Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
·
034ac91
1
Parent(s):
5fc1f4b
initial commit
Browse files- .gitignore +5 -1
- .pre-commit-config.yaml +0 -53
- Makefile +0 -13
- README.md +10 -33
- app.py +69 -186
- baseline/README.md +29 -0
- baseline/__init__.py +0 -0
- baseline/constants.py +2 -0
- baseline/custom_agent.py +6 -0
- baseline/custom_litellm.py +29 -0
- baseline/prompts.py +67 -0
- baseline/requirements.txt +7 -0
- baseline/run.py +156 -0
- baseline/utils.py +109 -0
- dabstep_benchmark/__init__.py +0 -0
- dabstep_benchmark/content.py +35 -0
- dabstep_benchmark/evaluation/__init__.py +0 -0
- dabstep_benchmark/evaluation/scorer.py +129 -0
- dabstep_benchmark/leaderboard.py +310 -0
- dabstep_benchmark/tests/__init__.py +0 -0
- dabstep_benchmark/tests/test_scorer.py +90 -0
- dabstep_benchmark/utils.py +59 -0
- pyproject.toml +0 -13
- requirements.txt +4 -14
- setup.py +34 -0
- src/about.py +0 -72
- src/display/css_html_js.py +0 -105
- src/display/formatting.py +0 -27
- src/display/utils.py +0 -110
- src/envs.py +0 -25
- src/leaderboard/read_evals.py +0 -196
- src/populate.py +0 -58
- src/submission/check_validity.py +0 -99
- src/submission/submit.py +0 -119
.gitignore
CHANGED
|
@@ -3,11 +3,15 @@ venv/
|
|
| 3 |
__pycache__/
|
| 4 |
.env
|
| 5 |
.ipynb_checkpoints
|
| 6 |
-
*ipynb
|
| 7 |
.vscode/
|
|
|
|
| 8 |
|
| 9 |
eval-queue/
|
| 10 |
eval-results/
|
| 11 |
eval-queue-bk/
|
| 12 |
eval-results-bk/
|
| 13 |
logs/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
__pycache__/
|
| 4 |
.env
|
| 5 |
.ipynb_checkpoints
|
|
|
|
| 6 |
.vscode/
|
| 7 |
+
.idea
|
| 8 |
|
| 9 |
eval-queue/
|
| 10 |
eval-results/
|
| 11 |
eval-queue-bk/
|
| 12 |
eval-results-bk/
|
| 13 |
logs/
|
| 14 |
+
data
|
| 15 |
+
contact_info.jsonl
|
| 16 |
+
.DS_Store
|
| 17 |
+
runs
|
.pre-commit-config.yaml
DELETED
|
@@ -1,53 +0,0 @@
|
|
| 1 |
-
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
-
#
|
| 3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
-
# you may not use this file except in compliance with the License.
|
| 5 |
-
# You may obtain a copy of the License at
|
| 6 |
-
#
|
| 7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
-
#
|
| 9 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
-
# See the License for the specific language governing permissions and
|
| 13 |
-
# limitations under the License.
|
| 14 |
-
|
| 15 |
-
default_language_version:
|
| 16 |
-
python: python3
|
| 17 |
-
|
| 18 |
-
ci:
|
| 19 |
-
autofix_prs: true
|
| 20 |
-
autoupdate_commit_msg: '[pre-commit.ci] pre-commit suggestions'
|
| 21 |
-
autoupdate_schedule: quarterly
|
| 22 |
-
|
| 23 |
-
repos:
|
| 24 |
-
- repo: https://github.com/pre-commit/pre-commit-hooks
|
| 25 |
-
rev: v4.3.0
|
| 26 |
-
hooks:
|
| 27 |
-
- id: check-yaml
|
| 28 |
-
- id: check-case-conflict
|
| 29 |
-
- id: detect-private-key
|
| 30 |
-
- id: check-added-large-files
|
| 31 |
-
args: ['--maxkb=1000']
|
| 32 |
-
- id: requirements-txt-fixer
|
| 33 |
-
- id: end-of-file-fixer
|
| 34 |
-
- id: trailing-whitespace
|
| 35 |
-
|
| 36 |
-
- repo: https://github.com/PyCQA/isort
|
| 37 |
-
rev: 5.12.0
|
| 38 |
-
hooks:
|
| 39 |
-
- id: isort
|
| 40 |
-
name: Format imports
|
| 41 |
-
|
| 42 |
-
- repo: https://github.com/psf/black
|
| 43 |
-
rev: 22.12.0
|
| 44 |
-
hooks:
|
| 45 |
-
- id: black
|
| 46 |
-
name: Format code
|
| 47 |
-
additional_dependencies: ['click==8.0.2']
|
| 48 |
-
|
| 49 |
-
- repo: https://github.com/charliermarsh/ruff-pre-commit
|
| 50 |
-
# Ruff version.
|
| 51 |
-
rev: 'v0.0.267'
|
| 52 |
-
hooks:
|
| 53 |
-
- id: ruff
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Makefile
DELETED
|
@@ -1,13 +0,0 @@
|
|
| 1 |
-
.PHONY: style format
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
style:
|
| 5 |
-
python -m black --line-length 119 .
|
| 6 |
-
python -m isort .
|
| 7 |
-
ruff check --fix .
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
quality:
|
| 11 |
-
python -m black --check --line-length 119 .
|
| 12 |
-
python -m isort --check-only .
|
| 13 |
-
ruff check .
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
|
@@ -1,44 +1,21 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
colorTo: indigo
|
| 6 |
sdk: gradio
|
| 7 |
app_file: app.py
|
| 8 |
pinned: true
|
| 9 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
Results files should have the following format and be stored as json files:
|
| 17 |
-
```json
|
| 18 |
-
{
|
| 19 |
-
"config": {
|
| 20 |
-
"model_dtype": "torch.float16", # or torch.bfloat16 or 8bit or 4bit
|
| 21 |
-
"model_name": "path of the model on the hub: org/model",
|
| 22 |
-
"model_sha": "revision on the hub",
|
| 23 |
-
},
|
| 24 |
-
"results": {
|
| 25 |
-
"task_name": {
|
| 26 |
-
"metric_name": score,
|
| 27 |
-
},
|
| 28 |
-
"task_name2": {
|
| 29 |
-
"metric_name": score,
|
| 30 |
-
}
|
| 31 |
-
}
|
| 32 |
-
}
|
| 33 |
```
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
If you encounter problem on the space, don't hesitate to restart it to remove the create eval-queue, eval-queue-bk, eval-results and eval-results-bk created folder.
|
| 38 |
-
|
| 39 |
-
# Code logic for more complex edits
|
| 40 |
-
|
| 41 |
-
You'll find
|
| 42 |
-
- the main table' columns names and properties in `src/display/utils.py`
|
| 43 |
-
- the logic to read all results and request files, then convert them in dataframe lines, in `src/leaderboard/read_evals.py`, and `src/populate.py`
|
| 44 |
-
- the logic to allow or filter submissions in `src/submission/submit.py` and `src/submission/check_validity.py`
|
|
|
|
| 1 |
---
|
| 2 |
+
title: DABstep Leaderboard
|
| 3 |
+
emoji: 🏆
|
| 4 |
+
colorFrom: yellow
|
| 5 |
colorTo: indigo
|
| 6 |
sdk: gradio
|
| 7 |
app_file: app.py
|
| 8 |
pinned: true
|
| 9 |
license: apache-2.0
|
| 10 |
+
tags:
|
| 11 |
+
- leaderboard
|
| 12 |
+
short_description: DABstep Reasoning Benchmark Leaderboard
|
| 13 |
---
|
| 14 |
|
| 15 |
+
to run
|
| 16 |
|
| 17 |
+
```
|
| 18 |
+
gradio app.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
```
|
| 20 |
|
| 21 |
+
(assumes `HF_TOKEN` env var is set)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
|
@@ -1,204 +1,87 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
| 3 |
-
import pandas as pd
|
| 4 |
-
from apscheduler.schedulers.background import BackgroundScheduler
|
| 5 |
-
from huggingface_hub import snapshot_download
|
| 6 |
|
| 7 |
-
from
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
EVALUATION_QUEUE_TEXT,
|
| 11 |
-
INTRODUCTION_TEXT,
|
| 12 |
-
LLM_BENCHMARKS_TEXT,
|
| 13 |
-
TITLE,
|
| 14 |
-
)
|
| 15 |
-
from src.display.css_html_js import custom_css
|
| 16 |
-
from src.display.utils import (
|
| 17 |
-
BENCHMARK_COLS,
|
| 18 |
-
COLS,
|
| 19 |
-
EVAL_COLS,
|
| 20 |
-
EVAL_TYPES,
|
| 21 |
-
AutoEvalColumn,
|
| 22 |
-
ModelType,
|
| 23 |
-
fields,
|
| 24 |
-
WeightType,
|
| 25 |
-
Precision
|
| 26 |
-
)
|
| 27 |
-
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
| 28 |
-
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
| 29 |
-
from src.submission.submit import add_new_eval
|
| 30 |
|
| 31 |
|
| 32 |
def restart_space():
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
)
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
| 76 |
-
ColumnFilter(
|
| 77 |
-
AutoEvalColumn.params.name,
|
| 78 |
-
type="slider",
|
| 79 |
-
min=0.01,
|
| 80 |
-
max=150,
|
| 81 |
-
label="Select the number of parameters (B)",
|
| 82 |
-
),
|
| 83 |
-
ColumnFilter(
|
| 84 |
-
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
|
| 85 |
-
),
|
| 86 |
-
],
|
| 87 |
-
bool_checkboxgroup_label="Hide models",
|
| 88 |
-
interactive=False,
|
| 89 |
-
)
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
demo = gr.Blocks(css=custom_css)
|
| 93 |
-
with demo:
|
| 94 |
-
gr.HTML(TITLE)
|
| 95 |
-
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 96 |
-
|
| 97 |
-
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 98 |
-
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
| 99 |
-
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
| 100 |
-
|
| 101 |
-
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
| 102 |
-
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 103 |
-
|
| 104 |
-
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
| 105 |
-
with gr.Column():
|
| 106 |
-
with gr.Row():
|
| 107 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
| 108 |
-
|
| 109 |
-
with gr.Column():
|
| 110 |
-
with gr.Accordion(
|
| 111 |
-
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
| 112 |
-
open=False,
|
| 113 |
-
):
|
| 114 |
-
with gr.Row():
|
| 115 |
-
finished_eval_table = gr.components.Dataframe(
|
| 116 |
-
value=finished_eval_queue_df,
|
| 117 |
-
headers=EVAL_COLS,
|
| 118 |
-
datatype=EVAL_TYPES,
|
| 119 |
-
row_count=5,
|
| 120 |
-
)
|
| 121 |
-
with gr.Accordion(
|
| 122 |
-
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
| 123 |
-
open=False,
|
| 124 |
-
):
|
| 125 |
-
with gr.Row():
|
| 126 |
-
running_eval_table = gr.components.Dataframe(
|
| 127 |
-
value=running_eval_queue_df,
|
| 128 |
-
headers=EVAL_COLS,
|
| 129 |
-
datatype=EVAL_TYPES,
|
| 130 |
-
row_count=5,
|
| 131 |
-
)
|
| 132 |
-
|
| 133 |
-
with gr.Accordion(
|
| 134 |
-
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
| 135 |
-
open=False,
|
| 136 |
-
):
|
| 137 |
-
with gr.Row():
|
| 138 |
-
pending_eval_table = gr.components.Dataframe(
|
| 139 |
-
value=pending_eval_queue_df,
|
| 140 |
-
headers=EVAL_COLS,
|
| 141 |
-
datatype=EVAL_TYPES,
|
| 142 |
-
row_count=5,
|
| 143 |
-
)
|
| 144 |
with gr.Row():
|
| 145 |
-
gr.Markdown(
|
| 146 |
-
|
| 147 |
with gr.Row():
|
| 148 |
with gr.Column():
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
multiselect=False,
|
| 155 |
-
value=None,
|
| 156 |
-
interactive=True,
|
| 157 |
-
)
|
| 158 |
-
|
| 159 |
with gr.Column():
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
label="
|
| 163 |
-
|
| 164 |
-
value="float16",
|
| 165 |
-
interactive=True,
|
| 166 |
-
)
|
| 167 |
-
weight_type = gr.Dropdown(
|
| 168 |
-
choices=[i.value.name for i in WeightType],
|
| 169 |
-
label="Weights type",
|
| 170 |
-
multiselect=False,
|
| 171 |
-
value="Original",
|
| 172 |
-
interactive=True,
|
| 173 |
-
)
|
| 174 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
| 175 |
|
| 176 |
-
submit_button = gr.Button("Submit
|
| 177 |
submission_result = gr.Markdown()
|
| 178 |
submit_button.click(
|
| 179 |
-
|
| 180 |
[
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
|
|
|
| 187 |
],
|
| 188 |
submission_result,
|
| 189 |
)
|
| 190 |
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
label=CITATION_BUTTON_LABEL,
|
| 196 |
-
lines=20,
|
| 197 |
-
elem_id="citation-button",
|
| 198 |
-
show_copy_button=True,
|
| 199 |
-
)
|
| 200 |
|
| 201 |
-
scheduler = BackgroundScheduler()
|
| 202 |
-
scheduler.add_job(restart_space, "interval", seconds=1800)
|
| 203 |
-
scheduler.start()
|
| 204 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
| 5 |
+
from dabstep_benchmark.content import TITLE, INTRODUCTION_TEXT, SUBMISSION_TEXT, CITATION_BUTTON_TEXT, CITATION_BUTTON_LABEL
|
| 6 |
+
from dabstep_benchmark.leaderboard import *
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
def restart_space():
|
| 10 |
+
HF_API.restart_space(repo_id=HF_LEADERBOARD)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
if __name__ == "__main__":
|
| 14 |
+
os.makedirs("data/task_scores", exist_ok=True)
|
| 15 |
+
refresh(only_leaderboard=False)
|
| 16 |
+
|
| 17 |
+
demo = gr.Blocks()
|
| 18 |
+
with demo:
|
| 19 |
+
gr.Markdown(TITLE)
|
| 20 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 21 |
+
|
| 22 |
+
leaderboard_table = gr.components.Dataframe(
|
| 23 |
+
value=generate_leaderboard_df(),
|
| 24 |
+
datatype=["markdown", "str", "str", "str", "markdown", "str", "str", "str"],
|
| 25 |
+
interactive=False,
|
| 26 |
+
column_widths=["20%"],
|
| 27 |
+
wrap=True,
|
| 28 |
+
)
|
| 29 |
+
# create a Gradio event listener that runs when the page is loaded to populate the dataframe
|
| 30 |
+
demo.load(lambda: generate_leaderboard_df(), None, leaderboard_table)
|
| 31 |
+
|
| 32 |
+
refresh_button = gr.Button("Refresh")
|
| 33 |
+
refresh_button.click(
|
| 34 |
+
refresh,
|
| 35 |
+
inputs=[
|
| 36 |
+
gr.Checkbox(value=True, visible=False)
|
| 37 |
+
],
|
| 38 |
+
outputs=[
|
| 39 |
+
leaderboard_table,
|
| 40 |
+
],
|
| 41 |
+
)
|
| 42 |
+
with gr.Row():
|
| 43 |
+
with gr.Accordion("📙 Citation", open=False):
|
| 44 |
+
citation_button = gr.Textbox(
|
| 45 |
+
value=CITATION_BUTTON_TEXT,
|
| 46 |
+
label=CITATION_BUTTON_LABEL,
|
| 47 |
+
lines=len(CITATION_BUTTON_TEXT.split("\n")),
|
| 48 |
+
elem_id="citation-button",
|
| 49 |
+
) # .style(show_copy_button=True)
|
| 50 |
+
|
| 51 |
+
with gr.Accordion("Submit new agent answers for evaluation"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
with gr.Row():
|
| 53 |
+
gr.Markdown(SUBMISSION_TEXT, elem_classes="markdown-text")
|
|
|
|
| 54 |
with gr.Row():
|
| 55 |
with gr.Column():
|
| 56 |
+
split = gr.Radio(["all"], value="all", label="Split", visible=False)
|
| 57 |
+
agent_name_textbox = gr.Textbox(label="Agent name")
|
| 58 |
+
model_family_textbox = gr.Textbox(label="Model family")
|
| 59 |
+
system_prompt_textbox = gr.Textbox(label="System prompt example")
|
| 60 |
+
repo_url_textbox = gr.Textbox(label="Repo URL with agent code")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
with gr.Column():
|
| 62 |
+
organisation = gr.Textbox(label="Organisation")
|
| 63 |
+
mail = gr.Textbox(
|
| 64 |
+
label="Contact email (will be stored privately, & used if there is an issue with your submission)")
|
| 65 |
+
file_output = gr.File()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
+
submit_button = gr.Button("Submit answers")
|
| 68 |
submission_result = gr.Markdown()
|
| 69 |
submit_button.click(
|
| 70 |
+
process_submission,
|
| 71 |
[
|
| 72 |
+
split,
|
| 73 |
+
agent_name_textbox,
|
| 74 |
+
model_family_textbox,
|
| 75 |
+
repo_url_textbox,
|
| 76 |
+
file_output,
|
| 77 |
+
organisation,
|
| 78 |
+
mail
|
| 79 |
],
|
| 80 |
submission_result,
|
| 81 |
)
|
| 82 |
|
| 83 |
+
scheduler = BackgroundScheduler()
|
| 84 |
+
scheduler.add_job(restart_space, "interval", seconds=3600)
|
| 85 |
+
scheduler.start()
|
| 86 |
+
demo.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
|
|
|
|
|
|
|
|
|
|
|
baseline/README.md
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
1. Setup environment
|
| 2 |
+
```
|
| 3 |
+
export MODEL_ID=openai/o3-mini
|
| 4 |
+
export API_KEY=<your_api_key>
|
| 5 |
+
pip install -r baseline/requirements.txt
|
| 6 |
+
```
|
| 7 |
+
|
| 8 |
+
2. Launch trace collector
|
| 9 |
+
```
|
| 10 |
+
python -m phoenix.server.main serve &
|
| 11 |
+
```
|
| 12 |
+
|
| 13 |
+
3. Launch baseline
|
| 14 |
+
```
|
| 15 |
+
# Runs 10 tasks from dev split
|
| 16 |
+
python baseline/run.py --model-id $MODEL_ID --api-key $API_KEY --max-tasks 10 --split dev --concurrency 1
|
| 17 |
+
|
| 18 |
+
# Run all tasks from the dev split
|
| 19 |
+
python baseline/run.py --model-id $MODEL_ID --api-key $API_KEY --max-tasks -1 --split dev --concurrency 1
|
| 20 |
+
|
| 21 |
+
# Run against 10 tasks from the full benchmark (default) split
|
| 22 |
+
python baseline/run.py --model-id $MODEL_ID --api-key $API_KEY --max-tasks 10 --split default --concurrency 1
|
| 23 |
+
|
| 24 |
+
# Run 10 tasks in parallel
|
| 25 |
+
python baseline/run.py --model-id $MODEL_ID --api-key $API_KEY --max-tasks 10 --split default --concurrency 10
|
| 26 |
+
|
| 27 |
+
# Run specific task ids
|
| 28 |
+
python baseline/run.py --model-id $MODEL_ID --api-key $API_KEY --tasks-ids 49 5 1273 --split default --concurrency 3
|
| 29 |
+
```
|
baseline/__init__.py
ADDED
|
File without changes
|
baseline/constants.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
REPO_ID = "adyen/DABstep"
|
| 2 |
+
ADDITIONAL_AUTHORIZED_IMPORTS = ["numpy", "pandas", "json", "csv", "glob", "markdown", "os"]
|
baseline/custom_agent.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from smolagents import CodeAgent
|
| 2 |
+
|
| 3 |
+
class CustomCodeAgent(CodeAgent):
|
| 4 |
+
|
| 5 |
+
def initialize_system_prompt(self):
|
| 6 |
+
return self.system_prompt_template
|
baseline/custom_litellm.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional
|
| 2 |
+
|
| 3 |
+
from smolagents import LiteLLMModel
|
| 4 |
+
from tenacity import retry, stop_after_attempt, before_sleep_log, retry_if_exception_type, wait_exponential, wait_random
|
| 5 |
+
import litellm
|
| 6 |
+
import logging
|
| 7 |
+
|
| 8 |
+
logging.basicConfig(level=logging.WARNING)
|
| 9 |
+
logger = logging.getLogger(__name__)
|
| 10 |
+
|
| 11 |
+
class LiteLLMModelWithBackOff(LiteLLMModel):
|
| 12 |
+
def __init__(self, max_tokens: Optional[int] = 1500, *args, **kwargs):
|
| 13 |
+
super().__init__(*args, **kwargs)
|
| 14 |
+
self.max_tokens = max_tokens
|
| 15 |
+
|
| 16 |
+
@retry(
|
| 17 |
+
stop=stop_after_attempt(450),
|
| 18 |
+
wait=wait_exponential(min=1, max=120, exp_base=2, multiplier=1) + wait_random(0, 5),
|
| 19 |
+
before_sleep=before_sleep_log(logger, logging.WARNING),
|
| 20 |
+
retry=retry_if_exception_type((
|
| 21 |
+
litellm.Timeout,
|
| 22 |
+
litellm.RateLimitError,
|
| 23 |
+
litellm.APIConnectionError,
|
| 24 |
+
litellm.InternalServerError
|
| 25 |
+
))
|
| 26 |
+
)
|
| 27 |
+
def __call__(self, *args, **kwargs):
|
| 28 |
+
return super().__call__(max_tokens=self.max_tokens, *args, **kwargs)
|
| 29 |
+
|
baseline/prompts.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from smolagents.prompts import CODE_SYSTEM_PROMPT
|
| 2 |
+
|
| 3 |
+
reasoning_llm_system_prompt = """You are an expert data analyst who can solve any task using code blobs. You will be given a task to solve as best as you can.
|
| 4 |
+
In the environment there exists data which will help you solve your data analyst task, this data is spread out across files in this directory: `{ctx_path}`.
|
| 5 |
+
For each task you try to solve you will follow a hierarchy of workflows: a root-level task workflow and a leaf-level step workflow.
|
| 6 |
+
There is one root-level workflow per task which will be composed of multiple leafs self-contained step workflows.
|
| 7 |
+
|
| 8 |
+
When solving a task you must follow this root-level workflow: 'Explore' → 'Plan' → 'Execute' → 'Conclude'.
|
| 9 |
+
Root Task Workflow:
|
| 10 |
+
1. Explore: Perform data exploration on the environment in the directory `{ctx_path}` and become one with the data. Understand what is available, what can you do with such data and what limitations are there.
|
| 11 |
+
2. Plan: Draft a high-level plan based on the results of the 'Explore' step.
|
| 12 |
+
3. Execute: Execute and operationalize such plan you have drafted. If while executing such plan, it turns out to be unsuccessful start over from the 'Explore' step.
|
| 13 |
+
4. Conclude: Based on the output of your executed plan, distil all findings into an answer for the proposed task to solve.
|
| 14 |
+
|
| 15 |
+
In order to advance through the Root Task Workflow you will need to perform a series of steps, for each step you take you must follow this workflow: 'Thought:' → 'Code:' → 'Observation:'.
|
| 16 |
+
Step Workflow:
|
| 17 |
+
1. Thought: Explain your reasoning and the code you'll use.
|
| 18 |
+
2. Code: Write Python code inside:
|
| 19 |
+
Code:
|
| 20 |
+
```py
|
| 21 |
+
your_python_code
|
| 22 |
+
```<end_code>
|
| 23 |
+
Use print() to retain important outputs.
|
| 24 |
+
3. Observation: Review printed outputs before proceeding.
|
| 25 |
+
|
| 26 |
+
Rules:
|
| 27 |
+
- ALWAYS check the `{ctx_path}` directory for relevant documentation or data before assuming information is unavailable.
|
| 28 |
+
- ALWAYS validate your assumptions with the available documentation before executing.
|
| 29 |
+
- IF AND ONLY IF you have exhausted all possibles solution plans you can come up with and still can not find a valid answer, then provide "Not Applicable" as a final answer.
|
| 30 |
+
- Use only defined variables and correct valid python statements.
|
| 31 |
+
- Avoid chaining long unpredictable code snippets in one step.
|
| 32 |
+
- Use python only when needed, and never re-generate the same python code if you already know is not helping you solve the task.
|
| 33 |
+
- Never create any notional variables in our code, as having these in your logs will derail you from the true variables.
|
| 34 |
+
- Imports and variables persist between executions.
|
| 35 |
+
- Solve the task yourself, don't just provide instructions.
|
| 36 |
+
- You can import from this list: {{authorized_imports}}
|
| 37 |
+
- Never try to import final_answer, you have it already!
|
| 38 |
+
|
| 39 |
+
Available Tools:
|
| 40 |
+
- final_answer(answer: any): Use this tool to return the final solution, as in:
|
| 41 |
+
Code:
|
| 42 |
+
```py
|
| 43 |
+
answer = df["result"].mean()
|
| 44 |
+
final_answer(answer)
|
| 45 |
+
```<end_code>
|
| 46 |
+
"""
|
| 47 |
+
|
| 48 |
+
chat_llm_system_prompt = CODE_SYSTEM_PROMPT
|
| 49 |
+
|
| 50 |
+
reasoning_llm_task_prompt = """
|
| 51 |
+
{question}
|
| 52 |
+
|
| 53 |
+
You must follow these guidelines when you produce your final answer:
|
| 54 |
+
{guidelines}
|
| 55 |
+
|
| 56 |
+
Now Begin! If you solve the task correctly, you will receive a reward of $1,000,000.
|
| 57 |
+
"""
|
| 58 |
+
|
| 59 |
+
chat_llm_task_prompt = """You are an expert data analyst and you will answer factoid questions by referencing files in the data directory: `{ctx_path}`
|
| 60 |
+
Don't forget to reference any documentation in the data dir before answering a question.
|
| 61 |
+
|
| 62 |
+
Here is the question you need to answer: {question}
|
| 63 |
+
|
| 64 |
+
Here are the guidelines you MUST follow when answering the question above: {guidelines}
|
| 65 |
+
|
| 66 |
+
Before answering the question, reference any documentation in the data dir and leverage its information in your reasoning / planning.
|
| 67 |
+
"""
|
baseline/requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
-i https://pypi.org/simple
|
| 2 |
+
datasets
|
| 3 |
+
huggingface-hub
|
| 4 |
+
smolagents
|
| 5 |
+
litellm
|
| 6 |
+
tenacity
|
| 7 |
+
arize-phoenix
|
baseline/run.py
ADDED
|
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
|
| 3 |
+
import yaml
|
| 4 |
+
from opentelemetry.sdk.trace import TracerProvider
|
| 5 |
+
|
| 6 |
+
from openinference.instrumentation.smolagents import SmolagentsInstrumentor
|
| 7 |
+
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
|
| 8 |
+
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
|
| 9 |
+
|
| 10 |
+
endpoint = "http://0.0.0.0:6006/v1/traces"
|
| 11 |
+
trace_provider = TracerProvider()
|
| 12 |
+
trace_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))
|
| 13 |
+
|
| 14 |
+
SmolagentsInstrumentor().instrument(tracer_provider=trace_provider)
|
| 15 |
+
|
| 16 |
+
import argparse
|
| 17 |
+
import logging
|
| 18 |
+
import os
|
| 19 |
+
import time
|
| 20 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 21 |
+
from pathlib import Path
|
| 22 |
+
import datasets
|
| 23 |
+
import pandas as pd
|
| 24 |
+
from dabstep_benchmark.utils import evaluate
|
| 25 |
+
from smolagents.utils import console
|
| 26 |
+
from utils import TqdmLoggingHandler
|
| 27 |
+
from constants import REPO_ID
|
| 28 |
+
from tqdm import tqdm
|
| 29 |
+
from prompts import (
|
| 30 |
+
reasoning_llm_system_prompt,
|
| 31 |
+
reasoning_llm_task_prompt,
|
| 32 |
+
chat_llm_task_prompt,
|
| 33 |
+
chat_llm_system_prompt
|
| 34 |
+
)
|
| 35 |
+
from utils import (
|
| 36 |
+
is_reasoning_llm,
|
| 37 |
+
create_code_agent_with_chat_llm,
|
| 38 |
+
create_code_agent_with_reasoning_llm,
|
| 39 |
+
get_tasks_to_run,
|
| 40 |
+
append_answer,
|
| 41 |
+
append_console_output,
|
| 42 |
+
download_context
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
logging.basicConfig(level=logging.WARNING, handlers=[TqdmLoggingHandler()])
|
| 46 |
+
logger = logging.getLogger(__name__)
|
| 47 |
+
|
| 48 |
+
def parse_args():
|
| 49 |
+
parser = argparse.ArgumentParser()
|
| 50 |
+
parser.add_argument("--concurrency", type=int, default=4)
|
| 51 |
+
parser.add_argument("--model-id", type=str, default="openai/o3-mini")
|
| 52 |
+
parser.add_argument("--experiment", type=str, default=None)
|
| 53 |
+
parser.add_argument("--max-tasks", type=int, default=-1)
|
| 54 |
+
parser.add_argument("--max-steps", type=int, default=10)
|
| 55 |
+
parser.add_argument("--tasks-ids", type=int, nargs="+", default=None)
|
| 56 |
+
parser.add_argument("--api-base", type=str, default=None)
|
| 57 |
+
parser.add_argument("--api-key", type=str, default=None)
|
| 58 |
+
parser.add_argument("--split", type=str, default="default", choices=["default", "dev"])
|
| 59 |
+
parser.add_argument("--timestamp", type=str, default=None)
|
| 60 |
+
return parser.parse_args()
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def run_single_task(
|
| 64 |
+
task: dict,
|
| 65 |
+
model_id: str,
|
| 66 |
+
api_base: str,
|
| 67 |
+
api_key: str,
|
| 68 |
+
ctx_path: str,
|
| 69 |
+
base_filename: Path,
|
| 70 |
+
is_dev_data: bool,
|
| 71 |
+
max_steps: int
|
| 72 |
+
):
|
| 73 |
+
if is_reasoning_llm(model_id):
|
| 74 |
+
prompt = reasoning_llm_task_prompt.format(
|
| 75 |
+
question=task["question"],
|
| 76 |
+
guidelines=task["guidelines"]
|
| 77 |
+
)
|
| 78 |
+
agent = create_code_agent_with_reasoning_llm(model_id, api_base, api_key, max_steps, ctx_path)
|
| 79 |
+
else:
|
| 80 |
+
prompt = chat_llm_task_prompt.format(
|
| 81 |
+
ctx_path=ctx_path,
|
| 82 |
+
question=task["question"],
|
| 83 |
+
guidelines=task["guidelines"]
|
| 84 |
+
)
|
| 85 |
+
agent = create_code_agent_with_chat_llm(model_id, api_base, api_key, max_steps)
|
| 86 |
+
|
| 87 |
+
with console.capture() as capture:
|
| 88 |
+
answer = agent.run(prompt)
|
| 89 |
+
|
| 90 |
+
logger.warning(f"Task id: {task['task_id']}\tQuestion: {task['question']} Answer: {answer}\n{'=' * 50}")
|
| 91 |
+
|
| 92 |
+
answer_dict = {"task_id": str(task["task_id"]), "agent_answer": str(answer)}
|
| 93 |
+
answers_file = base_filename / "answers.jsonl"
|
| 94 |
+
logs_file = base_filename / "logs.txt"
|
| 95 |
+
|
| 96 |
+
if is_dev_data:
|
| 97 |
+
scores = evaluate(agent_answers=pd.DataFrame([answer_dict]), tasks_with_gt=pd.DataFrame([task]))
|
| 98 |
+
entry = {**answer_dict, "answer": task["answer"], "score": scores[0]["score"], "level": scores[0]["level"]}
|
| 99 |
+
append_answer(entry, answers_file)
|
| 100 |
+
else:
|
| 101 |
+
append_answer(answer_dict, answers_file)
|
| 102 |
+
append_console_output(capture.get(), logs_file)
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def main():
|
| 106 |
+
args = parse_args()
|
| 107 |
+
logger.warning(f"Starting run with arguments: {args}")
|
| 108 |
+
|
| 109 |
+
ctx_path = download_context(str(Path().resolve()))
|
| 110 |
+
|
| 111 |
+
runs_dir = Path().resolve() / "runs"
|
| 112 |
+
runs_dir.mkdir(parents=True, exist_ok=True)
|
| 113 |
+
timestamp = time.time() if not args.timestamp else args.timestamp
|
| 114 |
+
base_filename = runs_dir / f"{args.model_id.replace('/', '_').replace('.', '_')}/{args.split}/{int(timestamp)}"
|
| 115 |
+
|
| 116 |
+
# save config
|
| 117 |
+
os.makedirs(base_filename, exist_ok=True)
|
| 118 |
+
with open(base_filename / "config.yaml", "w", encoding="utf-8") as f:
|
| 119 |
+
if is_reasoning_llm(args.model_id):
|
| 120 |
+
args.system_prompt = reasoning_llm_system_prompt
|
| 121 |
+
else:
|
| 122 |
+
args.system_prompt = chat_llm_system_prompt
|
| 123 |
+
args_dict = vars(args)
|
| 124 |
+
yaml.dump(args_dict, f, default_flow_style=False)
|
| 125 |
+
|
| 126 |
+
# Load dataset with user-chosen split
|
| 127 |
+
data = datasets.load_dataset(REPO_ID, name="tasks", split=args.split, download_mode='force_redownload')
|
| 128 |
+
|
| 129 |
+
if args.max_tasks >= 0 and args.tasks_ids is not None:
|
| 130 |
+
logger.error(f"Can not provide {args.max_tasks=} and {args.tasks_ids=} at the same time")
|
| 131 |
+
total = len(data) if args.max_tasks < 0 else min(len(data), args.max_tasks)
|
| 132 |
+
|
| 133 |
+
tasks_to_run = get_tasks_to_run(data, total, base_filename, args.tasks_ids)
|
| 134 |
+
with ThreadPoolExecutor(max_workers=args.concurrency) as exe:
|
| 135 |
+
futures = [
|
| 136 |
+
exe.submit(
|
| 137 |
+
run_single_task,
|
| 138 |
+
task,
|
| 139 |
+
args.model_id,
|
| 140 |
+
args.api_base,
|
| 141 |
+
args.api_key,
|
| 142 |
+
ctx_path,
|
| 143 |
+
base_filename,
|
| 144 |
+
(args.split == "dev"),
|
| 145 |
+
args.max_steps
|
| 146 |
+
)
|
| 147 |
+
for task in tasks_to_run
|
| 148 |
+
]
|
| 149 |
+
for f in tqdm(as_completed(futures), total=len(tasks_to_run), desc="Processing tasks"):
|
| 150 |
+
f.result()
|
| 151 |
+
|
| 152 |
+
logger.warning("All tasks processed.")
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
if __name__ == "__main__":
|
| 156 |
+
main()
|
baseline/utils.py
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from tqdm import tqdm
|
| 3 |
+
import logging
|
| 4 |
+
import threading
|
| 5 |
+
from smolagents import CodeAgent
|
| 6 |
+
from custom_agent import CustomCodeAgent
|
| 7 |
+
from custom_litellm import LiteLLMModelWithBackOff
|
| 8 |
+
from huggingface_hub import hf_hub_download
|
| 9 |
+
from constants import REPO_ID, ADDITIONAL_AUTHORIZED_IMPORTS
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
from prompts import reasoning_llm_system_prompt, chat_llm_system_prompt
|
| 12 |
+
|
| 13 |
+
append_answer_lock = threading.Lock()
|
| 14 |
+
append_console_output_lock = threading.Lock()
|
| 15 |
+
|
| 16 |
+
class TqdmLoggingHandler(logging.Handler):
|
| 17 |
+
def emit(self, record):
|
| 18 |
+
tqdm.write(self.format(record))
|
| 19 |
+
|
| 20 |
+
def read_only_open(*a, **kw):
|
| 21 |
+
if (len(a) > 1 and isinstance(a[1], str) and a[1] != 'r') or kw.get('mode', 'r') != 'r':
|
| 22 |
+
raise Exception("Only mode='r' allowed for the function open")
|
| 23 |
+
return open(*a, **kw)
|
| 24 |
+
|
| 25 |
+
def download_context(base_dir: str) -> str:
|
| 26 |
+
ctx_files = [
|
| 27 |
+
"data/context/acquirer_countries.csv",
|
| 28 |
+
"data/context/payments.csv",
|
| 29 |
+
"data/context/merchant_category_codes.csv",
|
| 30 |
+
"data/context/fees.json",
|
| 31 |
+
"data/context/merchant_data.json",
|
| 32 |
+
"data/context/manual.md",
|
| 33 |
+
"data/context/payments-readme.md"
|
| 34 |
+
]
|
| 35 |
+
for f in ctx_files:
|
| 36 |
+
hf_hub_download(REPO_ID, repo_type="dataset", filename=f, local_dir=base_dir, force_download=True)
|
| 37 |
+
|
| 38 |
+
root_dir = Path(__file__).resolve().parent.parent
|
| 39 |
+
full_path = Path(base_dir) / Path(ctx_files[0]).parent
|
| 40 |
+
relative_path = full_path.relative_to(root_dir)
|
| 41 |
+
return str(relative_path)
|
| 42 |
+
|
| 43 |
+
def is_reasoning_llm(model_id: str) -> bool:
|
| 44 |
+
reasoning_llm_list = [
|
| 45 |
+
"openai/o1",
|
| 46 |
+
"openai/o3",
|
| 47 |
+
"openai/o3-mini",
|
| 48 |
+
"deepseek/deepseek-reasoner"
|
| 49 |
+
]
|
| 50 |
+
return model_id in reasoning_llm_list
|
| 51 |
+
|
| 52 |
+
def get_tasks_to_run(data, total: int, base_filename: Path, tasks_ids: list[int]):
|
| 53 |
+
import json
|
| 54 |
+
f = base_filename.parent / f"{base_filename.stem}_answers.jsonl"
|
| 55 |
+
done = set()
|
| 56 |
+
if f.exists():
|
| 57 |
+
with open(f, encoding="utf-8") as fh:
|
| 58 |
+
done = {json.loads(line)["task_id"] for line in fh if line.strip()}
|
| 59 |
+
|
| 60 |
+
tasks = []
|
| 61 |
+
for i in range(total):
|
| 62 |
+
task_id = int(data[i]["task_id"])
|
| 63 |
+
if task_id not in done:
|
| 64 |
+
if tasks_ids is not None:
|
| 65 |
+
if task_id in tasks_ids:
|
| 66 |
+
tasks.append(data[i])
|
| 67 |
+
else:
|
| 68 |
+
tasks.append(data[i])
|
| 69 |
+
return tasks
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def append_answer(entry: dict, jsonl_file: Path) -> None:
|
| 73 |
+
jsonl_file.parent.mkdir(parents=True, exist_ok=True)
|
| 74 |
+
with append_answer_lock, open(jsonl_file, "a", encoding="utf-8") as fp:
|
| 75 |
+
fp.write(json.dumps(entry) + "\n")
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def append_console_output(captured_text: str, txt_file: Path) -> None:
|
| 79 |
+
txt_file.parent.mkdir(parents=True, exist_ok=True)
|
| 80 |
+
with append_console_output_lock, open(txt_file, "a", encoding="utf-8") as fp:
|
| 81 |
+
fp.write(captured_text + "\n")
|
| 82 |
+
|
| 83 |
+
def create_code_agent_with_reasoning_llm(model_id: str, api_base=None, api_key=None, max_steps=10, ctx_path=None):
|
| 84 |
+
agent = CustomCodeAgent(
|
| 85 |
+
system_prompt=reasoning_llm_system_prompt,
|
| 86 |
+
tools=[],
|
| 87 |
+
model=LiteLLMModelWithBackOff(
|
| 88 |
+
model_id=model_id, api_base=api_base, api_key=api_key, max_tokens=None, max_completion_tokens=3000),
|
| 89 |
+
additional_authorized_imports=ADDITIONAL_AUTHORIZED_IMPORTS,
|
| 90 |
+
max_steps=max_steps,
|
| 91 |
+
verbosity_level=3,
|
| 92 |
+
)
|
| 93 |
+
agent.python_executor.static_tools.update({"open": read_only_open})
|
| 94 |
+
|
| 95 |
+
agent.system_prompt = agent.system_prompt.format(ctx_path=ctx_path)
|
| 96 |
+
return agent
|
| 97 |
+
|
| 98 |
+
def create_code_agent_with_chat_llm(model_id: str, api_base=None, api_key=None, max_steps=10):
|
| 99 |
+
agent = CodeAgent(
|
| 100 |
+
system_prompt=chat_llm_system_prompt,
|
| 101 |
+
tools=[],
|
| 102 |
+
model=LiteLLMModelWithBackOff(model_id=model_id, api_base=api_base, api_key=api_key, max_tokens=3000),
|
| 103 |
+
additional_authorized_imports=ADDITIONAL_AUTHORIZED_IMPORTS,
|
| 104 |
+
max_steps=max_steps,
|
| 105 |
+
verbosity_level=3,
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
agent.python_executor.static_tools.update({"open": read_only_open})
|
| 109 |
+
return agent
|
dabstep_benchmark/__init__.py
ADDED
|
File without changes
|
dabstep_benchmark/content.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
TITLE = """# 🏅 DABStep Leaderboard"""
|
| 2 |
+
|
| 3 |
+
INTRODUCTION_TEXT = """
|
| 4 |
+
The Data Agent Benchmark for Multi-step Reasoning (DABStep) is looking to measure and push the state-of-the-art in Data Analysis by LLMs.
|
| 5 |
+
The benchmark is composed of ~450 data analysis questions ([Dataset Link](https://huggingface.co/datasets/adyen/data-agents-benchmark)) centered around 1 or more documents that agents will have to understand and cross reference in order to answer correctly.
|
| 6 |
+
|
| 7 |
+
We have set up a notebook to quickly get an agent baseline using the free Huggingface Inference API: [Colab Notebook](https://colab.research.google.com/drive/1pXi5ffBFNJQ5nn1111SnIfjfKCOlunxu)
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
SUBMISSION_TEXT = """
|
| 11 |
+
## Submissions
|
| 12 |
+
Scores are expressed as the percentage of correct answers.
|
| 13 |
+
|
| 14 |
+
Each question calls for an answer that is either a string (one or a few words), a number, or a comma separated list of strings or floats, unless specified otherwise. There is only one correct answer.
|
| 15 |
+
Hence, evaluation is done via quasi exact match between a model’s answer and the ground truth (up to some normalization that is tied to the “type” of the ground truth).
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
We expect submissions to be json-line files with the following format.
|
| 19 |
+
Mandatory fields are: `task_id` and `agent_answer`. However, `reasoning_trace` is optional:
|
| 20 |
+
```
|
| 21 |
+
{"task_id": "task_id_1", "agent_answer": "Answer 1 from your agent", "reasoning_trace": "The different steps by which your model reached answer 1"}
|
| 22 |
+
{"task_id": "task_id_2", "agent_answer": "Answer 2 from your agent", "reasoning_trace": "The different steps by which your model reached answer 2"}
|
| 23 |
+
```
|
| 24 |
+
|
| 25 |
+
Our scoring function can be found [here](https://huggingface.co/spaces/adyen/data-agents-benchmark/blob/main/data_agents_benchmark/evaluation/scorer.py).
|
| 26 |
+
"""
|
| 27 |
+
|
| 28 |
+
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
| 29 |
+
CITATION_BUTTON_TEXT = r"""@misc{data_agents_benchmark_2025,
|
| 30 |
+
title={Data Agents Benchmark},
|
| 31 |
+
author={Martin Iglesias, Alex Egg, Friso Kingma},
|
| 32 |
+
year={2025},
|
| 33 |
+
month={January},
|
| 34 |
+
url={TBD}
|
| 35 |
+
}"""
|
dabstep_benchmark/evaluation/__init__.py
ADDED
|
File without changes
|
dabstep_benchmark/evaluation/scorer.py
ADDED
|
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
from typing import Union
|
| 3 |
+
import math
|
| 4 |
+
from difflib import SequenceMatcher
|
| 5 |
+
|
| 6 |
+
def is_numeric_with_commas(value: str) -> bool:
|
| 7 |
+
# Check if the string is a number with comma separators
|
| 8 |
+
return bool(re.match(r'^\$?(\d{1,3}(,\d{3})*(\.\d+)?|\.\d+)$', value.strip()))
|
| 9 |
+
|
| 10 |
+
def question_scorer(input1: str, input2: str) -> bool:
|
| 11 |
+
# Remove leading/trailing whitespace and convert to lowercase
|
| 12 |
+
input1 = input1.strip().lower()
|
| 13 |
+
input2 = input2.strip().lower()
|
| 14 |
+
|
| 15 |
+
# Check if inputs are numeric with commas
|
| 16 |
+
if is_numeric_with_commas(input1) or is_numeric_with_commas(input2):
|
| 17 |
+
num1 = extract_numeric(input1)
|
| 18 |
+
num2 = extract_numeric(input2)
|
| 19 |
+
return compare_numeric(num1, num2) if num1 is not None and num2 is not None else False
|
| 20 |
+
|
| 21 |
+
# Check for list match
|
| 22 |
+
if ';' in input1 or ';' in input2 or ',' in input1 or ',' in input2:
|
| 23 |
+
return compare_lists(input1, input2)
|
| 24 |
+
|
| 25 |
+
# Extract numeric values if present
|
| 26 |
+
num1 = extract_numeric(input1)
|
| 27 |
+
num2 = extract_numeric(input2)
|
| 28 |
+
|
| 29 |
+
# If both inputs have numeric values, compare them
|
| 30 |
+
if num1 is not None and num2 is not None:
|
| 31 |
+
return compare_numeric(num1, num2)
|
| 32 |
+
|
| 33 |
+
# Check for string match or subset
|
| 34 |
+
return compare_strings(input1, input2)
|
| 35 |
+
|
| 36 |
+
def extract_numeric(value: str) -> Union[float, None]:
|
| 37 |
+
# Remove commas and currency symbols from the value string
|
| 38 |
+
value = value.replace(',', '').replace('$', '')
|
| 39 |
+
|
| 40 |
+
# Extract the first occurrence of a numeric value (including percentages and leading decimal point)
|
| 41 |
+
match = re.search(r'(\d*\.\d+|\d+\.?\d*)%?', value)
|
| 42 |
+
if match:
|
| 43 |
+
num_str = match.group(1)
|
| 44 |
+
|
| 45 |
+
# @martini: now ground truths are expressed in % not in ratios anymore so no need for this
|
| 46 |
+
## Handle percentages
|
| 47 |
+
# if '%' in value:
|
| 48 |
+
# try:
|
| 49 |
+
# return float(num_str) / 100
|
| 50 |
+
# except ValueError:
|
| 51 |
+
# return None
|
| 52 |
+
# else:
|
| 53 |
+
# try:
|
| 54 |
+
# return float(num_str)
|
| 55 |
+
# except ValueError:
|
| 56 |
+
# return None
|
| 57 |
+
try:
|
| 58 |
+
return float(num_str)
|
| 59 |
+
except ValueError:
|
| 60 |
+
return None
|
| 61 |
+
return None
|
| 62 |
+
|
| 63 |
+
def compare_numeric(num1: float, num2: float) -> bool:
|
| 64 |
+
# Check for exact equality first
|
| 65 |
+
if num1 == num2:
|
| 66 |
+
return True
|
| 67 |
+
|
| 68 |
+
# For percentages and small numbers, use a more lenient comparison
|
| 69 |
+
if num1 < 1 and num2 < 1:
|
| 70 |
+
return math.isclose(num1, num2, rel_tol=1e-2, abs_tol=1e-4)
|
| 71 |
+
|
| 72 |
+
# For larger numbers, use the original comparison method
|
| 73 |
+
dec_places1 = len(str(num1).split('.')[-1]) if '.' in str(num1) else 0
|
| 74 |
+
dec_places2 = len(str(num2).split('.')[-1]) if '.' in str(num2) else 0
|
| 75 |
+
round_to = min(dec_places1, dec_places2)
|
| 76 |
+
rounded1 = round(num1, round_to)
|
| 77 |
+
rounded2 = round(num2, round_to)
|
| 78 |
+
|
| 79 |
+
if rounded1 == rounded2:
|
| 80 |
+
return True
|
| 81 |
+
|
| 82 |
+
return math.isclose(num1, num2, rel_tol=1e-2, abs_tol=1e-2)
|
| 83 |
+
|
| 84 |
+
def compare_strings(str1: str, str2: str) -> bool:
|
| 85 |
+
# Remove all whitespace and punctuation
|
| 86 |
+
clean1 = re.sub(r'[^\w]', '', str1)
|
| 87 |
+
clean2 = re.sub(r'[^\w]', '', str2)
|
| 88 |
+
|
| 89 |
+
if clean1 == clean2:
|
| 90 |
+
return True
|
| 91 |
+
|
| 92 |
+
words1 = re.findall(r'\b\w+\b', str1.lower())
|
| 93 |
+
words2 = re.findall(r'\b\w+\b', str2.lower())
|
| 94 |
+
|
| 95 |
+
# Only do subset comparison if neither list is empty
|
| 96 |
+
if (len(words1) == 1 or len(words2) == 1) and words1 and words2:
|
| 97 |
+
return set(words1).issubset(set(words2)) or set(words2).issubset(set(words1))
|
| 98 |
+
|
| 99 |
+
# Debugging: Log similarity score
|
| 100 |
+
similarity = SequenceMatcher(None, str1, str2).ratio()
|
| 101 |
+
|
| 102 |
+
return similarity > 0.95
|
| 103 |
+
|
| 104 |
+
def compare_lists(list1: str, list2: str) -> bool:
|
| 105 |
+
# Normalize list representations by removing brackets
|
| 106 |
+
list1 = re.sub(r'^\[|\]$', '', list1.strip())
|
| 107 |
+
list2 = re.sub(r'^\[|\]$', '', list2.strip())
|
| 108 |
+
|
| 109 |
+
# Split the lists and remove whitespace
|
| 110 |
+
items1 = [item.strip() for item in re.split(r'[,;]', list1) if item.strip()]
|
| 111 |
+
items2 = [item.strip() for item in re.split(r'[,;]', list2) if item.strip()]
|
| 112 |
+
|
| 113 |
+
# Sort the items to handle different order
|
| 114 |
+
items1.sort()
|
| 115 |
+
items2.sort()
|
| 116 |
+
|
| 117 |
+
# Check if the lists are identical
|
| 118 |
+
if items1 == items2:
|
| 119 |
+
return True
|
| 120 |
+
|
| 121 |
+
# If lists are not identical, compare each item
|
| 122 |
+
if len(items1) != len(items2):
|
| 123 |
+
return False
|
| 124 |
+
|
| 125 |
+
for item1, item2 in zip(items1, items2):
|
| 126 |
+
if not question_scorer(item1, item2):
|
| 127 |
+
return False
|
| 128 |
+
|
| 129 |
+
return True
|
dabstep_benchmark/leaderboard.py
ADDED
|
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import json
|
| 4 |
+
import datetime
|
| 5 |
+
from email.utils import parseaddr
|
| 6 |
+
|
| 7 |
+
import pandas as pd
|
| 8 |
+
from datasets import load_dataset
|
| 9 |
+
from huggingface_hub import HfApi
|
| 10 |
+
|
| 11 |
+
from dabstep_benchmark.utils import format_log, format_error, format_warning, is_valid_https_url, evaluate
|
| 12 |
+
|
| 13 |
+
OWNER = "adyen"
|
| 14 |
+
|
| 15 |
+
HF_API = HfApi()
|
| 16 |
+
HF_LEADERBOARD = f"{OWNER}/DABstep"
|
| 17 |
+
HF_DATASET_PATH = f"{OWNER}/DABstep"
|
| 18 |
+
HF_INTERNAL_DATASET_PATH = f"{OWNER}/DABstep-internal"
|
| 19 |
+
HF_DATASET_CONFIGS = [
|
| 20 |
+
"tasks",
|
| 21 |
+
"submissions",
|
| 22 |
+
"task_scores"
|
| 23 |
+
]
|
| 24 |
+
DATASETS = {}
|
| 25 |
+
|
| 26 |
+
def refresh(only_leaderboard: bool = False):
|
| 27 |
+
if only_leaderboard:
|
| 28 |
+
for config_name in ["task_scores", "submissions"]:
|
| 29 |
+
DATASETS[f"{config_name}"] = load_dataset(
|
| 30 |
+
path=HF_DATASET_PATH,
|
| 31 |
+
name=config_name,
|
| 32 |
+
split="default",
|
| 33 |
+
)
|
| 34 |
+
print(f"Downloaded {HF_DATASET_PATH}/{config_name}")
|
| 35 |
+
|
| 36 |
+
else:
|
| 37 |
+
for config_name in HF_DATASET_CONFIGS:
|
| 38 |
+
DATASETS[f"{config_name}"] = load_dataset(
|
| 39 |
+
path=HF_DATASET_PATH,
|
| 40 |
+
name=config_name,
|
| 41 |
+
split="default",
|
| 42 |
+
)
|
| 43 |
+
print(f"Downloaded {HF_DATASET_PATH}/{config_name}")
|
| 44 |
+
|
| 45 |
+
DATASETS["internal_tasks"] = load_dataset(
|
| 46 |
+
path=HF_INTERNAL_DATASET_PATH,
|
| 47 |
+
name="tasks",
|
| 48 |
+
split="default",
|
| 49 |
+
)
|
| 50 |
+
print(f"Downloaded {HF_INTERNAL_DATASET_PATH}/tasks")
|
| 51 |
+
DATASETS["contact_info"] = load_dataset(
|
| 52 |
+
path=HF_INTERNAL_DATASET_PATH,
|
| 53 |
+
name="contact_info",
|
| 54 |
+
split="default",
|
| 55 |
+
)
|
| 56 |
+
print(f"Downloaded {HF_INTERNAL_DATASET_PATH}/contact_info")
|
| 57 |
+
|
| 58 |
+
return generate_leaderboard_df()
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def validate_submission(submission_df: pd.DataFrame):
|
| 62 |
+
# mandatory_columns = ["agent_answer", "task_id", "num_steps"]
|
| 63 |
+
mandatory_columns = ["agent_answer", "task_id"]
|
| 64 |
+
expected_columns = [*mandatory_columns, "reasoning_trace"]
|
| 65 |
+
|
| 66 |
+
# Check for missing mandatory columns
|
| 67 |
+
missing_columns = [col for col in mandatory_columns if col not in submission_df.columns]
|
| 68 |
+
if missing_columns:
|
| 69 |
+
return format_error(f"Missing mandatory columns: {', '.join(missing_columns)}")
|
| 70 |
+
|
| 71 |
+
# Check for unexpected columns
|
| 72 |
+
unexpected_columns = [col for col in submission_df.columns if col not in expected_columns]
|
| 73 |
+
if unexpected_columns:
|
| 74 |
+
return format_error(f"Unexpected columns: {', '.join(unexpected_columns)}")
|
| 75 |
+
|
| 76 |
+
# Check for NaN values in any column
|
| 77 |
+
if submission_df.isnull().values.any():
|
| 78 |
+
return format_error("Submission contains NaN values. Please ensure no missing data.")
|
| 79 |
+
|
| 80 |
+
# Check if all columns are of string type
|
| 81 |
+
non_string_columns = [col for col in submission_df.columns if submission_df[col].dtype != 'object']
|
| 82 |
+
if non_string_columns:
|
| 83 |
+
return format_error(f"Columns with non-string data type: {', '.join(non_string_columns)}")
|
| 84 |
+
|
| 85 |
+
return None # No errors
|
| 86 |
+
|
| 87 |
+
def process_submission(
|
| 88 |
+
split: str,
|
| 89 |
+
agent_name: str,
|
| 90 |
+
model_family: str,
|
| 91 |
+
repo_url: str,
|
| 92 |
+
path_to_file: str,
|
| 93 |
+
organisation: str,
|
| 94 |
+
mail: str,
|
| 95 |
+
):
|
| 96 |
+
if agent_name == "":
|
| 97 |
+
return format_warning("Please provide an agent name")
|
| 98 |
+
if organisation == "":
|
| 99 |
+
return format_warning("Please provide an organisation")
|
| 100 |
+
if mail == "":
|
| 101 |
+
return format_warning("Please provide an email")
|
| 102 |
+
if model_family == "":
|
| 103 |
+
return format_warning("Please provide a model family")
|
| 104 |
+
|
| 105 |
+
allowed_pattern = re.compile(r'^[a-zA-Z0-9 _.-]+$')
|
| 106 |
+
if not allowed_pattern.match(agent_name):
|
| 107 |
+
return format_warning(
|
| 108 |
+
f"{agent_name=} can only contain alphanumeric characters, spaces, dashes (-), and underscores (_)")
|
| 109 |
+
|
| 110 |
+
if not allowed_pattern.match(organisation):
|
| 111 |
+
return format_warning(
|
| 112 |
+
f"{organisation=} can only contain alphanumeric characters, spaces, dashes (-), and underscores (_)")
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
# very basic email parsing
|
| 116 |
+
_, parsed_mail = parseaddr(mail)
|
| 117 |
+
if not "@" in parsed_mail:
|
| 118 |
+
return format_warning("Please provide a valid email address.")
|
| 119 |
+
|
| 120 |
+
if repo_url != "" and not is_valid_https_url(repo_url):
|
| 121 |
+
return format_warning("If you provide a URL it must be a valid one. You can also leave it empty")
|
| 122 |
+
|
| 123 |
+
# submission file validation
|
| 124 |
+
if path_to_file == None:
|
| 125 |
+
return format_warning("Please attach a file.")
|
| 126 |
+
submission_path = path_to_file.name
|
| 127 |
+
try:
|
| 128 |
+
submission_df = pd.read_json(submission_path, lines=True, dtype=str)
|
| 129 |
+
validation_error = validate_submission(submission_df)
|
| 130 |
+
if validation_error:
|
| 131 |
+
return validation_error
|
| 132 |
+
except Exception as exc:
|
| 133 |
+
return format_error(f"Submission file is incorrectly formatted. Please fix it and resubmit your file. {str(exc)}")
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
print(f"Processing submission_id={organisation}-{agent_name}...")
|
| 137 |
+
gr.Info(f"Processing submission of {agent_name}...")
|
| 138 |
+
refresh(only_leaderboard=False)
|
| 139 |
+
submissions_df = DATASETS["submissions"].to_pandas()
|
| 140 |
+
contact_info_df = DATASETS["contact_info"].to_pandas()
|
| 141 |
+
internal_tasks_df = DATASETS["internal_tasks"].to_pandas()
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
# check if this agent already was submitted
|
| 145 |
+
submission_id = f"{organisation}-{agent_name}"
|
| 146 |
+
if submission_id in submissions_df['submission_id'].values:
|
| 147 |
+
return format_warning(f"This {submission_id} pair has been already submitted.")
|
| 148 |
+
|
| 149 |
+
# process submission
|
| 150 |
+
submission_df["submission_id"] = submission_id
|
| 151 |
+
submission_df["agent_name"] = agent_name
|
| 152 |
+
submission_df["model_family"] = model_family
|
| 153 |
+
submission_df["organisation"] = organisation
|
| 154 |
+
submission_df["repo_url"] = repo_url
|
| 155 |
+
submission_df["date"] = datetime.date.today().strftime("%d-%m-%Y")
|
| 156 |
+
|
| 157 |
+
# add empty reasoning trace if one is not provided to not break schema of datasets
|
| 158 |
+
if "reasoning_trace" not in submission_df.columns:
|
| 159 |
+
submission_df["reasoning_trace"] = ""
|
| 160 |
+
|
| 161 |
+
# overwrite submission
|
| 162 |
+
submission_df.to_json(submission_path, orient="records", lines=True)
|
| 163 |
+
|
| 164 |
+
try:
|
| 165 |
+
task_scores = evaluate(
|
| 166 |
+
agent_answers=submission_df,
|
| 167 |
+
tasks_with_gt=internal_tasks_df,
|
| 168 |
+
submission_id=submission_id
|
| 169 |
+
)
|
| 170 |
+
except KeyError as exc:
|
| 171 |
+
return format_error(str(exc))
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
# save submitted file once evaluation has run correctly
|
| 175 |
+
filename_id = f"v1__{organisation}-{agent_name}__{datetime.datetime.today().strftime('%d-%m-%Y')}"
|
| 176 |
+
path_in_repo = f"data/submissions/{filename_id}.jsonl"
|
| 177 |
+
HF_API.upload_file(
|
| 178 |
+
repo_id=HF_DATASET_PATH,
|
| 179 |
+
path_or_fileobj=submission_path,
|
| 180 |
+
path_in_repo=path_in_repo,
|
| 181 |
+
repo_type="dataset",
|
| 182 |
+
)
|
| 183 |
+
print(f"[submission_id={organisation}-{agent_name}] Pushed submission to {HF_DATASET_PATH}/{path_in_repo} !")
|
| 184 |
+
|
| 185 |
+
# write scores to disk
|
| 186 |
+
with open(f"data/task_scores/{filename_id}.jsonl", "w") as f:
|
| 187 |
+
for score in task_scores:
|
| 188 |
+
f.write(json.dumps(score) + "\n")
|
| 189 |
+
|
| 190 |
+
# upload scores to hub dataset
|
| 191 |
+
path_in_repo = f"data/task_scores/{filename_id}.jsonl"
|
| 192 |
+
HF_API.upload_file(
|
| 193 |
+
repo_id=HF_DATASET_PATH,
|
| 194 |
+
path_or_fileobj=f"data/task_scores/{filename_id}.jsonl",
|
| 195 |
+
path_in_repo=path_in_repo,
|
| 196 |
+
repo_type="dataset",
|
| 197 |
+
)
|
| 198 |
+
print(f"[submission_id={organisation}-{agent_name}] Pushed task_scores to {HF_DATASET_PATH}/{path_in_repo} !")
|
| 199 |
+
|
| 200 |
+
# if we already have this email dont save its metadata
|
| 201 |
+
if mail not in contact_info_df["mail"].values:
|
| 202 |
+
contact_info = {
|
| 203 |
+
"submission_id": submission_id,
|
| 204 |
+
"agent_name": agent_name,
|
| 205 |
+
"model_family": model_family,
|
| 206 |
+
"repo_url": repo_url,
|
| 207 |
+
"organisation": organisation,
|
| 208 |
+
"mail": mail,
|
| 209 |
+
"date": datetime.date.today().strftime("%d-%m-%Y"),
|
| 210 |
+
}
|
| 211 |
+
contact_info_df = pd.concat([contact_info_df, pd.DataFrame([contact_info])], ignore_index=True)
|
| 212 |
+
contact_info_df.to_json("contact_info.jsonl", orient="records", lines=True)
|
| 213 |
+
|
| 214 |
+
HF_API.upload_file(
|
| 215 |
+
repo_id=HF_INTERNAL_DATASET_PATH,
|
| 216 |
+
path_or_fileobj="contact_info.jsonl",
|
| 217 |
+
path_in_repo="contact_info.jsonl",
|
| 218 |
+
repo_type="dataset",
|
| 219 |
+
)
|
| 220 |
+
print(f"[submission_id={organisation}-{agent_name}] Pushed contact_info to {HF_INTERNAL_DATASET_PATH}/contact_info.jsonl !")
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
return format_log(
|
| 224 |
+
f"""
|
| 225 |
+
Agent {agent_name} submitted by {organisation} successfully.
|
| 226 |
+
Please refresh the leaderboard to see your score displayed.
|
| 227 |
+
""")
|
| 228 |
+
|
| 229 |
+
def generate_leaderboard_df() -> pd.DataFrame:
|
| 230 |
+
task_scores_df = DATASETS["task_scores"].to_pandas()
|
| 231 |
+
submissions_df = DATASETS["submissions"].to_pandas()
|
| 232 |
+
|
| 233 |
+
# get metadata of each submssion_id
|
| 234 |
+
submissions_df = (
|
| 235 |
+
submissions_df.groupby("submission_id")
|
| 236 |
+
.first()
|
| 237 |
+
.reset_index()[
|
| 238 |
+
[
|
| 239 |
+
"submission_id",
|
| 240 |
+
"agent_name",
|
| 241 |
+
"model_family",
|
| 242 |
+
"organisation",
|
| 243 |
+
"repo_url",
|
| 244 |
+
"date"
|
| 245 |
+
]
|
| 246 |
+
]
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
# make num_steps a number
|
| 250 |
+
# task_scores_df["num_steps"] = pd.to_numeric(task_scores_df["num_steps"], errors="coerce")
|
| 251 |
+
|
| 252 |
+
# group scores per submission
|
| 253 |
+
leaderboard_df = (
|
| 254 |
+
task_scores_df.groupby(["submission_id", "level"])
|
| 255 |
+
.agg(
|
| 256 |
+
avg_score=("score", "mean"),
|
| 257 |
+
# avg_num_steps=("num_steps", "mean")
|
| 258 |
+
)
|
| 259 |
+
.reset_index()
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
# reshape
|
| 263 |
+
# leaderboard_df = leaderboard_df.pivot(index="submission_id", columns="level", values=["avg_score", "avg_num_steps"])
|
| 264 |
+
leaderboard_df = leaderboard_df.pivot(index="submission_id", columns="level", values=["avg_score"])
|
| 265 |
+
leaderboard_df.columns = [f"{metric}_lvl_{level}" for metric, level in leaderboard_df.columns]
|
| 266 |
+
leaderboard_df = leaderboard_df.reset_index()
|
| 267 |
+
|
| 268 |
+
# leaderboard_df["overall_avg_steps"] = (
|
| 269 |
+
# leaderboard_df.get("avg_num_steps_lvl_1", 0) +
|
| 270 |
+
# leaderboard_df.get("avg_num_steps_lvl_2", 0) +
|
| 271 |
+
# leaderboard_df.get("avg_num_steps_lvl_3", 0)
|
| 272 |
+
# )
|
| 273 |
+
# leaderboard_df["overall_avg_steps"] = leaderboard_df["overall_avg_steps"] / 3
|
| 274 |
+
|
| 275 |
+
# join scores and submission metadata
|
| 276 |
+
leaderboard_df = pd.merge(submissions_df, leaderboard_df, on="submission_id", how="inner")
|
| 277 |
+
|
| 278 |
+
# renaming
|
| 279 |
+
col_map = {
|
| 280 |
+
"agent_name": "Agent",
|
| 281 |
+
"avg_score_lvl_easy": "Easy Level Accuracy (%)",
|
| 282 |
+
"avg_score_lvl_hard": "Hard Level Accuracy (%)",
|
| 283 |
+
# "overall_avg_steps": "Overall Avg Reasoning Steps",
|
| 284 |
+
# "avg_num_steps_lvl_1": "Level 1 Avg Reasoning Steps",
|
| 285 |
+
# "avg_num_steps_lvl_2": "Level 2 Avg Reasoning Steps",
|
| 286 |
+
# "avg_num_steps_lvl_3": "Level 3 Avg Reasoning Steps",
|
| 287 |
+
"organisation": "Organization",
|
| 288 |
+
"repo_url": "Repo URL",
|
| 289 |
+
"model_family": "Model Family",
|
| 290 |
+
"date": "Date"
|
| 291 |
+
}
|
| 292 |
+
col_order = [new_col_name for new_col_name in col_map.values()]
|
| 293 |
+
leaderboard_df.rename(columns=col_map, inplace=True)
|
| 294 |
+
df = leaderboard_df[col_order].copy()
|
| 295 |
+
|
| 296 |
+
# formatting
|
| 297 |
+
# convert scores to %
|
| 298 |
+
df["Easy Level Accuracy (%)"] = df["Easy Level Accuracy (%)"].apply(lambda x: round(x * 100, 2))
|
| 299 |
+
df["Hard Level Accuracy (%)"] = df["Hard Level Accuracy (%)"].apply(lambda x: round(x * 100, 2))
|
| 300 |
+
|
| 301 |
+
# make repo url clickable in markdown
|
| 302 |
+
df["Repo URL"] = df["Repo URL"].apply(lambda x: f"[Link]({x})" if x != "" else x)
|
| 303 |
+
|
| 304 |
+
# make agent name bold
|
| 305 |
+
df["Agent"] = df["Agent"].apply(lambda x: f"**{x}**")
|
| 306 |
+
|
| 307 |
+
# sort-by best score
|
| 308 |
+
df.sort_values(by="Hard Level Accuracy (%)", ascending=False, inplace=True)
|
| 309 |
+
|
| 310 |
+
return df
|
dabstep_benchmark/tests/__init__.py
ADDED
|
File without changes
|
dabstep_benchmark/tests/test_scorer.py
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pytest
|
| 2 |
+
from ..evaluation.scorer import question_scorer
|
| 3 |
+
|
| 4 |
+
@pytest.mark.parametrize("input1, input2, expected", [
|
| 5 |
+
("42", "42", True),
|
| 6 |
+
("$42.00", "42", True),
|
| 7 |
+
("43", "42", False),
|
| 8 |
+
("10,765", "10765", True),
|
| 9 |
+
("22520", "22520", True)
|
| 10 |
+
])
|
| 11 |
+
def test_numeric_match(input1, input2, expected):
|
| 12 |
+
assert question_scorer(input1, input2) == expected
|
| 13 |
+
|
| 14 |
+
@pytest.mark.parametrize("input1, input2, expected", [
|
| 15 |
+
("hello world", "Hello World", True),
|
| 16 |
+
(" sea gull ", "seagull", True),
|
| 17 |
+
("hello", "world", False),
|
| 18 |
+
("Other", "Other", True),
|
| 19 |
+
#("A. Netherlands", "B. Netherlands", False), #ignoring as outlier
|
| 20 |
+
("", "Inditex", False),
|
| 21 |
+
(" ", "Inditex", False),
|
| 22 |
+
("The average transaction amount is 91.85 EUR.", "91.852", True),
|
| 23 |
+
("The top 2 merchants account for approx 59.96% of all transactions.", "0.5996", False),
|
| 24 |
+
("Netherlands", "NL", False),
|
| 25 |
+
("", "", True) # @martini
|
| 26 |
+
])
|
| 27 |
+
def test_string_match(input1, input2, expected):
|
| 28 |
+
assert question_scorer(input1, input2) == expected
|
| 29 |
+
|
| 30 |
+
@pytest.mark.parametrize("input1, input2, expected", [
|
| 31 |
+
("1, 2, 3", "1,2,3", True),
|
| 32 |
+
("apple; banana; cherry", "apple;banana;cherry", True),
|
| 33 |
+
("1, 2", "1, 2, 3", False),
|
| 34 |
+
("apple; banana", "apple; banana; cherry", False),
|
| 35 |
+
("uber, spotify, nike, netflix, inditex", "Nike, Netflix, Uber, Inditex, Spotify", True),
|
| 36 |
+
("a, b, c", "['a', 'b', 'c']", True),
|
| 37 |
+
(
|
| 38 |
+
"C: 69.36, F: 77.90, B: 86.22, A: 87.79, D: 94.34, G: 115.23",
|
| 39 |
+
"[C: 69.36, F: 77.9, B: 86.22, A: 87.79, D: 94.34, G: 115.23]",
|
| 40 |
+
True
|
| 41 |
+
),
|
| 42 |
+
(
|
| 43 |
+
"[BE: 85.3, IT: 93.82, FR: 98.57, NL: 99.87, LU: 111.42, SE: 114.36, ES: 134.41, GR: 169.92, ]",
|
| 44 |
+
"BE: 85.3, IT: 93.82, FR: 98.57, NL: 99.87, LU: 111.42, SE: 114.36, ES: 134.41, GR: 169.92",
|
| 45 |
+
True
|
| 46 |
+
)
|
| 47 |
+
])
|
| 48 |
+
def test_list_match(input1, input2, expected):
|
| 49 |
+
assert question_scorer(input1, input2) == expected
|
| 50 |
+
|
| 51 |
+
@pytest.mark.parametrize("input1, input2, expected", [
|
| 52 |
+
("42, hello", "42, hello", True),
|
| 53 |
+
("42, world", "42, hello", False),
|
| 54 |
+
])
|
| 55 |
+
def test_mixed_list_match(input1, input2, expected):
|
| 56 |
+
assert question_scorer(input1, input2) == expected
|
| 57 |
+
|
| 58 |
+
@pytest.mark.parametrize("input1, input2, expected", [
|
| 59 |
+
("3.14", "3.1483", True),
|
| 60 |
+
("3.14", "3.20", False),
|
| 61 |
+
("1", "1.0", True),
|
| 62 |
+
("1.0", "1", True),
|
| 63 |
+
("0.731495413640441", "0.731495", True),
|
| 64 |
+
("C", "C) both ip_address and email_address", True),
|
| 65 |
+
("0.36706256984345176", "0.3670625698434518", True),
|
| 66 |
+
("$0.10", "$0.10 per retry", True),
|
| 67 |
+
("D", "D) Apples", True),
|
| 68 |
+
("D", "A) Oranges", False),
|
| 69 |
+
("25.0", "0.250", False) #input is not a percentage
|
| 70 |
+
])
|
| 71 |
+
def test_approximate_numeric_match(input1, input2, expected):
|
| 72 |
+
assert question_scorer(input1, input2) == expected
|
| 73 |
+
|
| 74 |
+
@pytest.mark.parametrize("input1, input2, expected", [
|
| 75 |
+
("73.15%", "73.1495", True),
|
| 76 |
+
("42%", "42", True),
|
| 77 |
+
("30%", "30.1", True),
|
| 78 |
+
("25", "25%", True),
|
| 79 |
+
("100%", "100", True),
|
| 80 |
+
("0.1%", "0.1", True),
|
| 81 |
+
("73%", "74", False), # This should fail as the difference is too large
|
| 82 |
+
("90%", "89.99971063977545", True),
|
| 83 |
+
("7.79%", "7.787407043027865", True)
|
| 84 |
+
# ("7.787407 %", "0.07787407043027865", True) #TODO FIX
|
| 85 |
+
|
| 86 |
+
])
|
| 87 |
+
def test_percentages_match(input1, input2, expected):
|
| 88 |
+
assert question_scorer(input1, input2) == expected
|
| 89 |
+
|
| 90 |
+
|
dabstep_benchmark/utils.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from dabstep_benchmark.evaluation.scorer import question_scorer
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def format_error(msg):
|
| 7 |
+
return f"<p style='color: red; font-size: 20px; text-align: center;'>{msg}</p>"
|
| 8 |
+
|
| 9 |
+
def format_warning(msg):
|
| 10 |
+
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{msg}</p>"
|
| 11 |
+
|
| 12 |
+
def format_log(msg):
|
| 13 |
+
return f"<p style='color: green; font-size: 20px; text-align: center;'>{msg}</p>"
|
| 14 |
+
|
| 15 |
+
def model_hyperlink(link, model_name):
|
| 16 |
+
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
| 17 |
+
|
| 18 |
+
def is_valid_https_url(url):
|
| 19 |
+
pattern = re.compile(
|
| 20 |
+
r'^https://' # URL must start with 'https://'
|
| 21 |
+
r'(?!10(?:\.\d{1,3}){3})' # Exclude private IP 10.x.x.x
|
| 22 |
+
r'(?!127(?:\.\d{1,3}){3})' # Exclude loopback IP 127.x.x.x
|
| 23 |
+
r'(?!169\.254(?:\.\d{1,3}){2})' # Exclude link-local IP 169.254.x.x
|
| 24 |
+
r'(?!192\.168(?:\.\d{1,3}){2})' # Exclude private IP 192.168.x.x
|
| 25 |
+
r'(?!172\.(?:1[6-9]|2[0-9]|3[0-1])(?:\.\d{1,3}){2})' # Exclude private IP 172.16.x.x - 172.31.x.x
|
| 26 |
+
r'(?:(?:[a-zA-Z0-9-]+\.)+[a-zA-Z]{2,})' # Match domain name
|
| 27 |
+
r'(?::\d{2,5})?' # Optional port
|
| 28 |
+
r'(?:/[^\s]*)?$', # Optional path
|
| 29 |
+
re.IGNORECASE
|
| 30 |
+
)
|
| 31 |
+
return re.match(pattern, url) is not None
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def evaluate(agent_answers: pd.DataFrame, tasks_with_gt: pd.DataFrame, submission_id: str = ""):
|
| 35 |
+
task_scores = []
|
| 36 |
+
for index, row in tasks_with_gt.iterrows():
|
| 37 |
+
correct_answer = row["answer"]
|
| 38 |
+
level = str(row["level"])
|
| 39 |
+
task_id = str(row["task_id"])
|
| 40 |
+
|
| 41 |
+
if task_id not in agent_answers["task_id"].values:
|
| 42 |
+
raise KeyError(f"Task ID: {task_id} not found. Are you sure you submitted the correct file?")
|
| 43 |
+
|
| 44 |
+
agent_answer = agent_answers.loc[agent_answers.task_id == task_id, "agent_answer"].values[0]
|
| 45 |
+
# num_steps = agent_answers.loc[agent_answers.task_id == task_id, "num_steps"].values[0]
|
| 46 |
+
score = question_scorer(agent_answer, correct_answer)
|
| 47 |
+
|
| 48 |
+
task_scores.append(
|
| 49 |
+
{
|
| 50 |
+
"submission_id": submission_id,
|
| 51 |
+
"task_id": task_id,
|
| 52 |
+
"score": score,
|
| 53 |
+
"level": level,
|
| 54 |
+
"agent_answer": agent_answer,
|
| 55 |
+
# "num_steps": num_steps,
|
| 56 |
+
}
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
return task_scores
|
pyproject.toml
DELETED
|
@@ -1,13 +0,0 @@
|
|
| 1 |
-
[tool.ruff]
|
| 2 |
-
# Enable pycodestyle (`E`) and Pyflakes (`F`) codes by default.
|
| 3 |
-
select = ["E", "F"]
|
| 4 |
-
ignore = ["E501"] # line too long (black is taking care of this)
|
| 5 |
-
line-length = 119
|
| 6 |
-
fixable = ["A", "B", "C", "D", "E", "F", "G", "I", "N", "Q", "S", "T", "W", "ANN", "ARG", "BLE", "COM", "DJ", "DTZ", "EM", "ERA", "EXE", "FBT", "ICN", "INP", "ISC", "NPY", "PD", "PGH", "PIE", "PL", "PT", "PTH", "PYI", "RET", "RSE", "RUF", "SIM", "SLF", "TCH", "TID", "TRY", "UP", "YTT"]
|
| 7 |
-
|
| 8 |
-
[tool.isort]
|
| 9 |
-
profile = "black"
|
| 10 |
-
line_length = 119
|
| 11 |
-
|
| 12 |
-
[tool.black]
|
| 13 |
-
line-length = 119
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -1,16 +1,6 @@
|
|
| 1 |
-
APScheduler
|
| 2 |
-
black
|
| 3 |
datasets
|
| 4 |
-
|
| 5 |
-
gradio[oauth]
|
| 6 |
-
gradio_leaderboard==0.0.9
|
| 7 |
-
gradio_client
|
| 8 |
-
huggingface-hub>=0.18.0
|
| 9 |
-
matplotlib
|
| 10 |
numpy
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
transformers
|
| 15 |
-
tokenizers>=0.15.0
|
| 16 |
-
sentencepiece
|
|
|
|
|
|
|
|
|
|
| 1 |
datasets
|
| 2 |
+
huggingface-hub
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
numpy
|
| 4 |
+
fastapi==0.112.2
|
| 5 |
+
gradio==5.0.0b1
|
| 6 |
+
APScheduler
|
|
|
|
|
|
|
|
|
setup.py
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from setuptools import setup, find_packages
|
| 2 |
+
|
| 3 |
+
# Read dependencies from requirements.txt
|
| 4 |
+
def parse_requirements(filename):
|
| 5 |
+
not_needed_deps = [
|
| 6 |
+
"fastapi==0.112.2",
|
| 7 |
+
"gradio==5.0.0b1",
|
| 8 |
+
"APScheduler",
|
| 9 |
+
]
|
| 10 |
+
dependencies = []
|
| 11 |
+
with open(filename) as f:
|
| 12 |
+
for line in f:
|
| 13 |
+
dep_name = line.strip()
|
| 14 |
+
if dep_name not in not_needed_deps:
|
| 15 |
+
dependencies.append(dep_name)
|
| 16 |
+
return dependencies
|
| 17 |
+
|
| 18 |
+
setup(
|
| 19 |
+
name="DABstep Benchmark",
|
| 20 |
+
version="0.1.0",
|
| 21 |
+
description="DABstep: Data Agent Benchmark for Multi-Step Reasoning",
|
| 22 |
+
long_description=open("README.md").read(),
|
| 23 |
+
long_description_content_type="text/markdown",
|
| 24 |
+
author="Martin Iglesias, Alex Egg, Andreu Mora, Friso Kingma, Leandro von Werra",
|
| 25 |
+
author_email="martin.iglesiasgoyanes@adyen.com",
|
| 26 |
+
packages=find_packages(include=["dabstep_benchmark", "dabstep_benchmark.*"]),
|
| 27 |
+
include_package_data=True,
|
| 28 |
+
install_requires=parse_requirements("requirements.txt"),
|
| 29 |
+
classifiers=[
|
| 30 |
+
"Programming Language :: Python :: 3",
|
| 31 |
+
"License :: OSI Approved :: MIT License",
|
| 32 |
+
"Operating System :: OS Independent",
|
| 33 |
+
],
|
| 34 |
+
)
|
src/about.py
DELETED
|
@@ -1,72 +0,0 @@
|
|
| 1 |
-
from dataclasses import dataclass
|
| 2 |
-
from enum import Enum
|
| 3 |
-
|
| 4 |
-
@dataclass
|
| 5 |
-
class Task:
|
| 6 |
-
benchmark: str
|
| 7 |
-
metric: str
|
| 8 |
-
col_name: str
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
# Select your tasks here
|
| 12 |
-
# ---------------------------------------------------
|
| 13 |
-
class Tasks(Enum):
|
| 14 |
-
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
| 15 |
-
task0 = Task("anli_r1", "acc", "ANLI")
|
| 16 |
-
task1 = Task("logiqa", "acc_norm", "LogiQA")
|
| 17 |
-
|
| 18 |
-
NUM_FEWSHOT = 0 # Change with your few shot
|
| 19 |
-
# ---------------------------------------------------
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
# Your leaderboard name
|
| 24 |
-
TITLE = """<h1 align="center" id="space-title">Demo leaderboard</h1>"""
|
| 25 |
-
|
| 26 |
-
# What does your leaderboard evaluate?
|
| 27 |
-
INTRODUCTION_TEXT = """
|
| 28 |
-
Intro text
|
| 29 |
-
"""
|
| 30 |
-
|
| 31 |
-
# Which evaluations are you running? how can people reproduce what you have?
|
| 32 |
-
LLM_BENCHMARKS_TEXT = f"""
|
| 33 |
-
## How it works
|
| 34 |
-
|
| 35 |
-
## Reproducibility
|
| 36 |
-
To reproduce our results, here is the commands you can run:
|
| 37 |
-
|
| 38 |
-
"""
|
| 39 |
-
|
| 40 |
-
EVALUATION_QUEUE_TEXT = """
|
| 41 |
-
## Some good practices before submitting a model
|
| 42 |
-
|
| 43 |
-
### 1) Make sure you can load your model and tokenizer using AutoClasses:
|
| 44 |
-
```python
|
| 45 |
-
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
| 46 |
-
config = AutoConfig.from_pretrained("your model name", revision=revision)
|
| 47 |
-
model = AutoModel.from_pretrained("your model name", revision=revision)
|
| 48 |
-
tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
|
| 49 |
-
```
|
| 50 |
-
If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
|
| 51 |
-
|
| 52 |
-
Note: make sure your model is public!
|
| 53 |
-
Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
|
| 54 |
-
|
| 55 |
-
### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
|
| 56 |
-
It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
|
| 57 |
-
|
| 58 |
-
### 3) Make sure your model has an open license!
|
| 59 |
-
This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
|
| 60 |
-
|
| 61 |
-
### 4) Fill up your model card
|
| 62 |
-
When we add extra information about models to the leaderboard, it will be automatically taken from the model card
|
| 63 |
-
|
| 64 |
-
## In case of model failure
|
| 65 |
-
If your model is displayed in the `FAILED` category, its execution stopped.
|
| 66 |
-
Make sure you have followed the above steps first.
|
| 67 |
-
If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
|
| 68 |
-
"""
|
| 69 |
-
|
| 70 |
-
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
| 71 |
-
CITATION_BUTTON_TEXT = r"""
|
| 72 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/display/css_html_js.py
DELETED
|
@@ -1,105 +0,0 @@
|
|
| 1 |
-
custom_css = """
|
| 2 |
-
|
| 3 |
-
.markdown-text {
|
| 4 |
-
font-size: 16px !important;
|
| 5 |
-
}
|
| 6 |
-
|
| 7 |
-
#models-to-add-text {
|
| 8 |
-
font-size: 18px !important;
|
| 9 |
-
}
|
| 10 |
-
|
| 11 |
-
#citation-button span {
|
| 12 |
-
font-size: 16px !important;
|
| 13 |
-
}
|
| 14 |
-
|
| 15 |
-
#citation-button textarea {
|
| 16 |
-
font-size: 16px !important;
|
| 17 |
-
}
|
| 18 |
-
|
| 19 |
-
#citation-button > label > button {
|
| 20 |
-
margin: 6px;
|
| 21 |
-
transform: scale(1.3);
|
| 22 |
-
}
|
| 23 |
-
|
| 24 |
-
#leaderboard-table {
|
| 25 |
-
margin-top: 15px
|
| 26 |
-
}
|
| 27 |
-
|
| 28 |
-
#leaderboard-table-lite {
|
| 29 |
-
margin-top: 15px
|
| 30 |
-
}
|
| 31 |
-
|
| 32 |
-
#search-bar-table-box > div:first-child {
|
| 33 |
-
background: none;
|
| 34 |
-
border: none;
|
| 35 |
-
}
|
| 36 |
-
|
| 37 |
-
#search-bar {
|
| 38 |
-
padding: 0px;
|
| 39 |
-
}
|
| 40 |
-
|
| 41 |
-
/* Limit the width of the first AutoEvalColumn so that names don't expand too much */
|
| 42 |
-
table td:first-child,
|
| 43 |
-
table th:first-child {
|
| 44 |
-
max-width: 400px;
|
| 45 |
-
overflow: auto;
|
| 46 |
-
white-space: nowrap;
|
| 47 |
-
}
|
| 48 |
-
|
| 49 |
-
.tab-buttons button {
|
| 50 |
-
font-size: 20px;
|
| 51 |
-
}
|
| 52 |
-
|
| 53 |
-
#scale-logo {
|
| 54 |
-
border-style: none !important;
|
| 55 |
-
box-shadow: none;
|
| 56 |
-
display: block;
|
| 57 |
-
margin-left: auto;
|
| 58 |
-
margin-right: auto;
|
| 59 |
-
max-width: 600px;
|
| 60 |
-
}
|
| 61 |
-
|
| 62 |
-
#scale-logo .download {
|
| 63 |
-
display: none;
|
| 64 |
-
}
|
| 65 |
-
#filter_type{
|
| 66 |
-
border: 0;
|
| 67 |
-
padding-left: 0;
|
| 68 |
-
padding-top: 0;
|
| 69 |
-
}
|
| 70 |
-
#filter_type label {
|
| 71 |
-
display: flex;
|
| 72 |
-
}
|
| 73 |
-
#filter_type label > span{
|
| 74 |
-
margin-top: var(--spacing-lg);
|
| 75 |
-
margin-right: 0.5em;
|
| 76 |
-
}
|
| 77 |
-
#filter_type label > .wrap{
|
| 78 |
-
width: 103px;
|
| 79 |
-
}
|
| 80 |
-
#filter_type label > .wrap .wrap-inner{
|
| 81 |
-
padding: 2px;
|
| 82 |
-
}
|
| 83 |
-
#filter_type label > .wrap .wrap-inner input{
|
| 84 |
-
width: 1px
|
| 85 |
-
}
|
| 86 |
-
#filter-columns-type{
|
| 87 |
-
border:0;
|
| 88 |
-
padding:0.5;
|
| 89 |
-
}
|
| 90 |
-
#filter-columns-size{
|
| 91 |
-
border:0;
|
| 92 |
-
padding:0.5;
|
| 93 |
-
}
|
| 94 |
-
#box-filter > .form{
|
| 95 |
-
border: 0
|
| 96 |
-
}
|
| 97 |
-
"""
|
| 98 |
-
|
| 99 |
-
get_window_url_params = """
|
| 100 |
-
function(url_params) {
|
| 101 |
-
const params = new URLSearchParams(window.location.search);
|
| 102 |
-
url_params = Object.fromEntries(params);
|
| 103 |
-
return url_params;
|
| 104 |
-
}
|
| 105 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/display/formatting.py
DELETED
|
@@ -1,27 +0,0 @@
|
|
| 1 |
-
def model_hyperlink(link, model_name):
|
| 2 |
-
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
def make_clickable_model(model_name):
|
| 6 |
-
link = f"https://huggingface.co/{model_name}"
|
| 7 |
-
return model_hyperlink(link, model_name)
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
def styled_error(error):
|
| 11 |
-
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
def styled_warning(warn):
|
| 15 |
-
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
def styled_message(message):
|
| 19 |
-
return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
def has_no_nan_values(df, columns):
|
| 23 |
-
return df[columns].notna().all(axis=1)
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
def has_nan_values(df, columns):
|
| 27 |
-
return df[columns].isna().any(axis=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/display/utils.py
DELETED
|
@@ -1,110 +0,0 @@
|
|
| 1 |
-
from dataclasses import dataclass, make_dataclass
|
| 2 |
-
from enum import Enum
|
| 3 |
-
|
| 4 |
-
import pandas as pd
|
| 5 |
-
|
| 6 |
-
from src.about import Tasks
|
| 7 |
-
|
| 8 |
-
def fields(raw_class):
|
| 9 |
-
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
# These classes are for user facing column names,
|
| 13 |
-
# to avoid having to change them all around the code
|
| 14 |
-
# when a modif is needed
|
| 15 |
-
@dataclass
|
| 16 |
-
class ColumnContent:
|
| 17 |
-
name: str
|
| 18 |
-
type: str
|
| 19 |
-
displayed_by_default: bool
|
| 20 |
-
hidden: bool = False
|
| 21 |
-
never_hidden: bool = False
|
| 22 |
-
|
| 23 |
-
## Leaderboard columns
|
| 24 |
-
auto_eval_column_dict = []
|
| 25 |
-
# Init
|
| 26 |
-
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
| 27 |
-
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
| 28 |
-
#Scores
|
| 29 |
-
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
| 30 |
-
for task in Tasks:
|
| 31 |
-
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
| 32 |
-
# Model information
|
| 33 |
-
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
| 34 |
-
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
| 35 |
-
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
| 36 |
-
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
| 37 |
-
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
| 38 |
-
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
| 39 |
-
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
| 40 |
-
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
| 41 |
-
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
| 42 |
-
|
| 43 |
-
# We use make dataclass to dynamically fill the scores from Tasks
|
| 44 |
-
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
| 45 |
-
|
| 46 |
-
## For the queue columns in the submission tab
|
| 47 |
-
@dataclass(frozen=True)
|
| 48 |
-
class EvalQueueColumn: # Queue column
|
| 49 |
-
model = ColumnContent("model", "markdown", True)
|
| 50 |
-
revision = ColumnContent("revision", "str", True)
|
| 51 |
-
private = ColumnContent("private", "bool", True)
|
| 52 |
-
precision = ColumnContent("precision", "str", True)
|
| 53 |
-
weight_type = ColumnContent("weight_type", "str", "Original")
|
| 54 |
-
status = ColumnContent("status", "str", True)
|
| 55 |
-
|
| 56 |
-
## All the model information that we might need
|
| 57 |
-
@dataclass
|
| 58 |
-
class ModelDetails:
|
| 59 |
-
name: str
|
| 60 |
-
display_name: str = ""
|
| 61 |
-
symbol: str = "" # emoji
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
class ModelType(Enum):
|
| 65 |
-
PT = ModelDetails(name="pretrained", symbol="🟢")
|
| 66 |
-
FT = ModelDetails(name="fine-tuned", symbol="🔶")
|
| 67 |
-
IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
|
| 68 |
-
RL = ModelDetails(name="RL-tuned", symbol="🟦")
|
| 69 |
-
Unknown = ModelDetails(name="", symbol="?")
|
| 70 |
-
|
| 71 |
-
def to_str(self, separator=" "):
|
| 72 |
-
return f"{self.value.symbol}{separator}{self.value.name}"
|
| 73 |
-
|
| 74 |
-
@staticmethod
|
| 75 |
-
def from_str(type):
|
| 76 |
-
if "fine-tuned" in type or "🔶" in type:
|
| 77 |
-
return ModelType.FT
|
| 78 |
-
if "pretrained" in type or "🟢" in type:
|
| 79 |
-
return ModelType.PT
|
| 80 |
-
if "RL-tuned" in type or "🟦" in type:
|
| 81 |
-
return ModelType.RL
|
| 82 |
-
if "instruction-tuned" in type or "⭕" in type:
|
| 83 |
-
return ModelType.IFT
|
| 84 |
-
return ModelType.Unknown
|
| 85 |
-
|
| 86 |
-
class WeightType(Enum):
|
| 87 |
-
Adapter = ModelDetails("Adapter")
|
| 88 |
-
Original = ModelDetails("Original")
|
| 89 |
-
Delta = ModelDetails("Delta")
|
| 90 |
-
|
| 91 |
-
class Precision(Enum):
|
| 92 |
-
float16 = ModelDetails("float16")
|
| 93 |
-
bfloat16 = ModelDetails("bfloat16")
|
| 94 |
-
Unknown = ModelDetails("?")
|
| 95 |
-
|
| 96 |
-
def from_str(precision):
|
| 97 |
-
if precision in ["torch.float16", "float16"]:
|
| 98 |
-
return Precision.float16
|
| 99 |
-
if precision in ["torch.bfloat16", "bfloat16"]:
|
| 100 |
-
return Precision.bfloat16
|
| 101 |
-
return Precision.Unknown
|
| 102 |
-
|
| 103 |
-
# Column selection
|
| 104 |
-
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
| 105 |
-
|
| 106 |
-
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
| 107 |
-
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
| 108 |
-
|
| 109 |
-
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/envs.py
DELETED
|
@@ -1,25 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
|
| 3 |
-
from huggingface_hub import HfApi
|
| 4 |
-
|
| 5 |
-
# Info to change for your repository
|
| 6 |
-
# ----------------------------------
|
| 7 |
-
TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
|
| 8 |
-
|
| 9 |
-
OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
| 10 |
-
# ----------------------------------
|
| 11 |
-
|
| 12 |
-
REPO_ID = f"{OWNER}/leaderboard"
|
| 13 |
-
QUEUE_REPO = f"{OWNER}/requests"
|
| 14 |
-
RESULTS_REPO = f"{OWNER}/results"
|
| 15 |
-
|
| 16 |
-
# If you setup a cache later, just change HF_HOME
|
| 17 |
-
CACHE_PATH=os.getenv("HF_HOME", ".")
|
| 18 |
-
|
| 19 |
-
# Local caches
|
| 20 |
-
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
| 21 |
-
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
|
| 22 |
-
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
|
| 23 |
-
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
| 24 |
-
|
| 25 |
-
API = HfApi(token=TOKEN)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/leaderboard/read_evals.py
DELETED
|
@@ -1,196 +0,0 @@
|
|
| 1 |
-
import glob
|
| 2 |
-
import json
|
| 3 |
-
import math
|
| 4 |
-
import os
|
| 5 |
-
from dataclasses import dataclass
|
| 6 |
-
|
| 7 |
-
import dateutil
|
| 8 |
-
import numpy as np
|
| 9 |
-
|
| 10 |
-
from src.display.formatting import make_clickable_model
|
| 11 |
-
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
|
| 12 |
-
from src.submission.check_validity import is_model_on_hub
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
@dataclass
|
| 16 |
-
class EvalResult:
|
| 17 |
-
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
|
| 18 |
-
"""
|
| 19 |
-
eval_name: str # org_model_precision (uid)
|
| 20 |
-
full_model: str # org/model (path on hub)
|
| 21 |
-
org: str
|
| 22 |
-
model: str
|
| 23 |
-
revision: str # commit hash, "" if main
|
| 24 |
-
results: dict
|
| 25 |
-
precision: Precision = Precision.Unknown
|
| 26 |
-
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
| 27 |
-
weight_type: WeightType = WeightType.Original # Original or Adapter
|
| 28 |
-
architecture: str = "Unknown"
|
| 29 |
-
license: str = "?"
|
| 30 |
-
likes: int = 0
|
| 31 |
-
num_params: int = 0
|
| 32 |
-
date: str = "" # submission date of request file
|
| 33 |
-
still_on_hub: bool = False
|
| 34 |
-
|
| 35 |
-
@classmethod
|
| 36 |
-
def init_from_json_file(self, json_filepath):
|
| 37 |
-
"""Inits the result from the specific model result file"""
|
| 38 |
-
with open(json_filepath) as fp:
|
| 39 |
-
data = json.load(fp)
|
| 40 |
-
|
| 41 |
-
config = data.get("config")
|
| 42 |
-
|
| 43 |
-
# Precision
|
| 44 |
-
precision = Precision.from_str(config.get("model_dtype"))
|
| 45 |
-
|
| 46 |
-
# Get model and org
|
| 47 |
-
org_and_model = config.get("model_name", config.get("model_args", None))
|
| 48 |
-
org_and_model = org_and_model.split("/", 1)
|
| 49 |
-
|
| 50 |
-
if len(org_and_model) == 1:
|
| 51 |
-
org = None
|
| 52 |
-
model = org_and_model[0]
|
| 53 |
-
result_key = f"{model}_{precision.value.name}"
|
| 54 |
-
else:
|
| 55 |
-
org = org_and_model[0]
|
| 56 |
-
model = org_and_model[1]
|
| 57 |
-
result_key = f"{org}_{model}_{precision.value.name}"
|
| 58 |
-
full_model = "/".join(org_and_model)
|
| 59 |
-
|
| 60 |
-
still_on_hub, _, model_config = is_model_on_hub(
|
| 61 |
-
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
|
| 62 |
-
)
|
| 63 |
-
architecture = "?"
|
| 64 |
-
if model_config is not None:
|
| 65 |
-
architectures = getattr(model_config, "architectures", None)
|
| 66 |
-
if architectures:
|
| 67 |
-
architecture = ";".join(architectures)
|
| 68 |
-
|
| 69 |
-
# Extract results available in this file (some results are split in several files)
|
| 70 |
-
results = {}
|
| 71 |
-
for task in Tasks:
|
| 72 |
-
task = task.value
|
| 73 |
-
|
| 74 |
-
# We average all scores of a given metric (not all metrics are present in all files)
|
| 75 |
-
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
|
| 76 |
-
if accs.size == 0 or any([acc is None for acc in accs]):
|
| 77 |
-
continue
|
| 78 |
-
|
| 79 |
-
mean_acc = np.mean(accs) * 100.0
|
| 80 |
-
results[task.benchmark] = mean_acc
|
| 81 |
-
|
| 82 |
-
return self(
|
| 83 |
-
eval_name=result_key,
|
| 84 |
-
full_model=full_model,
|
| 85 |
-
org=org,
|
| 86 |
-
model=model,
|
| 87 |
-
results=results,
|
| 88 |
-
precision=precision,
|
| 89 |
-
revision= config.get("model_sha", ""),
|
| 90 |
-
still_on_hub=still_on_hub,
|
| 91 |
-
architecture=architecture
|
| 92 |
-
)
|
| 93 |
-
|
| 94 |
-
def update_with_request_file(self, requests_path):
|
| 95 |
-
"""Finds the relevant request file for the current model and updates info with it"""
|
| 96 |
-
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
|
| 97 |
-
|
| 98 |
-
try:
|
| 99 |
-
with open(request_file, "r") as f:
|
| 100 |
-
request = json.load(f)
|
| 101 |
-
self.model_type = ModelType.from_str(request.get("model_type", ""))
|
| 102 |
-
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
| 103 |
-
self.license = request.get("license", "?")
|
| 104 |
-
self.likes = request.get("likes", 0)
|
| 105 |
-
self.num_params = request.get("params", 0)
|
| 106 |
-
self.date = request.get("submitted_time", "")
|
| 107 |
-
except Exception:
|
| 108 |
-
print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
|
| 109 |
-
|
| 110 |
-
def to_dict(self):
|
| 111 |
-
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
| 112 |
-
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
| 113 |
-
data_dict = {
|
| 114 |
-
"eval_name": self.eval_name, # not a column, just a save name,
|
| 115 |
-
AutoEvalColumn.precision.name: self.precision.value.name,
|
| 116 |
-
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
| 117 |
-
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
| 118 |
-
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
| 119 |
-
AutoEvalColumn.architecture.name: self.architecture,
|
| 120 |
-
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
| 121 |
-
AutoEvalColumn.revision.name: self.revision,
|
| 122 |
-
AutoEvalColumn.average.name: average,
|
| 123 |
-
AutoEvalColumn.license.name: self.license,
|
| 124 |
-
AutoEvalColumn.likes.name: self.likes,
|
| 125 |
-
AutoEvalColumn.params.name: self.num_params,
|
| 126 |
-
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
| 127 |
-
}
|
| 128 |
-
|
| 129 |
-
for task in Tasks:
|
| 130 |
-
data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
| 131 |
-
|
| 132 |
-
return data_dict
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
def get_request_file_for_model(requests_path, model_name, precision):
|
| 136 |
-
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
| 137 |
-
request_files = os.path.join(
|
| 138 |
-
requests_path,
|
| 139 |
-
f"{model_name}_eval_request_*.json",
|
| 140 |
-
)
|
| 141 |
-
request_files = glob.glob(request_files)
|
| 142 |
-
|
| 143 |
-
# Select correct request file (precision)
|
| 144 |
-
request_file = ""
|
| 145 |
-
request_files = sorted(request_files, reverse=True)
|
| 146 |
-
for tmp_request_file in request_files:
|
| 147 |
-
with open(tmp_request_file, "r") as f:
|
| 148 |
-
req_content = json.load(f)
|
| 149 |
-
if (
|
| 150 |
-
req_content["status"] in ["FINISHED"]
|
| 151 |
-
and req_content["precision"] == precision.split(".")[-1]
|
| 152 |
-
):
|
| 153 |
-
request_file = tmp_request_file
|
| 154 |
-
return request_file
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
|
| 158 |
-
"""From the path of the results folder root, extract all needed info for results"""
|
| 159 |
-
model_result_filepaths = []
|
| 160 |
-
|
| 161 |
-
for root, _, files in os.walk(results_path):
|
| 162 |
-
# We should only have json files in model results
|
| 163 |
-
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
| 164 |
-
continue
|
| 165 |
-
|
| 166 |
-
# Sort the files by date
|
| 167 |
-
try:
|
| 168 |
-
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
|
| 169 |
-
except dateutil.parser._parser.ParserError:
|
| 170 |
-
files = [files[-1]]
|
| 171 |
-
|
| 172 |
-
for file in files:
|
| 173 |
-
model_result_filepaths.append(os.path.join(root, file))
|
| 174 |
-
|
| 175 |
-
eval_results = {}
|
| 176 |
-
for model_result_filepath in model_result_filepaths:
|
| 177 |
-
# Creation of result
|
| 178 |
-
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
| 179 |
-
eval_result.update_with_request_file(requests_path)
|
| 180 |
-
|
| 181 |
-
# Store results of same eval together
|
| 182 |
-
eval_name = eval_result.eval_name
|
| 183 |
-
if eval_name in eval_results.keys():
|
| 184 |
-
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
|
| 185 |
-
else:
|
| 186 |
-
eval_results[eval_name] = eval_result
|
| 187 |
-
|
| 188 |
-
results = []
|
| 189 |
-
for v in eval_results.values():
|
| 190 |
-
try:
|
| 191 |
-
v.to_dict() # we test if the dict version is complete
|
| 192 |
-
results.append(v)
|
| 193 |
-
except KeyError: # not all eval values present
|
| 194 |
-
continue
|
| 195 |
-
|
| 196 |
-
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/populate.py
DELETED
|
@@ -1,58 +0,0 @@
|
|
| 1 |
-
import json
|
| 2 |
-
import os
|
| 3 |
-
|
| 4 |
-
import pandas as pd
|
| 5 |
-
|
| 6 |
-
from src.display.formatting import has_no_nan_values, make_clickable_model
|
| 7 |
-
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
| 8 |
-
from src.leaderboard.read_evals import get_raw_eval_results
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
| 12 |
-
"""Creates a dataframe from all the individual experiment results"""
|
| 13 |
-
raw_data = get_raw_eval_results(results_path, requests_path)
|
| 14 |
-
all_data_json = [v.to_dict() for v in raw_data]
|
| 15 |
-
|
| 16 |
-
df = pd.DataFrame.from_records(all_data_json)
|
| 17 |
-
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
| 18 |
-
df = df[cols].round(decimals=2)
|
| 19 |
-
|
| 20 |
-
# filter out if any of the benchmarks have not been produced
|
| 21 |
-
df = df[has_no_nan_values(df, benchmark_cols)]
|
| 22 |
-
return df
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
| 26 |
-
"""Creates the different dataframes for the evaluation queues requestes"""
|
| 27 |
-
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
| 28 |
-
all_evals = []
|
| 29 |
-
|
| 30 |
-
for entry in entries:
|
| 31 |
-
if ".json" in entry:
|
| 32 |
-
file_path = os.path.join(save_path, entry)
|
| 33 |
-
with open(file_path) as fp:
|
| 34 |
-
data = json.load(fp)
|
| 35 |
-
|
| 36 |
-
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
| 37 |
-
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
| 38 |
-
|
| 39 |
-
all_evals.append(data)
|
| 40 |
-
elif ".md" not in entry:
|
| 41 |
-
# this is a folder
|
| 42 |
-
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
|
| 43 |
-
for sub_entry in sub_entries:
|
| 44 |
-
file_path = os.path.join(save_path, entry, sub_entry)
|
| 45 |
-
with open(file_path) as fp:
|
| 46 |
-
data = json.load(fp)
|
| 47 |
-
|
| 48 |
-
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
| 49 |
-
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
| 50 |
-
all_evals.append(data)
|
| 51 |
-
|
| 52 |
-
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
| 53 |
-
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
| 54 |
-
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
|
| 55 |
-
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
| 56 |
-
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
| 57 |
-
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
| 58 |
-
return df_finished[cols], df_running[cols], df_pending[cols]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/submission/check_validity.py
DELETED
|
@@ -1,99 +0,0 @@
|
|
| 1 |
-
import json
|
| 2 |
-
import os
|
| 3 |
-
import re
|
| 4 |
-
from collections import defaultdict
|
| 5 |
-
from datetime import datetime, timedelta, timezone
|
| 6 |
-
|
| 7 |
-
import huggingface_hub
|
| 8 |
-
from huggingface_hub import ModelCard
|
| 9 |
-
from huggingface_hub.hf_api import ModelInfo
|
| 10 |
-
from transformers import AutoConfig
|
| 11 |
-
from transformers.models.auto.tokenization_auto import AutoTokenizer
|
| 12 |
-
|
| 13 |
-
def check_model_card(repo_id: str) -> tuple[bool, str]:
|
| 14 |
-
"""Checks if the model card and license exist and have been filled"""
|
| 15 |
-
try:
|
| 16 |
-
card = ModelCard.load(repo_id)
|
| 17 |
-
except huggingface_hub.utils.EntryNotFoundError:
|
| 18 |
-
return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
|
| 19 |
-
|
| 20 |
-
# Enforce license metadata
|
| 21 |
-
if card.data.license is None:
|
| 22 |
-
if not ("license_name" in card.data and "license_link" in card.data):
|
| 23 |
-
return False, (
|
| 24 |
-
"License not found. Please add a license to your model card using the `license` metadata or a"
|
| 25 |
-
" `license_name`/`license_link` pair."
|
| 26 |
-
)
|
| 27 |
-
|
| 28 |
-
# Enforce card content
|
| 29 |
-
if len(card.text) < 200:
|
| 30 |
-
return False, "Please add a description to your model card, it is too short."
|
| 31 |
-
|
| 32 |
-
return True, ""
|
| 33 |
-
|
| 34 |
-
def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
|
| 35 |
-
"""Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
|
| 36 |
-
try:
|
| 37 |
-
config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
|
| 38 |
-
if test_tokenizer:
|
| 39 |
-
try:
|
| 40 |
-
tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
|
| 41 |
-
except ValueError as e:
|
| 42 |
-
return (
|
| 43 |
-
False,
|
| 44 |
-
f"uses a tokenizer which is not in a transformers release: {e}",
|
| 45 |
-
None
|
| 46 |
-
)
|
| 47 |
-
except Exception as e:
|
| 48 |
-
return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
|
| 49 |
-
return True, None, config
|
| 50 |
-
|
| 51 |
-
except ValueError:
|
| 52 |
-
return (
|
| 53 |
-
False,
|
| 54 |
-
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
| 55 |
-
None
|
| 56 |
-
)
|
| 57 |
-
|
| 58 |
-
except Exception as e:
|
| 59 |
-
return False, "was not found on hub!", None
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
def get_model_size(model_info: ModelInfo, precision: str):
|
| 63 |
-
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
|
| 64 |
-
try:
|
| 65 |
-
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
| 66 |
-
except (AttributeError, TypeError):
|
| 67 |
-
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
|
| 68 |
-
|
| 69 |
-
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
|
| 70 |
-
model_size = size_factor * model_size
|
| 71 |
-
return model_size
|
| 72 |
-
|
| 73 |
-
def get_model_arch(model_info: ModelInfo):
|
| 74 |
-
"""Gets the model architecture from the configuration"""
|
| 75 |
-
return model_info.config.get("architectures", "Unknown")
|
| 76 |
-
|
| 77 |
-
def already_submitted_models(requested_models_dir: str) -> set[str]:
|
| 78 |
-
"""Gather a list of already submitted models to avoid duplicates"""
|
| 79 |
-
depth = 1
|
| 80 |
-
file_names = []
|
| 81 |
-
users_to_submission_dates = defaultdict(list)
|
| 82 |
-
|
| 83 |
-
for root, _, files in os.walk(requested_models_dir):
|
| 84 |
-
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
|
| 85 |
-
if current_depth == depth:
|
| 86 |
-
for file in files:
|
| 87 |
-
if not file.endswith(".json"):
|
| 88 |
-
continue
|
| 89 |
-
with open(os.path.join(root, file), "r") as f:
|
| 90 |
-
info = json.load(f)
|
| 91 |
-
file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
|
| 92 |
-
|
| 93 |
-
# Select organisation
|
| 94 |
-
if info["model"].count("/") == 0 or "submitted_time" not in info:
|
| 95 |
-
continue
|
| 96 |
-
organisation, _ = info["model"].split("/")
|
| 97 |
-
users_to_submission_dates[organisation].append(info["submitted_time"])
|
| 98 |
-
|
| 99 |
-
return set(file_names), users_to_submission_dates
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/submission/submit.py
DELETED
|
@@ -1,119 +0,0 @@
|
|
| 1 |
-
import json
|
| 2 |
-
import os
|
| 3 |
-
from datetime import datetime, timezone
|
| 4 |
-
|
| 5 |
-
from src.display.formatting import styled_error, styled_message, styled_warning
|
| 6 |
-
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
|
| 7 |
-
from src.submission.check_validity import (
|
| 8 |
-
already_submitted_models,
|
| 9 |
-
check_model_card,
|
| 10 |
-
get_model_size,
|
| 11 |
-
is_model_on_hub,
|
| 12 |
-
)
|
| 13 |
-
|
| 14 |
-
REQUESTED_MODELS = None
|
| 15 |
-
USERS_TO_SUBMISSION_DATES = None
|
| 16 |
-
|
| 17 |
-
def add_new_eval(
|
| 18 |
-
model: str,
|
| 19 |
-
base_model: str,
|
| 20 |
-
revision: str,
|
| 21 |
-
precision: str,
|
| 22 |
-
weight_type: str,
|
| 23 |
-
model_type: str,
|
| 24 |
-
):
|
| 25 |
-
global REQUESTED_MODELS
|
| 26 |
-
global USERS_TO_SUBMISSION_DATES
|
| 27 |
-
if not REQUESTED_MODELS:
|
| 28 |
-
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
| 29 |
-
|
| 30 |
-
user_name = ""
|
| 31 |
-
model_path = model
|
| 32 |
-
if "/" in model:
|
| 33 |
-
user_name = model.split("/")[0]
|
| 34 |
-
model_path = model.split("/")[1]
|
| 35 |
-
|
| 36 |
-
precision = precision.split(" ")[0]
|
| 37 |
-
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
| 38 |
-
|
| 39 |
-
if model_type is None or model_type == "":
|
| 40 |
-
return styled_error("Please select a model type.")
|
| 41 |
-
|
| 42 |
-
# Does the model actually exist?
|
| 43 |
-
if revision == "":
|
| 44 |
-
revision = "main"
|
| 45 |
-
|
| 46 |
-
# Is the model on the hub?
|
| 47 |
-
if weight_type in ["Delta", "Adapter"]:
|
| 48 |
-
base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
|
| 49 |
-
if not base_model_on_hub:
|
| 50 |
-
return styled_error(f'Base model "{base_model}" {error}')
|
| 51 |
-
|
| 52 |
-
if not weight_type == "Adapter":
|
| 53 |
-
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
|
| 54 |
-
if not model_on_hub:
|
| 55 |
-
return styled_error(f'Model "{model}" {error}')
|
| 56 |
-
|
| 57 |
-
# Is the model info correctly filled?
|
| 58 |
-
try:
|
| 59 |
-
model_info = API.model_info(repo_id=model, revision=revision)
|
| 60 |
-
except Exception:
|
| 61 |
-
return styled_error("Could not get your model information. Please fill it up properly.")
|
| 62 |
-
|
| 63 |
-
model_size = get_model_size(model_info=model_info, precision=precision)
|
| 64 |
-
|
| 65 |
-
# Were the model card and license filled?
|
| 66 |
-
try:
|
| 67 |
-
license = model_info.cardData["license"]
|
| 68 |
-
except Exception:
|
| 69 |
-
return styled_error("Please select a license for your model")
|
| 70 |
-
|
| 71 |
-
modelcard_OK, error_msg = check_model_card(model)
|
| 72 |
-
if not modelcard_OK:
|
| 73 |
-
return styled_error(error_msg)
|
| 74 |
-
|
| 75 |
-
# Seems good, creating the eval
|
| 76 |
-
print("Adding new eval")
|
| 77 |
-
|
| 78 |
-
eval_entry = {
|
| 79 |
-
"model": model,
|
| 80 |
-
"base_model": base_model,
|
| 81 |
-
"revision": revision,
|
| 82 |
-
"precision": precision,
|
| 83 |
-
"weight_type": weight_type,
|
| 84 |
-
"status": "PENDING",
|
| 85 |
-
"submitted_time": current_time,
|
| 86 |
-
"model_type": model_type,
|
| 87 |
-
"likes": model_info.likes,
|
| 88 |
-
"params": model_size,
|
| 89 |
-
"license": license,
|
| 90 |
-
"private": False,
|
| 91 |
-
}
|
| 92 |
-
|
| 93 |
-
# Check for duplicate submission
|
| 94 |
-
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
|
| 95 |
-
return styled_warning("This model has been already submitted.")
|
| 96 |
-
|
| 97 |
-
print("Creating eval file")
|
| 98 |
-
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
| 99 |
-
os.makedirs(OUT_DIR, exist_ok=True)
|
| 100 |
-
out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
|
| 101 |
-
|
| 102 |
-
with open(out_path, "w") as f:
|
| 103 |
-
f.write(json.dumps(eval_entry))
|
| 104 |
-
|
| 105 |
-
print("Uploading eval file")
|
| 106 |
-
API.upload_file(
|
| 107 |
-
path_or_fileobj=out_path,
|
| 108 |
-
path_in_repo=out_path.split("eval-queue/")[1],
|
| 109 |
-
repo_id=QUEUE_REPO,
|
| 110 |
-
repo_type="dataset",
|
| 111 |
-
commit_message=f"Add {model} to eval queue",
|
| 112 |
-
)
|
| 113 |
-
|
| 114 |
-
# Remove the local file
|
| 115 |
-
os.remove(out_path)
|
| 116 |
-
|
| 117 |
-
return styled_message(
|
| 118 |
-
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
|
| 119 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|