Spaces:
Running
Running
| import os | |
| import pandas as pd | |
| from fastapi import FastAPI, HTTPException, Body | |
| from fastapi.responses import FileResponse | |
| from pydantic import BaseModel, Field | |
| from typing import List, Dict, Any, Optional, Union | |
| from datasets import load_dataset, Dataset, DatasetDict | |
| from huggingface_hub import HfApi, hf_hub_download | |
| from datetime import datetime, timezone | |
| import logging | |
| import uvicorn | |
| import random | |
| import mimetypes | |
| # --- Constants and Config --- | |
| HF_DATASET_ID = "agents-course/unit4-students-scores" | |
| logging.basicConfig(level=logging.INFO) | |
| logger = logging.getLogger(__name__) | |
| task_file_paths: Dict[str, str] = {} | |
| tool_threshold = 3 | |
| step_threshold = 6 | |
| questions_for_api: List[Dict[str, Any]] = [] | |
| ground_truth_answers: Dict[str, str] = {} | |
| filtered_dataset = None | |
| ALLOWED_CACHE_BASE = os.path.abspath("/app/.cache") | |
| class ErrorResponse(BaseModel): | |
| detail: str | |
| def load_questions(): | |
| """ | |
| Loads the GAIA dataset, filters questions based on tool/step counts, | |
| populates 'questions_for_api' with data for the API (excluding sensitive/internal fields), | |
| stores ground truth answers, and maps task IDs to their local file paths on the server. | |
| """ | |
| global filtered_dataset | |
| global questions_for_api | |
| global ground_truth_answers | |
| global task_file_paths | |
| tempo_filtered = [] | |
| questions_for_api.clear() | |
| ground_truth_answers.clear() | |
| task_file_paths.clear() | |
| logger.info("Starting to load and filter GAIA dataset (validation split)...") | |
| try: | |
| dataset = load_dataset("gaia-benchmark/GAIA", "2023_level1", split="validation", trust_remote_code=True) | |
| logger.info(f"GAIA dataset validation split loaded. Features: {dataset.features}") | |
| except Exception as e: | |
| logger.error(f"Failed to load GAIA dataset: {e}", exc_info=True) | |
| raise RuntimeError("Could not load the primary GAIA dataset.") from e | |
| # --- Filtering Logic based on Annotator Metadata --- | |
| for item in dataset: | |
| metadata = item.get('Annotator Metadata') | |
| if metadata: | |
| num_tools_str = metadata.get('Number of tools') | |
| num_steps_str = metadata.get('Number of steps') | |
| if num_tools_str is not None and num_steps_str is not None: | |
| try: | |
| num_tools = int(num_tools_str) | |
| num_steps = int(num_steps_str) | |
| if num_tools < tool_threshold and num_steps < step_threshold: | |
| tempo_filtered.append(item) | |
| except ValueError: | |
| logger.warning(f"Skipping Task ID: {item.get('task_id', 'N/A')} - Could not convert tool/step count in metadata: tools='{num_tools_str}', steps='{num_steps_str}'.") | |
| else: | |
| logger.warning(f"Skipping Task ID: {item.get('task_id', 'N/A')} - 'Number of tools' or 'Number of steps' missing in Metadata.") | |
| else: | |
| logger.warning(f"Skipping Task ID: {item.get('task_id', 'N/A')} - Missing 'Annotator Metadata'.") | |
| filtered_dataset = tempo_filtered | |
| logger.info(f"Found {len(filtered_dataset)} questions matching the criteria (tools < {tool_threshold}, steps < {step_threshold}).") | |
| processed_count = 0 | |
| for item in filtered_dataset: | |
| # Extract data from the dataset item | |
| task_id = item.get('task_id') | |
| original_question_text = item.get('Question') | |
| final_answer = item.get('Final answer') | |
| local_file_path = item.get('file_path') | |
| file_name = item.get('file_name') | |
| if task_id and original_question_text and final_answer is not None: | |
| # 1. Create the dictionary to be exposed via the API | |
| # (Includes 'file_name' for info, but excludes 'file_path') | |
| processed_item = { | |
| "task_id": str(task_id), | |
| "question": str(original_question_text), | |
| "Level": item.get("Level"), | |
| "file_name": file_name, | |
| } | |
| processed_item = {k: v for k, v in processed_item.items() if v is not None} | |
| questions_for_api.append(processed_item) | |
| # 2. Store the ground truth answer separately | |
| ground_truth_answers[str(task_id)] = str(final_answer) | |
| # 3. Store the file path mapping if file details exist and are valid | |
| if local_file_path and file_name: | |
| # Log if the path from the dataset isn't absolute (might indicate issues) | |
| if not os.path.isabs(local_file_path): | |
| logger.warning(f"Task {task_id}: Path '{local_file_path}' from dataset is not absolute. This might cause issues finding the file on the server.") | |
| if os.path.exists(local_file_path) and os.path.isfile(local_file_path): | |
| task_file_paths[str(task_id)] = local_file_path | |
| logger.debug(f"Stored file path mapping for task_id {task_id}: {local_file_path}") | |
| else: | |
| logger.warning(f"File path '{local_file_path}' for task_id {task_id} does NOT exist or is not a file on server. Mapping skipped.") | |
| elif task_id: | |
| if not local_file_path and not file_name: | |
| logger.debug(f"Task {task_id}: No 'file_path' or 'file_name' found in dataset item. No file mapping stored.") | |
| elif not local_file_path: | |
| logger.debug(f"Task {task_id}: 'file_path' is missing in dataset item (file_name: '{file_name}'). No file mapping stored.") | |
| else: # Not file_name | |
| logger.debug(f"Task {task_id}: 'file_name' is missing in dataset item (file_path: '{local_file_path}'). No file mapping stored.") | |
| processed_count += 1 | |
| else: | |
| logger.warning(f"Skipping item processing due to missing essential fields: task_id={task_id}, has_question={original_question_text is not None}, has_answer={final_answer is not None}") | |
| logger.info(f"Successfully processed {processed_count} questions for the API.") | |
| logger.info(f"Stored file path mappings for {len(task_file_paths)} tasks.") | |
| if not questions_for_api: | |
| logger.error("CRITICAL: No valid questions were loaded after filtering and processing. API endpoints like /questions will fail.") | |
| class Question(BaseModel): | |
| task_id: str | |
| question: str | |
| Level: Optional[str] = None | |
| file_name: Optional[str] = None | |
| # --- The rest of your Pydantic models remain the same --- | |
| class AnswerItem(BaseModel): | |
| task_id: str | |
| submitted_answer: str = Field(..., description="The agent's answer for the task_id") | |
| class Submission(BaseModel): | |
| username: str = Field(..., description="Hugging Face username", min_length=1) | |
| agent_code: str = Field(..., description="The Python class code for the agent") | |
| answers: List[AnswerItem] = Field(..., description="List of answers submitted by the agent") | |
| class ScoreResponse(BaseModel): | |
| username: str | |
| score: float | |
| correct_count: int | |
| total_attempted: int | |
| message: str | |
| timestamp: str | |
| class ErrorResponse(BaseModel): | |
| detail: str | |
| class AnswerItem(BaseModel): | |
| task_id: str | |
| submitted_answer: Union[str, int, float] = Field(..., description="The agent's answer for the task_id. Accepts str, int and float") | |
| class Submission(BaseModel): | |
| username: str = Field(..., description="Hugging Face username", min_length=1) | |
| agent_code: str = Field(..., description="The Python class code for the agent", min_length=10) | |
| answers: List[AnswerItem] = Field(..., description="List of answers submitted by the agent") | |
| class ScoreResponse(BaseModel): | |
| username: str | |
| score: float | |
| correct_count: int | |
| total_attempted: int | |
| message: str | |
| timestamp: str | |
| class ErrorResponse(BaseModel): | |
| detail: str | |
| # --- FastAPI Application --- | |
| app = FastAPI( | |
| title="Agent Evaluation API", | |
| description="API to fetch questions and submit agent answers for scoring.", | |
| ) | |
| # --- Startup Event --- | |
| async def startup_event(): | |
| logger.info("Application startup: Loading questions...") | |
| try: | |
| load_questions() | |
| if not questions_for_api: | |
| logger.error("CRITICAL: No questions were loaded during startup.") | |
| else: | |
| logger.info(f"Successfully loaded {len(questions_for_api)} questions.") | |
| except Exception as e: | |
| logger.error(f"CRITICAL ERROR DURING STARTUP while loading questions: {e}", exc_info=True) | |
| async def get_task_file(task_id: str): | |
| """ | |
| Serves the file associated with a specific task ID. | |
| Includes security checks to prevent accessing arbitrary files. | |
| """ | |
| logger.info(f"Request received for file associated with task_id: {task_id}") | |
| if task_id not in task_file_paths: | |
| logger.warning(f"File request failed: task_id '{task_id}' not found in file path mapping.") | |
| raise HTTPException(status_code=404, detail=f"No file path associated with task_id {task_id}.") | |
| # --- ASSIGNMENT HAPPENS HERE --- | |
| local_file_path = task_file_paths[task_id] | |
| logger.debug(f"Mapped task_id '{task_id}' to local path: {local_file_path}") | |
| # --- CRUCIAL SECURITY CHECK --- | |
| try: | |
| abs_file_path = os.path.abspath(local_file_path) | |
| abs_base_path = ALLOWED_CACHE_BASE # Already absolute | |
| if not abs_file_path.startswith(abs_base_path): | |
| logger.error(f"SECURITY ALERT: Path traversal attempt denied for task_id '{task_id}'. Path '{local_file_path}' resolves outside base '{abs_base_path}'.") | |
| raise HTTPException(status_code=403, detail="File access denied.") | |
| if not os.path.exists(abs_file_path) or not os.path.isfile(abs_file_path): | |
| logger.error(f"File not found on server for task_id '{task_id}' at expected path: {abs_file_path}") | |
| raise HTTPException(status_code=404, detail=f"File associated with task_id {task_id} not found on server disk.") | |
| except HTTPException as http_exc: | |
| raise http_exc | |
| except Exception as path_err: | |
| logger.error(f"Error resolving or checking path '{local_file_path}' for task_id '{task_id}': {path_err}", exc_info=True) | |
| raise HTTPException(status_code=500, detail="Server error validating file path.") | |
| mime_type, _ = mimetypes.guess_type(abs_file_path) | |
| media_type = mime_type if mime_type else "application/octet-stream" | |
| file_name_for_download = os.path.basename(abs_file_path) | |
| logger.info(f"Serving file '{file_name_for_download}' (type: {media_type}) for task_id '{task_id}' from path: {abs_file_path}") | |
| return FileResponse(path=abs_file_path, media_type=media_type, filename=file_name_for_download) | |
| def update_huggingface_dataset(username: str, score: float, code_link: str): | |
| """ | |
| Loads the dataset, updates the score and code link if the score is higher, | |
| and pushes back to the Hugging Face Hub. | |
| Args: | |
| username: The username of the participant. | |
| score: The new score achieved by the participant. | |
| code_link: The link to the code submission associated with this score. | |
| Returns: | |
| True if the dataset was updated and pushed, False otherwise. | |
| Raises: | |
| HTTPException: If there's an error interacting with the dataset. | |
| """ | |
| try: | |
| # Define the expected schema including the 'code' column | |
| expected_columns = { | |
| 'username': 'str', | |
| 'score': 'float', | |
| 'timestamp': 'str', | |
| 'code': 'str' # Added the code column | |
| } | |
| # 1. Attempt to load the dataset | |
| logger.info(f"Attempting to load dataset '{HF_DATASET_ID}'...") | |
| ds_dict = None | |
| df = None | |
| try: | |
| ds_dict = load_dataset(HF_DATASET_ID, trust_remote_code=True) # Added trust_remote_code=True if needed | |
| logger.info("Dataset loaded successfully.") | |
| if "train" in ds_dict: | |
| df = ds_dict['train'].to_pandas() | |
| else: | |
| logger.warning(f"Dataset '{HF_DATASET_ID}' loaded but no 'train' split found. Creating structure.") | |
| #df = pd.DataFrame({col: pd.Series(dtype=dtype) for col, dtype in expected_columns.items()}) | |
| except Exception as load_error: | |
| logger.error(f"CRITICAL: Could not load dataset '{HF_DATASET_ID}'. Error: {load_error}", exc_info=True) | |
| raise HTTPException( | |
| status_code=500, | |
| detail=f"Failed to load required dataset '{HF_DATASET_ID}': {load_error}" | |
| ) | |
| for col, dtype in expected_columns.items(): | |
| if col not in df.columns: | |
| logger.warning(f"Column '{col}' not found in loaded data. Adding it.") | |
| df[col] = pd.Series(dtype=dtype) | |
| df['score'] = pd.to_numeric(df['score'], errors='coerce').fillna(0.0) | |
| df['username'] = df['username'].astype(str).fillna('') | |
| df['timestamp'] = df['timestamp'].astype(str).fillna('') | |
| df['code'] = df['code'].astype(str).fillna('') | |
| # 2. Find existing score for the user | |
| existing_entries = df[df['username'] == username] | |
| current_timestamp = datetime.now(timezone.utc).isoformat() | |
| needs_update = False | |
| if not existing_entries.empty: | |
| # User exists, find their highest score | |
| max_existing_score = existing_entries['score'].max() # Already numeric | |
| if score > max_existing_score: | |
| logger.info(f"New score {score} is higher than existing max {max_existing_score} for {username}. Updating entry.") | |
| df = df[df['username'] != username].copy() | |
| new_entry = pd.DataFrame([{ | |
| 'username': username, | |
| 'score': score, | |
| 'timestamp': current_timestamp, | |
| 'code': code_link # Add the code link here | |
| }]) | |
| df = pd.concat([df, new_entry], ignore_index=True) | |
| needs_update = True | |
| else: | |
| logger.info(f"New score {score} is not higher than existing max {max_existing_score} for {username}. No update needed.") | |
| else: | |
| # User does not exist, add them | |
| logger.info(f"User {username} not found. Adding new entry with score {score}.") | |
| new_entry = pd.DataFrame([{ | |
| 'username': username, | |
| 'score': score, | |
| 'timestamp': current_timestamp, | |
| 'code': code_link # Add the code link here | |
| }]) | |
| df = pd.concat([df, new_entry], ignore_index=True) | |
| needs_update = True | |
| # 3. Push updated data back to Hugging Face Hub if changes were made | |
| if needs_update: | |
| logger.info(f"Preparing to push updated dataset to '{HF_DATASET_ID}'...") | |
| df = df[list(expected_columns.keys())] | |
| for col, dtype in expected_columns.items(): | |
| if dtype == 'str': | |
| df[col] = df[col].astype(str).fillna('') | |
| elif dtype == 'float': | |
| df[col] = pd.to_numeric(df[col], errors='coerce').fillna(0.0) # Ensure float conversion | |
| logger.info(f"Final DataFrame columns and types:\n{df.dtypes}") | |
| logger.info(f"Sample data before push:\n{df.head().to_string()}") | |
| updated_ds = Dataset.from_pandas(df) | |
| final_ds_dict = DatasetDict({'train': updated_ds}) | |
| logger.info(f"Dataset structure to push: {final_ds_dict}") | |
| final_ds_dict.push_to_hub(HF_DATASET_ID) | |
| logger.warning("Dataset push to hub is currently commented out in the code.") | |
| return True | |
| else: | |
| logger.info("No changes needed, dataset not pushed.") | |
| return False # No update was pushed | |
| except Exception as e: | |
| logger.error(f"Error interacting with Hugging Face dataset '{HF_DATASET_ID}': {e}", exc_info=True) | |
| raise HTTPException(status_code=500, detail=f"Failed to update Hugging Face dataset: {e}") | |
| async def get_questions(): | |
| """ | |
| Provides the list of questions (with extended data) that agents should answer. | |
| """ | |
| if not questions_for_api: | |
| logger.error("GET /questions requested but no questions are loaded.") | |
| raise HTTPException(status_code=404, detail="No questions available.") | |
| # questions_for_api now contains the richer dictionaries | |
| return questions_for_api | |
| async def get_random_question(): | |
| """ | |
| Provides a single, randomly selected question with its extended data. | |
| """ | |
| if not questions_for_api: | |
| logger.warning("GET /random-question requested but no questions are loaded.") | |
| raise HTTPException(status_code=404, detail="No questions available to choose from.") | |
| # Select and return a random question dictionary | |
| random_question = random.choice(questions_for_api) | |
| logger.info(f"Returning random question with task_id: {random_question.get('task_id', 'N/A')}") | |
| # random_question is already the richer dictionary | |
| return random_question | |
| # --- Submit Endpoint (remains the same, uses ground_truth_answers) --- | |
| async def submit_answers(submission: Submission = Body(...)): | |
| """ | |
| Receives agent submissions: | |
| - Validates input. | |
| - Checks presence of agent code (basic anti-cheat). | |
| - Calculates score based on submitted answers vs ground truth. | |
| - Updates the score on the Hugging Face dataset if it's a new high score for the user. | |
| """ | |
| logger.info(f"Received submission from username: {submission.username}") | |
| # Basic check for agent code presence | |
| if not submission.agent_code or len(submission.agent_code.strip()) < 10: | |
| logger.warning(f"Submission rejected for {submission.username}: Agent code missing or too short.") | |
| raise HTTPException(status_code=400, detail="Agent code is required and must be sufficiently long.") | |
| if not submission.answers: | |
| logger.warning(f"Submission rejected for {submission.username}: No answers provided.") | |
| raise HTTPException(status_code=400, detail="No answers provided in the submission.") | |
| correct_count = 0 | |
| total_attempted_in_payload = len(submission.answers) | |
| valid_attempted_count = 0 | |
| processed_ids = set() | |
| for answer_item in submission.answers: | |
| task_id = str(answer_item.task_id) | |
| submitted = str(answer_item.submitted_answer) | |
| if task_id in processed_ids: | |
| logger.warning(f"Duplicate task_id '{task_id}' in submission from {submission.username}. Skipping.") | |
| continue | |
| processed_ids.add(task_id) | |
| if task_id not in ground_truth_answers: | |
| logger.warning(f"Task ID '{task_id}' submitted by {submission.username} not found in ground truth list. Skipping this answer.") | |
| continue | |
| valid_attempted_count += 1 | |
| ground_truth = ground_truth_answers[task_id] | |
| # Compare answers (case-insensitive, strip whitespace) | |
| if submitted.strip().lower() == ground_truth.strip().lower(): | |
| correct_count += 1 | |
| logger.debug(f"Correct answer for {task_id} from {submission.username}") | |
| else: | |
| logger.debug(f"Incorrect answer for {task_id} from {submission.username}. Submitted: '{submitted}', Expected: '{ground_truth}'") | |
| if valid_attempted_count == 0: | |
| score = 0.0 | |
| message = f"Submission received, but no valid/matching task IDs were found in the {total_attempted_in_payload} answers provided." | |
| logger.warning(f"No valid answers processed for {submission.username} out of {total_attempted_in_payload} submitted.") | |
| elif not ground_truth_answers: # Prevent division by zero if no questions loaded | |
| score = 0.0 | |
| message = "Score cannot be calculated because no ground truth answers are loaded." | |
| logger.error(f"Cannot calculate score for {submission.username}: ground_truth_answers is empty.") | |
| else: | |
| # Score is based on correct answers divided by the TOTAL number of questions in the filtered set | |
| score = round((correct_count / len(ground_truth_answers)) * 100, 2) | |
| message = f"Score calculated successfully: {correct_count}/{len(ground_truth_answers)} total questions answered correctly ({valid_attempted_count} valid tasks attempted)." | |
| if valid_attempted_count < total_attempted_in_payload: | |
| message += f" ({total_attempted_in_payload - valid_attempted_count} submitted answers had invalid or duplicate task IDs)." | |
| logger.info(f"Score for {submission.username}: {score}% ({correct_count}/{len(ground_truth_answers)} correct, based on {valid_attempted_count} valid attempts)") | |
| # Update Hugging Face dataset | |
| try: | |
| updated = update_huggingface_dataset(submission.username, score, submission.agent_code) | |
| if updated: | |
| message += " High score updated on leaderboard." | |
| logger.info(f"Leaderboard updated for {submission.username}.") | |
| else: | |
| message += " Score did not improve previous record, leaderboard not updated." | |
| logger.info(f"Leaderboard not updated for {submission.username} as score was not higher.") | |
| except HTTPException as http_exc: | |
| # Propagate HTTPException from the helper function (e.g., 500 error) | |
| raise http_exc | |
| except Exception as e: | |
| # Catch any other unexpected errors during HF update | |
| logger.error(f"Unexpected error during dataset update for {submission.username}: {e}", exc_info=True) | |
| raise HTTPException(status_code=500, detail="An unexpected error occurred while updating the leaderboard.") | |
| return ScoreResponse( | |
| username=submission.username, | |
| score=score, | |
| correct_count=correct_count, | |
| # Return the count of *valid* attempts for clarity | |
| total_attempted=valid_attempted_count, | |
| message=message, | |
| timestamp=datetime.now(timezone.utc).isoformat() | |
| ) | |
| # --- Run the application --- | |
| if __name__ == "__main__": | |
| logger.info("Starting FastAPI server for local development...") | |
| try: | |
| load_questions() # Load questions before starting server | |
| if not questions_for_api: | |
| logger.error("EXITING: Cannot start server without loaded questions.") | |
| # Optional: exit if questions are essential | |
| # import sys | |
| # sys.exit(1) | |
| else: | |
| local_port = int(os.getenv("PORT", "8000")) | |
| logger.info(f"Running Uvicorn locally on http://127.0.0.1:{local_port}") | |
| uvicorn.run(app, host="127.0.0.1", port=local_port, log_level="info") | |
| except Exception as e: | |
| logger.error(f"Failed to start server: {e}", exc_info=True) |