File size: 4,279 Bytes
10e9b7d
 
eccf8e4
3c4371f
10e9b7d
9a7504a
 
 
3db6293
e80aab9
9a7504a
 
31243f4
9a7504a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4021bf3
9a7504a
 
3c4371f
9a7504a
 
7e4a06b
9a7504a
7e4a06b
7d65c66
3c4371f
7e4a06b
31243f4
 
9a7504a
31243f4
9a7504a
31243f4
 
36ed51a
eccf8e4
31243f4
7d65c66
31243f4
 
9a7504a
7d65c66
9a7504a
e80aab9
7d65c66
 
31243f4
 
 
 
 
 
7d65c66
 
 
31243f4
9a7504a
31243f4
 
 
 
7d65c66
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
31243f4
 
7d65c66
31243f4
9a7504a
e80aab9
 
9a7504a
0ee0419
e514fd7
9a7504a
 
 
e514fd7
e80aab9
7e4a06b
31243f4
9088b99
7d65c66
9a7504a
e80aab9
 
9a7504a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import os
import gradio as gr
import requests
import pandas as pd

# --- Smolagents/Tools Imports ---
from smolagents import CodeAgent, DuckDuckGoSearchTool, FinalAnswerTool, InferenceClientModel

DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Smart Agent Definition ---
class MySmartAgent:
    def __init__(self):
        # Use a strong code/instruct model hosted by Hugging Face Inference API
        self.model = InferenceClientModel(
            model_id="Qwen/Qwen2.5-Coder-32B-Instruct",  # Or try Llama, Mistral, etc.
            max_tokens=2048,
            temperature=0.3
        )
        # Give agent both web search & final answer generation
        self.agent = CodeAgent(
            model=self.model,
            tools=[
                DuckDuckGoSearchTool(),
                FinalAnswerTool()
            ],
            max_steps=6,
            verbosity_level=1
        )

    def __call__(self, question: str) -> str:
        return self.agent.run(question)

def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = os.getenv("SPACE_ID")
    if profile:
        username = f"{profile.username}"
    else:
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"
    # Instantiate smart agent
    try:
        agent = MySmartAgent()
    except Exception as e:
        return f"Error initializing agent: {e}", None
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            return "Fetched questions list is empty or invalid format.", None
    except Exception as e:
        return f"Error fetching questions: {e}", None

    results_log = []
    answers_payload = []
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except Exception as e:
        results_df = pd.DataFrame(results_log)
        return f"Submission Failed: {e}", results_df

with gr.Blocks() as demo:
    gr.Markdown("# Smart Agent Evaluation Runner")
    gr.Markdown(
        """
        1. Clone this space and modify your agent (uses LLM + DuckDuckGo search)!
        2. Log in with Hugging Face.
        3. Click 'Run Evaluation & Submit' to score your assignment.
        """
    )
    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
    run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])

if __name__ == "__main__":
    demo.launch(debug=True, share=False)