File size: 6,768 Bytes
10e9b7d eccf8e4 7d65c66 3c4371f c9de6c1 10e9b7d e80aab9 3db6293 e80aab9 31243f4 c9de6c1 31243f4 c9de6c1 4021bf3 c9de6c1 31243f4 7d65c66 b177367 3c4371f 7e4a06b c9de6c1 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 c9de6c1 31243f4 3c4371f 31243f4 c9de6c1 c1fd3d2 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 3c4371f 31243f4 e80aab9 31243f4 7d65c66 31243f4 e80aab9 b177367 7d65c66 3c4371f c9de6c1 31243f4 c9de6c1 31243f4 c9de6c1 31243f4 c9de6c1 7d65c66 c9de6c1 7d65c66 31243f4 7d65c66 31243f4 3c4371f 31243f4 b177367 7d65c66 3c4371f 31243f4 e80aab9 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 7d65c66 c9de6c1 31243f4 e80aab9 c9de6c1 e80aab9 c9de6c1 0ee0419 e514fd7 c9de6c1 e514fd7 e80aab9 7e4a06b c9de6c1 e80aab9 31243f4 e80aab9 c9de6c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from smolagents import CodeAgent, HfApiModel, DuckDuckGoSearchTool
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
class BasicAgent:
def __init__(self):
print("Initializing Smolagents CodeAgent...")
# 1. Define the Model
# Qwen 2.5 Coder is excellent for the logic/math required in GAIA
# It will automatically use the HF_TOKEN from your Space Secrets
model = HfApiModel(
model_id="Qwen/Qwen2.5-Coder-32B-Instruct",
)
# 2. Define Tools
search_tool = DuckDuckGoSearchTool()
# 3. Initialize the Agent
# We allow imports like requests and bs4 so the agent can scrape if needed
self.agent = CodeAgent(
tools=[search_tool],
model=model,
additional_authorized_imports=["requests", "bs4", "datetime", "pandas", "math"],
max_steps=20, # Give it enough steps to think
verbosity_level=1
)
print("Agent initialized successfully.")
def __call__(self, question: str) -> str:
print(f"Agent received question: {question}")
try:
# Run the smolagent
# We cast to string in case the agent returns a non-string object
answer = self.agent.run(question)
print(f"Agent calculated answer: {answer}")
return str(answer)
except Exception as e:
print(f"Agent failed with error: {e}")
return "Error processing request"
# --- Logic to Run and Submit (Provided by Course Template) ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# Link to your codebase
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "https://huggingface.co/spaces/generic/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for i, item in enumerate(questions_data):
task_id = item.get("task_id")
question_text = item.get("question")
print(f"Processing {i+1}/{len(questions_data)}: Task {task_id}")
if not task_id or question_text is None:
continue
try:
# THE AGENT CALL
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
status_message = f"Submission Failed: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# Final Agent Evaluation Runner (SmolAgents)")
gr.Markdown(
"""
**Instructions:**
1. Ensure `HF_TOKEN` is set in your Space Secrets.
2. Log in via the button below.
3. Click 'Run Evaluation'.
*Note: This process takes a few minutes as the agent thinks through 10-20 questions.*
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
status_output = gr.Textbox(label="Status", lines=5, interactive=False)
results_table = gr.DataFrame(label="Results", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
demo.launch() |