import os import gradio as gr import requests import pandas as pd # --- Smolagents/Tools Imports --- from smolagents import CodeAgent, DuckDuckGoSearchTool, FinalAnswerTool, InferenceClientModel DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # --- Smart Agent Definition --- class MySmartAgent: def __init__(self): # Use a strong code/instruct model hosted by Hugging Face Inference API self.model = InferenceClientModel( model_id="Qwen/Qwen2.5-Coder-32B-Instruct", # Or try Llama, Mistral, etc. max_tokens=2048, temperature=0.3 ) # Give agent both web search & final answer generation self.agent = CodeAgent( model=self.model, tools=[ DuckDuckGoSearchTool(), FinalAnswerTool() ], max_steps=6, verbosity_level=1 ) def __call__(self, question: str) -> str: return self.agent.run(question) def run_and_submit_all(profile: gr.OAuthProfile | None): space_id = os.getenv("SPACE_ID") if profile: username = f"{profile.username}" else: return "Please Login to Hugging Face with the button.", None api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" # Instantiate smart agent try: agent = MySmartAgent() except Exception as e: return f"Error initializing agent: {e}", None agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() if not questions_data: return "Fetched questions list is empty or invalid format.", None except Exception as e: return f"Error fetching questions: {e}", None results_log = [] answers_payload = [] for item in questions_data: task_id = item.get("task_id") question_text = item.get("question") if not task_id or question_text is None: continue try: submitted_answer = agent(question_text) answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) except Exception as e: results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) if not answers_payload: return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Overall Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" f"Message: {result_data.get('message', 'No message received.')}" ) results_df = pd.DataFrame(results_log) return final_status, results_df except Exception as e: results_df = pd.DataFrame(results_log) return f"Submission Failed: {e}", results_df with gr.Blocks() as demo: gr.Markdown("# Smart Agent Evaluation Runner") gr.Markdown( """ 1. Clone this space and modify your agent (uses LLM + DuckDuckGo search)! 2. Log in with Hugging Face. 3. Click 'Run Evaluation & Submit' to score your assignment. """ ) gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) if __name__ == "__main__": demo.launch(debug=True, share=False)