Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
|
@@ -2,6 +2,7 @@
|
|
| 2 |
import os
|
| 3 |
import pandas as pd
|
| 4 |
from fastapi import FastAPI, HTTPException, Body
|
|
|
|
| 5 |
from pydantic import BaseModel, Field
|
| 6 |
from typing import List, Dict, Any, Optional
|
| 7 |
from datasets import load_dataset, Dataset, DatasetDict
|
|
@@ -14,117 +15,183 @@ import random
|
|
| 14 |
# --- Constants and Config ---
|
| 15 |
HF_DATASET_ID = "agents-course/unit4-students-scores"
|
| 16 |
|
| 17 |
-
# --- Data Structures ---
|
| 18 |
-
# questions_for_api will now hold richer dictionaries
|
| 19 |
-
questions_for_api: List[Dict[str, Any]] = []
|
| 20 |
-
ground_truth_answers: Dict[str, str] = {}
|
| 21 |
|
| 22 |
-
# --- Logging Setup ---
|
| 23 |
logging.basicConfig(level=logging.INFO)
|
| 24 |
logger = logging.getLogger(__name__)
|
| 25 |
|
| 26 |
-
|
| 27 |
-
logger = logging.getLogger(__name__) # Make sure logger is initialized
|
| 28 |
tool_threshold = 3
|
| 29 |
step_threshold = 5
|
| 30 |
-
questions_for_api: List[Dict[str, Any]] = []
|
| 31 |
ground_truth_answers: Dict[str, str] = {}
|
| 32 |
-
filtered_dataset = None
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
def load_questions():
|
| 35 |
global filtered_dataset
|
| 36 |
global questions_for_api
|
| 37 |
global ground_truth_answers
|
|
|
|
| 38 |
tempo_filtered = []
|
| 39 |
# Clear existing data
|
| 40 |
questions_for_api.clear()
|
| 41 |
ground_truth_answers.clear()
|
|
|
|
| 42 |
|
| 43 |
logger.info("Starting to load and filter GAIA dataset (validation split)...")
|
| 44 |
try:
|
| 45 |
-
# Load the specified split and features
|
| 46 |
dataset = load_dataset("gaia-benchmark/GAIA", "2023_level1", split="validation", trust_remote_code=True)
|
| 47 |
logger.info(f"GAIA dataset validation split loaded. Features: {dataset.features}")
|
| 48 |
-
# You can uncomment below to see the first item's structure if needed
|
| 49 |
-
# logger.debug(f"First item structure: {dataset[0]}")
|
| 50 |
except Exception as e:
|
| 51 |
logger.error(f"Failed to load GAIA dataset: {e}", exc_info=True)
|
| 52 |
raise RuntimeError("Could not load the primary GAIA dataset.") from e
|
| 53 |
|
| 54 |
-
# --- Filtering Logic (remains
|
|
|
|
| 55 |
for item in dataset:
|
| 56 |
metadata = item.get('Annotator Metadata')
|
| 57 |
-
|
| 58 |
-
if metadata:
|
| 59 |
num_tools_str = metadata.get('Number of tools')
|
| 60 |
num_steps_str = metadata.get('Number of steps')
|
| 61 |
-
|
| 62 |
if num_tools_str is not None and num_steps_str is not None:
|
| 63 |
try:
|
| 64 |
num_tools = int(num_tools_str)
|
| 65 |
num_steps = int(num_steps_str)
|
| 66 |
-
|
| 67 |
if num_tools < tool_threshold and num_steps < step_threshold:
|
| 68 |
-
tempo_filtered.append(item)
|
| 69 |
except ValueError:
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
logger.warning(f"Skipping Task ID: {item.get('task_id', 'N/A')} - Missing 'Annotator Metadata'.")
|
| 75 |
|
| 76 |
-
filtered_dataset = tempo_filtered
|
| 77 |
-
logger.info(f"Found {len(filtered_dataset)} questions matching the criteria
|
| 78 |
|
| 79 |
processed_count = 0
|
| 80 |
-
# ---
|
| 81 |
for item in filtered_dataset:
|
| 82 |
task_id = item.get('task_id')
|
| 83 |
-
original_question_text = item.get('Question')
|
| 84 |
final_answer = item.get('Final answer')
|
|
|
|
|
|
|
| 85 |
|
| 86 |
-
# Validate essential fields
|
| 87 |
if task_id and original_question_text and final_answer is not None:
|
| 88 |
-
|
| 89 |
-
# Create the dictionary for the API, selecting only the desired fields
|
| 90 |
processed_item = {
|
| 91 |
-
"task_id": str(task_id),
|
| 92 |
-
"question": str(original_question_text),
|
| 93 |
-
|
| 94 |
-
"
|
| 95 |
-
"file_name": item.get("file_name"),
|
| 96 |
-
"file_path": item.get("file_path"),
|
| 97 |
}
|
| 98 |
-
#
|
| 99 |
-
|
| 100 |
-
# However, the Optional[...] fields in Pydantic should handle None correctly.
|
| 101 |
|
| 102 |
-
# Append the structured dictionary matching the Pydantic model
|
| 103 |
questions_for_api.append(processed_item)
|
| 104 |
|
| 105 |
-
# Store
|
| 106 |
ground_truth_answers[str(task_id)] = str(final_answer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
processed_count += 1
|
| 108 |
else:
|
| 109 |
-
logger.warning(f"Skipping item due to missing essential fields
|
| 110 |
|
| 111 |
-
logger.info(f"Successfully processed {processed_count} questions for the API
|
|
|
|
| 112 |
if not questions_for_api:
|
| 113 |
-
logger.error("CRITICAL: No valid questions loaded after filtering
|
| 114 |
-
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
|
|
|
|
|
|
| 117 |
|
|
|
|
| 118 |
|
| 119 |
-
#
|
|
|
|
| 120 |
|
| 121 |
|
| 122 |
class Question(BaseModel):
|
| 123 |
task_id: str
|
| 124 |
question: str
|
| 125 |
Level: Optional[str] = None
|
| 126 |
-
file_name: Optional[str] = None
|
| 127 |
-
file_path: Optional[str] = None
|
| 128 |
|
| 129 |
|
| 130 |
# --- The rest of your Pydantic models remain the same ---
|
|
|
|
| 2 |
import os
|
| 3 |
import pandas as pd
|
| 4 |
from fastapi import FastAPI, HTTPException, Body
|
| 5 |
+
from fastapi.responses import FileResponse
|
| 6 |
from pydantic import BaseModel, Field
|
| 7 |
from typing import List, Dict, Any, Optional
|
| 8 |
from datasets import load_dataset, Dataset, DatasetDict
|
|
|
|
| 15 |
# --- Constants and Config ---
|
| 16 |
HF_DATASET_ID = "agents-course/unit4-students-scores"
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
|
|
|
| 19 |
logging.basicConfig(level=logging.INFO)
|
| 20 |
logger = logging.getLogger(__name__)
|
| 21 |
|
| 22 |
+
task_file_paths: Dict[str, str] = {}
|
|
|
|
| 23 |
tool_threshold = 3
|
| 24 |
step_threshold = 5
|
| 25 |
+
questions_for_api: List[Dict[str, Any]] = []
|
| 26 |
ground_truth_answers: Dict[str, str] = {}
|
| 27 |
+
filtered_dataset = None
|
| 28 |
+
# --- Define ErrorResponse if not already defined ---
|
| 29 |
+
class ErrorResponse(BaseModel):
|
| 30 |
+
detail: str
|
| 31 |
|
| 32 |
def load_questions():
|
| 33 |
global filtered_dataset
|
| 34 |
global questions_for_api
|
| 35 |
global ground_truth_answers
|
| 36 |
+
global task_file_paths # Declare modification of global
|
| 37 |
tempo_filtered = []
|
| 38 |
# Clear existing data
|
| 39 |
questions_for_api.clear()
|
| 40 |
ground_truth_answers.clear()
|
| 41 |
+
task_file_paths.clear() # Clear the mapping too
|
| 42 |
|
| 43 |
logger.info("Starting to load and filter GAIA dataset (validation split)...")
|
| 44 |
try:
|
|
|
|
| 45 |
dataset = load_dataset("gaia-benchmark/GAIA", "2023_level1", split="validation", trust_remote_code=True)
|
| 46 |
logger.info(f"GAIA dataset validation split loaded. Features: {dataset.features}")
|
|
|
|
|
|
|
| 47 |
except Exception as e:
|
| 48 |
logger.error(f"Failed to load GAIA dataset: {e}", exc_info=True)
|
| 49 |
raise RuntimeError("Could not load the primary GAIA dataset.") from e
|
| 50 |
|
| 51 |
+
# --- Filtering Logic (remains same) ---
|
| 52 |
+
# [ ... Same filtering code as before ... ]
|
| 53 |
for item in dataset:
|
| 54 |
metadata = item.get('Annotator Metadata')
|
| 55 |
+
if metadata: # Check if 'Annotator Metadata' exists
|
|
|
|
| 56 |
num_tools_str = metadata.get('Number of tools')
|
| 57 |
num_steps_str = metadata.get('Number of steps')
|
|
|
|
| 58 |
if num_tools_str is not None and num_steps_str is not None:
|
| 59 |
try:
|
| 60 |
num_tools = int(num_tools_str)
|
| 61 |
num_steps = int(num_steps_str)
|
|
|
|
| 62 |
if num_tools < tool_threshold and num_steps < step_threshold:
|
| 63 |
+
tempo_filtered.append(item)
|
| 64 |
except ValueError:
|
| 65 |
+
logger.warning(f"Skipping Task ID: {item.get('task_id', 'N/A')} - Could not convert tool/step count.")
|
| 66 |
+
# else: # Log missing metadata if needed
|
| 67 |
+
# logger.warning(f"Skipping Task ID: {item.get('task_id', 'N/A')} - Missing 'Annotator Metadata'.")
|
| 68 |
+
|
|
|
|
| 69 |
|
| 70 |
+
filtered_dataset = tempo_filtered
|
| 71 |
+
logger.info(f"Found {len(filtered_dataset)} questions matching the criteria.")
|
| 72 |
|
| 73 |
processed_count = 0
|
| 74 |
+
# --- Processing Logic (includes storing file path mapping) ---
|
| 75 |
for item in filtered_dataset:
|
| 76 |
task_id = item.get('task_id')
|
| 77 |
+
original_question_text = item.get('Question')
|
| 78 |
final_answer = item.get('Final answer')
|
| 79 |
+
local_file_path = item.get('file_path') # Get the local path
|
| 80 |
+
file_name = item.get('file_name') # Get the filename
|
| 81 |
|
| 82 |
+
# Validate essential fields
|
| 83 |
if task_id and original_question_text and final_answer is not None:
|
| 84 |
+
# Create the dictionary for the API (WITHOUT file_path)
|
|
|
|
| 85 |
processed_item = {
|
| 86 |
+
"task_id": str(task_id),
|
| 87 |
+
"question": str(original_question_text),
|
| 88 |
+
"Level": item.get("Level"),
|
| 89 |
+
"file_name": file_name, # Include filename for info
|
|
|
|
|
|
|
| 90 |
}
|
| 91 |
+
# Clean None values if you prefer not to send nulls for optional fields
|
| 92 |
+
processed_item = {k: v for k, v in processed_item.items() if v is not None}
|
|
|
|
| 93 |
|
|
|
|
| 94 |
questions_for_api.append(processed_item)
|
| 95 |
|
| 96 |
+
# Store ground truth
|
| 97 |
ground_truth_answers[str(task_id)] = str(final_answer)
|
| 98 |
+
|
| 99 |
+
# --- Store the file path mapping ---
|
| 100 |
+
if local_file_path and file_name: # Only store if path and name exist
|
| 101 |
+
# Basic check if path looks plausible (optional)
|
| 102 |
+
if os.path.exists(local_file_path):
|
| 103 |
+
task_file_paths[str(task_id)] = local_file_path
|
| 104 |
+
logger.debug(f"Stored file path for task_id {task_id}: {local_file_path}")
|
| 105 |
+
else:
|
| 106 |
+
logger.warning(f"File path '{local_file_path}' for task_id {task_id} does not exist on server. Mapping skipped.")
|
| 107 |
+
|
| 108 |
+
|
| 109 |
processed_count += 1
|
| 110 |
else:
|
| 111 |
+
logger.warning(f"Skipping item due to missing essential fields: task_id={task_id}")
|
| 112 |
|
| 113 |
+
logger.info(f"Successfully processed {processed_count} questions for the API.")
|
| 114 |
+
logger.info(f"Stored file path mappings for {len(task_file_paths)} tasks.")
|
| 115 |
if not questions_for_api:
|
| 116 |
+
logger.error("CRITICAL: No valid questions loaded after filtering/processing.")
|
| 117 |
+
# --- Add this endpoint definition to your FastAPI app ---
|
| 118 |
+
|
| 119 |
+
# Determine a base path for security. This should be the root directory
|
| 120 |
+
# where Hugging Face datasets cache is allowed to serve files from.
|
| 121 |
+
# IMPORTANT: Adjust this path based on your server's environment or use
|
| 122 |
+
# environment variables for configuration.
|
| 123 |
+
# Using expanduser handles '~' correctly.
|
| 124 |
+
ALLOWED_CACHE_BASE = os.path.abspath(os.path.expanduser("~/.cache/huggingface/datasets"))
|
| 125 |
+
logger.info(f"Configured allowed base path for file serving: {ALLOWED_CACHE_BASE}")
|
| 126 |
+
|
| 127 |
+
@app.get("/files/{task_id}",
|
| 128 |
+
summary="Get Associated File by Task ID",
|
| 129 |
+
description="Downloads the file associated with the given task_id, if one exists and is mapped.",
|
| 130 |
+
responses={
|
| 131 |
+
200: {
|
| 132 |
+
"description": "File content.",
|
| 133 |
+
"content": {"*/*": {}} # Indicates response can be any file type
|
| 134 |
+
},
|
| 135 |
+
403: {"model": ErrorResponse, "description": "Access denied (e.g., path traversal attempt)."},
|
| 136 |
+
404: {"model": ErrorResponse, "description": "Task ID not found, no file associated, or file missing on server."},
|
| 137 |
+
500: {"model": ErrorResponse, "description": "Server error reading file."}
|
| 138 |
+
})
|
| 139 |
+
async def get_task_file(task_id: str):
|
| 140 |
+
"""
|
| 141 |
+
Serves the file associated with a specific task ID.
|
| 142 |
+
Includes security checks to prevent accessing arbitrary files.
|
| 143 |
+
"""
|
| 144 |
+
logger.info(f"Request received for file associated with task_id: {task_id}")
|
| 145 |
+
|
| 146 |
+
if task_id not in task_file_paths:
|
| 147 |
+
logger.warning(f"File request failed: task_id '{task_id}' not found in file path mapping.")
|
| 148 |
+
raise HTTPException(status_code=404, detail=f"No file path associated with task_id {task_id}.")
|
| 149 |
+
|
| 150 |
+
local_file_path = task_file_paths[task_id]
|
| 151 |
+
logger.debug(f"Mapped task_id '{task_id}' to local path: {local_file_path}")
|
| 152 |
+
|
| 153 |
+
# --- CRUCIAL SECURITY CHECK ---
|
| 154 |
+
try:
|
| 155 |
+
# Resolve to absolute paths to prevent '..' tricks
|
| 156 |
+
abs_file_path = os.path.abspath(local_file_path)
|
| 157 |
+
abs_base_path = ALLOWED_CACHE_BASE # Already absolute
|
| 158 |
+
|
| 159 |
+
# Check if the resolved file path starts with the allowed base directory
|
| 160 |
+
if not abs_file_path.startswith(abs_base_path):
|
| 161 |
+
logger.error(f"SECURITY ALERT: Path traversal attempt denied for task_id '{task_id}'. Path '{local_file_path}' resolves outside base '{abs_base_path}'.")
|
| 162 |
+
raise HTTPException(status_code=403, detail="File access denied.")
|
| 163 |
+
|
| 164 |
+
# Check if the file exists at the resolved, validated path
|
| 165 |
+
if not os.path.exists(abs_file_path) or not os.path.isfile(abs_file_path):
|
| 166 |
+
logger.error(f"File not found on server for task_id '{task_id}' at expected path: {abs_file_path}")
|
| 167 |
+
raise HTTPException(status_code=404, detail=f"File associated with task_id {task_id} not found on server disk.")
|
| 168 |
+
|
| 169 |
+
except HTTPException as http_exc:
|
| 170 |
+
raise http_exc # Re-raise our own security/404 exceptions
|
| 171 |
+
except Exception as path_err:
|
| 172 |
+
logger.error(f"Error resolving or checking path '{local_file_path}' for task_id '{task_id}': {path_err}", exc_info=True)
|
| 173 |
+
raise HTTPException(status_code=500, detail="Server error validating file path.")
|
| 174 |
+
# --- END SECURITY CHECK ---
|
| 175 |
+
|
| 176 |
+
# Determine MIME type for the Content-Type header
|
| 177 |
+
mime_type, _ = mimetypes.guess_type(abs_file_path)
|
| 178 |
+
media_type = mime_type if mime_type else "application/octet-stream" # Default if unknown
|
| 179 |
|
| 180 |
+
# Extract filename for the Content-Disposition header (suggests filename to browser/client)
|
| 181 |
+
file_name_for_download = os.path.basename(abs_file_path)
|
| 182 |
|
| 183 |
+
logger.info(f"Serving file '{file_name_for_download}' (type: {media_type}) for task_id '{task_id}' from path: {abs_file_path}")
|
| 184 |
|
| 185 |
+
# Use FileResponse to efficiently stream the file
|
| 186 |
+
return FileResponse(path=abs_file_path, media_type=media_type, filename=file_name_for_download)
|
| 187 |
|
| 188 |
|
| 189 |
class Question(BaseModel):
|
| 190 |
task_id: str
|
| 191 |
question: str
|
| 192 |
Level: Optional[str] = None
|
| 193 |
+
file_name: Optional[str] = None # Keep filename for info
|
| 194 |
+
# file_path: Optional[str] = None # REMOVE file_path from the response model
|
| 195 |
|
| 196 |
|
| 197 |
# --- The rest of your Pydantic models remain the same ---
|