File size: 6,768 Bytes
10e9b7d
 
eccf8e4
7d65c66
3c4371f
c9de6c1
10e9b7d
e80aab9
3db6293
e80aab9
31243f4
 
 
c9de6c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31243f4
c9de6c1
 
 
 
 
 
 
 
 
 
4021bf3
c9de6c1
 
31243f4
 
 
 
7d65c66
b177367
3c4371f
7e4a06b
c9de6c1
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
c9de6c1
31243f4
 
 
3c4371f
31243f4
c9de6c1
 
 
c1fd3d2
3c4371f
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
3c4371f
 
31243f4
e80aab9
31243f4
 
7d65c66
31243f4
 
e80aab9
b177367
7d65c66
 
3c4371f
c9de6c1
 
31243f4
 
c9de6c1
 
 
31243f4
 
c9de6c1
31243f4
c9de6c1
7d65c66
c9de6c1
7d65c66
 
31243f4
 
7d65c66
31243f4
 
3c4371f
31243f4
 
b177367
7d65c66
3c4371f
31243f4
e80aab9
7d65c66
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
7d65c66
c9de6c1
31243f4
 
 
e80aab9
 
c9de6c1
e80aab9
c9de6c1
0ee0419
e514fd7
 
c9de6c1
 
 
 
 
e514fd7
e80aab9
 
7e4a06b
c9de6c1
 
 
e80aab9
31243f4
 
 
e80aab9
 
 
c9de6c1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from smolagents import CodeAgent, HfApiModel, DuckDuckGoSearchTool

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Basic Agent Definition ---
class BasicAgent:
    def __init__(self):
        print("Initializing Smolagents CodeAgent...")
        
        # 1. Define the Model
        # Qwen 2.5 Coder is excellent for the logic/math required in GAIA
        # It will automatically use the HF_TOKEN from your Space Secrets
        model = HfApiModel(
            model_id="Qwen/Qwen2.5-Coder-32B-Instruct",
        )
        
        # 2. Define Tools
        search_tool = DuckDuckGoSearchTool()
        
        # 3. Initialize the Agent
        # We allow imports like requests and bs4 so the agent can scrape if needed
        self.agent = CodeAgent(
            tools=[search_tool],
            model=model,
            additional_authorized_imports=["requests", "bs4", "datetime", "pandas", "math"],
            max_steps=20, # Give it enough steps to think
            verbosity_level=1
        )
        print("Agent initialized successfully.")

    def __call__(self, question: str) -> str:
        print(f"Agent received question: {question}")
        try:
            # Run the smolagent
            # We cast to string in case the agent returns a non-string object
            answer = self.agent.run(question)
            print(f"Agent calculated answer: {answer}")
            return str(answer)
        except Exception as e:
            print(f"Agent failed with error: {e}")
            return "Error processing request"

# --- Logic to Run and Submit (Provided by Course Template) ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    
    # Link to your codebase
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "https://huggingface.co/spaces/generic/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    
    for i, item in enumerate(questions_data):
        task_id = item.get("task_id")
        question_text = item.get("question")
        
        print(f"Processing {i+1}/{len(questions_data)}: Task {task_id}")
        
        if not task_id or question_text is None:
            continue
        
        try:
            # THE AGENT CALL
            submitted_answer = agent(question_text)
            
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except Exception as e:
        status_message = f"Submission Failed: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface ---
with gr.Blocks() as demo:
    gr.Markdown("# Final Agent Evaluation Runner (SmolAgents)")
    gr.Markdown(
        """
        **Instructions:**
        1. Ensure `HF_TOKEN` is set in your Space Secrets.
        2. Log in via the button below.
        3. Click 'Run Evaluation'. 
        
        *Note: This process takes a few minutes as the agent thinks through 10-20 questions.*
        """
    )

    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
    status_output = gr.Textbox(label="Status", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Results", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    demo.launch()