text_inputs + audio_inputs,
|
| 83 |
+
outputs=["text", "dataframe", "plot", "dataframe", "plot"],
|
| 84 |
+
title="Dynamic Psychometric Analysis Chatbot"
|
| 85 |
)
|
| 86 |
|
| 87 |
# Launch the interface
|