Ákos Hadnagy
		
	commited on
		
		
					Commit 
							
							·
						
						4046334
	
1
								Parent(s):
							
							4cb4037
								
WIP version
Browse files- .gitignore +12 -0
- benchmark_data_reader.py +224 -0
- benchmark_results/Qwen2-7B/Qwen2-7B_benchmark_20250916_143929.json +1045 -0
- benchmark_results/benchmark_summary_20250916_144139.json +17 -0
- benchmark_results/benchmark_summary_20250916_144602.json +12 -0
- benchmark_results/bert-base-uncased/bert-base-uncased_benchmark_20250916_144120.json +655 -0
- benchmark_results/gpt2/gpt2_benchmark_20250916_143134.json +1175 -0
- dashboard.py +541 -0
- requirements.txt +5 -0
    	
        .gitignore
    ADDED
    
    | @@ -0,0 +1,12 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            .DS_Store
         | 
| 2 | 
            +
            .venv
         | 
| 3 | 
            +
            __pycache__
         | 
| 4 | 
            +
            *.pyc
         | 
| 5 | 
            +
            *.pyo
         | 
| 6 | 
            +
            *.pyd
         | 
| 7 | 
            +
            *.pyw
         | 
| 8 | 
            +
            *.pyz
         | 
| 9 | 
            +
            *.pywz
         | 
| 10 | 
            +
            *.pyzw
         | 
| 11 | 
            +
            *.pyzwz
         | 
| 12 | 
            +
            *.pyzwzw
         | 
    	
        benchmark_data_reader.py
    ADDED
    
    | @@ -0,0 +1,224 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            #!/usr/bin/env python3
         | 
| 2 | 
            +
            """
         | 
| 3 | 
            +
            Benchmark Data Reader for LLM Inference Performance Dashboard
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            This module provides functionality to read benchmark result files and convert them
         | 
| 6 | 
            +
            into a flattened Polars DataFrame for analysis and visualization.
         | 
| 7 | 
            +
            """
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            import json
         | 
| 10 | 
            +
            import polars as pl
         | 
| 11 | 
            +
            from pathlib import Path
         | 
| 12 | 
            +
            from typing import List, Dict, Any, Optional
         | 
| 13 | 
            +
            import logging
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            logger = logging.getLogger(__name__)
         | 
| 16 | 
            +
             | 
| 17 | 
            +
             | 
| 18 | 
            +
            class BenchmarkDataReader:
         | 
| 19 | 
            +
                """Reader for benchmark result JSON files that flattens data into a Polars DataFrame."""
         | 
| 20 | 
            +
             | 
| 21 | 
            +
                def __init__(self, benchmark_dir: str = "benchmark_results"):
         | 
| 22 | 
            +
                    """
         | 
| 23 | 
            +
                    Initialize the benchmark data reader.
         | 
| 24 | 
            +
             | 
| 25 | 
            +
                    Args:
         | 
| 26 | 
            +
                        benchmark_dir: Directory containing benchmark result files
         | 
| 27 | 
            +
                    """
         | 
| 28 | 
            +
                    self.benchmark_dir = Path(benchmark_dir)
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                def read_benchmark_files(self) -> pl.DataFrame:
         | 
| 31 | 
            +
                    """
         | 
| 32 | 
            +
                    Read all benchmark files and return a flattened Polars DataFrame.
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                    Returns:
         | 
| 35 | 
            +
                        Polars DataFrame where each row represents a benchmark scenario with all metrics
         | 
| 36 | 
            +
                    """
         | 
| 37 | 
            +
                    all_records = []
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                    # Find all individual model benchmark files (exclude summary files)
         | 
| 40 | 
            +
                    benchmark_files = list(self.benchmark_dir.rglob("*_benchmark_*.json"))
         | 
| 41 | 
            +
                    benchmark_files = [f for f in benchmark_files if "summary" not in f.name]
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                    logger.info(f"Found {len(benchmark_files)} benchmark files")
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                    for file_path in benchmark_files:
         | 
| 46 | 
            +
                        try:
         | 
| 47 | 
            +
                            records = self._process_benchmark_file(file_path)
         | 
| 48 | 
            +
                            all_records.extend(records)
         | 
| 49 | 
            +
                            logger.debug(f"Processed {len(records)} scenarios from {file_path}")
         | 
| 50 | 
            +
                        except Exception as e:
         | 
| 51 | 
            +
                            logger.error(f"Error processing {file_path}: {e}")
         | 
| 52 | 
            +
                            continue
         | 
| 53 | 
            +
             | 
| 54 | 
            +
                    if not all_records:
         | 
| 55 | 
            +
                        logger.warning("No benchmark data found")
         | 
| 56 | 
            +
                        return pl.DataFrame()
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                    # Create DataFrame from all records
         | 
| 59 | 
            +
                    df = pl.DataFrame(all_records)
         | 
| 60 | 
            +
                    logger.info(f"Created DataFrame with {len(df)} rows and {len(df.columns)} columns")
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                    return df
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                def _process_benchmark_file(self, file_path: Path) -> List[Dict[str, Any]]:
         | 
| 65 | 
            +
                    """
         | 
| 66 | 
            +
                    Process a single benchmark file and extract all scenarios.
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                    Args:
         | 
| 69 | 
            +
                        file_path: Path to the benchmark JSON file
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                    Returns:
         | 
| 72 | 
            +
                        List of flattened records, one per benchmark scenario
         | 
| 73 | 
            +
                    """
         | 
| 74 | 
            +
                    with open(file_path, 'r') as f:
         | 
| 75 | 
            +
                        data = json.load(f)
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                    records = []
         | 
| 78 | 
            +
                    model_name = data.get("model_name", "unknown")
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                    for scenario in data.get("benchmark_scenarios", []):
         | 
| 81 | 
            +
                        record = self._flatten_scenario(scenario, model_name, file_path)
         | 
| 82 | 
            +
                        records.append(record)
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                    return records
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                def _flatten_scenario(self, scenario: Dict[str, Any], model_name: str, file_path: Path) -> Dict[str, Any]:
         | 
| 87 | 
            +
                    """
         | 
| 88 | 
            +
                    Flatten a single benchmark scenario into a flat record.
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                    Args:
         | 
| 91 | 
            +
                        scenario: Scenario data from benchmark file
         | 
| 92 | 
            +
                        model_name: Name of the model being benchmarked
         | 
| 93 | 
            +
                        file_path: Path to the original file
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                    Returns:
         | 
| 96 | 
            +
                        Flattened dictionary with all metrics and metadata
         | 
| 97 | 
            +
                    """
         | 
| 98 | 
            +
                    record = {
         | 
| 99 | 
            +
                        # File metadata
         | 
| 100 | 
            +
                        "file_path": str(file_path),
         | 
| 101 | 
            +
                        "model_name": model_name,
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                        # Scenario metadata
         | 
| 104 | 
            +
                        "scenario_name": scenario.get("scenario_name", "unknown"),
         | 
| 105 | 
            +
                    }
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                    # Add metadata fields
         | 
| 108 | 
            +
                    metadata = scenario.get("metadata", {})
         | 
| 109 | 
            +
                    record.update({
         | 
| 110 | 
            +
                        "timestamp": metadata.get("timestamp"),
         | 
| 111 | 
            +
                        "commit_id": metadata.get("commit_id"),
         | 
| 112 | 
            +
                    })
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                    # Add hardware info
         | 
| 115 | 
            +
                    hw_info = metadata.get("hardware_info", {})
         | 
| 116 | 
            +
                    record.update({
         | 
| 117 | 
            +
                        "gpu_name": hw_info.get("gpu_name"),
         | 
| 118 | 
            +
                        "gpu_memory_total_mb": hw_info.get("gpu_memory_total_mb"),
         | 
| 119 | 
            +
                        "cpu_count": hw_info.get("cpu_count"),
         | 
| 120 | 
            +
                        "memory_total_mb": hw_info.get("memory_total_mb"),
         | 
| 121 | 
            +
                        "python_version": hw_info.get("python_version"),
         | 
| 122 | 
            +
                        "torch_version": hw_info.get("torch_version"),
         | 
| 123 | 
            +
                        "cuda_version": hw_info.get("cuda_version"),
         | 
| 124 | 
            +
                    })
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                    # Add config info
         | 
| 127 | 
            +
                    config = metadata.get("config", {})
         | 
| 128 | 
            +
                    record.update({
         | 
| 129 | 
            +
                        "config_name": config.get("name"),
         | 
| 130 | 
            +
                        "model_id": config.get("model_id"),
         | 
| 131 | 
            +
                        "variant": config.get("variant"),
         | 
| 132 | 
            +
                        "warmup_iterations": config.get("warmup_iterations"),
         | 
| 133 | 
            +
                        "measurement_iterations": config.get("measurement_iterations"),
         | 
| 134 | 
            +
                        "num_tokens_to_generate": config.get("num_tokens_to_generate"),
         | 
| 135 | 
            +
                        "device": config.get("device"),
         | 
| 136 | 
            +
                        "torch_dtype": config.get("torch_dtype"),
         | 
| 137 | 
            +
                        "compile_mode": config.get("compile_mode"),
         | 
| 138 | 
            +
                        "use_cache": config.get("use_cache"),
         | 
| 139 | 
            +
                        "batch_size": config.get("batch_size"),
         | 
| 140 | 
            +
                        "sequence_length": config.get("sequence_length"),
         | 
| 141 | 
            +
                        "attn_implementation": config.get("attn_implementation"),
         | 
| 142 | 
            +
                        "sdpa_backend": config.get("sdpa_backend"),
         | 
| 143 | 
            +
                    })
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                    # Add measurement statistics for each metric
         | 
| 146 | 
            +
                    measurements = scenario.get("measurements", {})
         | 
| 147 | 
            +
                    for metric_name, metric_data in measurements.items():
         | 
| 148 | 
            +
                        if isinstance(metric_data, dict):
         | 
| 149 | 
            +
                            # Add statistics for this metric
         | 
| 150 | 
            +
                            for stat_name, stat_value in metric_data.items():
         | 
| 151 | 
            +
                                if stat_name != "measurements":  # Skip raw measurements array
         | 
| 152 | 
            +
                                    record[f"{metric_name}_{stat_name}"] = stat_value
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                    # Add GPU metrics
         | 
| 155 | 
            +
                    gpu_metrics = scenario.get("gpu_metrics", {})
         | 
| 156 | 
            +
                    for gpu_metric, value in gpu_metrics.items():
         | 
| 157 | 
            +
                        record[f"gpu_{gpu_metric}"] = value
         | 
| 158 | 
            +
             | 
| 159 | 
            +
                    return record
         | 
| 160 | 
            +
             | 
| 161 | 
            +
                def get_summary_statistics(self, df: pl.DataFrame) -> Dict[str, Any]:
         | 
| 162 | 
            +
                    """
         | 
| 163 | 
            +
                    Generate summary statistics from the benchmark DataFrame.
         | 
| 164 | 
            +
             | 
| 165 | 
            +
                    Args:
         | 
| 166 | 
            +
                        df: Benchmark DataFrame
         | 
| 167 | 
            +
             | 
| 168 | 
            +
                    Returns:
         | 
| 169 | 
            +
                        Dictionary with summary statistics
         | 
| 170 | 
            +
                    """
         | 
| 171 | 
            +
                    if df.is_empty():
         | 
| 172 | 
            +
                        return {}
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                    return {
         | 
| 175 | 
            +
                        "total_scenarios": len(df),
         | 
| 176 | 
            +
                        "unique_models": df["model_name"].n_unique(),
         | 
| 177 | 
            +
                        "unique_scenarios": df["scenario_name"].n_unique(),
         | 
| 178 | 
            +
                        "unique_hardware": df["gpu_name"].n_unique(),
         | 
| 179 | 
            +
                        "date_range": {
         | 
| 180 | 
            +
                            "earliest": df["timestamp"].min(),
         | 
| 181 | 
            +
                            "latest": df["timestamp"].max(),
         | 
| 182 | 
            +
                        },
         | 
| 183 | 
            +
                        "performance_metrics": {
         | 
| 184 | 
            +
                            "avg_latency_seconds": df.select(pl.col("latency_seconds_mean").mean()).item(),
         | 
| 185 | 
            +
                            "avg_tokens_per_second": df.select(pl.col("tokens_per_second_mean").mean()).item(),
         | 
| 186 | 
            +
                            "avg_time_to_first_token": df.select(pl.col("time_to_first_token_seconds_mean").mean()).item(),
         | 
| 187 | 
            +
                        } if "latency_seconds_mean" in df.columns else None
         | 
| 188 | 
            +
                    }
         | 
| 189 | 
            +
             | 
| 190 | 
            +
             | 
| 191 | 
            +
            def main():
         | 
| 192 | 
            +
                """Example usage of the BenchmarkDataReader."""
         | 
| 193 | 
            +
                logging.basicConfig(level=logging.INFO)
         | 
| 194 | 
            +
             | 
| 195 | 
            +
                # Create reader and load data
         | 
| 196 | 
            +
                reader = BenchmarkDataReader()
         | 
| 197 | 
            +
                df = reader.read_benchmark_files()
         | 
| 198 | 
            +
             | 
| 199 | 
            +
                if df.is_empty():
         | 
| 200 | 
            +
                    print("No benchmark data found!")
         | 
| 201 | 
            +
                    return
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                # Display basic info
         | 
| 204 | 
            +
                print(f"\nLoaded benchmark data: {len(df)} scenarios")
         | 
| 205 | 
            +
                print(f"Columns: {len(df.columns)}")
         | 
| 206 | 
            +
                print("\nColumn names:")
         | 
| 207 | 
            +
                for col in sorted(df.columns):
         | 
| 208 | 
            +
                    print(f"  - {col}")
         | 
| 209 | 
            +
             | 
| 210 | 
            +
                # Show summary statistics
         | 
| 211 | 
            +
                summary = reader.get_summary_statistics(df)
         | 
| 212 | 
            +
                print(f"\nSummary Statistics:")
         | 
| 213 | 
            +
                for key, value in summary.items():
         | 
| 214 | 
            +
                    print(f"  {key}: {value}")
         | 
| 215 | 
            +
             | 
| 216 | 
            +
                # Show sample data
         | 
| 217 | 
            +
                print(f"\nSample data (first 3 rows):")
         | 
| 218 | 
            +
                print(df.head(3))
         | 
| 219 | 
            +
             | 
| 220 | 
            +
                return df
         | 
| 221 | 
            +
             | 
| 222 | 
            +
             | 
| 223 | 
            +
            if __name__ == "__main__":
         | 
| 224 | 
            +
                df = main()
         | 
    	
        benchmark_results/Qwen2-7B/Qwen2-7B_benchmark_20250916_143929.json
    ADDED
    
    | @@ -0,0 +1,1045 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "model_name": "Qwen2-7B",
         | 
| 3 | 
            +
              "benchmark_scenarios": [
         | 
| 4 | 
            +
                {
         | 
| 5 | 
            +
                  "scenario_name": "eager_eager_attn",
         | 
| 6 | 
            +
                  "metadata": {
         | 
| 7 | 
            +
                    "timestamp": "2025-09-16T14:32:57.577651",
         | 
| 8 | 
            +
                    "commit_id": null,
         | 
| 9 | 
            +
                    "hardware_info": {
         | 
| 10 | 
            +
                      "gpu_name": "NVIDIA A100-SXM4-80GB",
         | 
| 11 | 
            +
                      "gpu_memory_total_mb": 81920,
         | 
| 12 | 
            +
                      "cpu_count": 128,
         | 
| 13 | 
            +
                      "memory_total_mb": 515624,
         | 
| 14 | 
            +
                      "python_version": "3.10.12",
         | 
| 15 | 
            +
                      "torch_version": "2.8.0+cu126",
         | 
| 16 | 
            +
                      "cuda_version": "12.6"
         | 
| 17 | 
            +
                    },
         | 
| 18 | 
            +
                    "config": {
         | 
| 19 | 
            +
                      "name": "eager",
         | 
| 20 | 
            +
                      "model_id": "Qwen/Qwen2-7B",
         | 
| 21 | 
            +
                      "variant": "eager",
         | 
| 22 | 
            +
                      "warmup_iterations": 3,
         | 
| 23 | 
            +
                      "measurement_iterations": 5,
         | 
| 24 | 
            +
                      "num_tokens_to_generate": 100,
         | 
| 25 | 
            +
                      "device": "cuda",
         | 
| 26 | 
            +
                      "torch_dtype": "float16",
         | 
| 27 | 
            +
                      "compile_mode": null,
         | 
| 28 | 
            +
                      "compile_options": {},
         | 
| 29 | 
            +
                      "use_cache": true,
         | 
| 30 | 
            +
                      "batch_size": 1,
         | 
| 31 | 
            +
                      "sequence_length": null,
         | 
| 32 | 
            +
                      "attn_implementation": "eager",
         | 
| 33 | 
            +
                      "sdpa_backend": null,
         | 
| 34 | 
            +
                      "custom_params": {}
         | 
| 35 | 
            +
                    }
         | 
| 36 | 
            +
                  },
         | 
| 37 | 
            +
                  "measurements": {
         | 
| 38 | 
            +
                    "latency_seconds": {
         | 
| 39 | 
            +
                      "name": "latency_seconds",
         | 
| 40 | 
            +
                      "measurements": [
         | 
| 41 | 
            +
                        3.080421630859375,
         | 
| 42 | 
            +
                        3.11809912109375,
         | 
| 43 | 
            +
                        3.0738232421875,
         | 
| 44 | 
            +
                        3.063243896484375,
         | 
| 45 | 
            +
                        3.067010498046875
         | 
| 46 | 
            +
                      ],
         | 
| 47 | 
            +
                      "mean": 3.080519677734375,
         | 
| 48 | 
            +
                      "median": 3.0738232421875,
         | 
| 49 | 
            +
                      "std": 0.019687645766066797,
         | 
| 50 | 
            +
                      "min": 3.063243896484375,
         | 
| 51 | 
            +
                      "max": 3.11809912109375,
         | 
| 52 | 
            +
                      "p25": 3.067010498046875,
         | 
| 53 | 
            +
                      "p75": 3.080421630859375,
         | 
| 54 | 
            +
                      "p90": 3.103028125,
         | 
| 55 | 
            +
                      "p95": 3.110563623046875,
         | 
| 56 | 
            +
                      "p99": 3.116592021484375,
         | 
| 57 | 
            +
                      "unit": "seconds"
         | 
| 58 | 
            +
                    },
         | 
| 59 | 
            +
                    "time_to_first_token_seconds": {
         | 
| 60 | 
            +
                      "name": "time_to_first_token_seconds",
         | 
| 61 | 
            +
                      "measurements": [
         | 
| 62 | 
            +
                        0.034482784271240234,
         | 
| 63 | 
            +
                        0.033048095703125,
         | 
| 64 | 
            +
                        0.03294166564941406,
         | 
| 65 | 
            +
                        0.032885345458984375,
         | 
| 66 | 
            +
                        0.03293324661254883
         | 
| 67 | 
            +
                      ],
         | 
| 68 | 
            +
                      "mean": 0.033258227539062504,
         | 
| 69 | 
            +
                      "median": 0.03294166564941406,
         | 
| 70 | 
            +
                      "std": 0.0006145827295027316,
         | 
| 71 | 
            +
                      "min": 0.032885345458984375,
         | 
| 72 | 
            +
                      "max": 0.034482784271240234,
         | 
| 73 | 
            +
                      "p25": 0.03293324661254883,
         | 
| 74 | 
            +
                      "p75": 0.033048095703125,
         | 
| 75 | 
            +
                      "p90": 0.03390890884399414,
         | 
| 76 | 
            +
                      "p95": 0.03419584655761719,
         | 
| 77 | 
            +
                      "p99": 0.03442539672851563,
         | 
| 78 | 
            +
                      "unit": "seconds"
         | 
| 79 | 
            +
                    },
         | 
| 80 | 
            +
                    "tokens_per_second": {
         | 
| 81 | 
            +
                      "name": "tokens_per_second",
         | 
| 82 | 
            +
                      "measurements": [
         | 
| 83 | 
            +
                        32.463088493539125,
         | 
| 84 | 
            +
                        32.070821393555484,
         | 
| 85 | 
            +
                        32.5327750234703,
         | 
| 86 | 
            +
                        32.64513155964109,
         | 
| 87 | 
            +
                        32.60504001002987
         | 
| 88 | 
            +
                      ],
         | 
| 89 | 
            +
                      "mean": 32.46337129604717,
         | 
| 90 | 
            +
                      "median": 32.5327750234703,
         | 
| 91 | 
            +
                      "std": 0.20592192755845912,
         | 
| 92 | 
            +
                      "min": 32.070821393555484,
         | 
| 93 | 
            +
                      "max": 32.64513155964109,
         | 
| 94 | 
            +
                      "p25": 32.463088493539125,
         | 
| 95 | 
            +
                      "p75": 32.60504001002987,
         | 
| 96 | 
            +
                      "p90": 32.6290949397966,
         | 
| 97 | 
            +
                      "p95": 32.637113249718844,
         | 
| 98 | 
            +
                      "p99": 32.64352789765664,
         | 
| 99 | 
            +
                      "unit": "tokens/sec"
         | 
| 100 | 
            +
                    },
         | 
| 101 | 
            +
                    "time_per_output_token_seconds": {
         | 
| 102 | 
            +
                      "name": "time_per_output_token_seconds",
         | 
| 103 | 
            +
                      "measurements": [
         | 
| 104 | 
            +
                        0.030804216308593747,
         | 
| 105 | 
            +
                        0.031180991210937502,
         | 
| 106 | 
            +
                        0.030738232421874997,
         | 
| 107 | 
            +
                        0.03063243896484375,
         | 
| 108 | 
            +
                        0.03067010498046875
         | 
| 109 | 
            +
                      ],
         | 
| 110 | 
            +
                      "mean": 0.030805196777343745,
         | 
| 111 | 
            +
                      "median": 0.030738232421874997,
         | 
| 112 | 
            +
                      "std": 0.0001968764576606682,
         | 
| 113 | 
            +
                      "min": 0.03063243896484375,
         | 
| 114 | 
            +
                      "max": 0.031180991210937502,
         | 
| 115 | 
            +
                      "p25": 0.03067010498046875,
         | 
| 116 | 
            +
                      "p75": 0.030804216308593747,
         | 
| 117 | 
            +
                      "p90": 0.03103028125,
         | 
| 118 | 
            +
                      "p95": 0.03110563623046875,
         | 
| 119 | 
            +
                      "p99": 0.03116592021484375,
         | 
| 120 | 
            +
                      "unit": "seconds/token"
         | 
| 121 | 
            +
                    }
         | 
| 122 | 
            +
                  },
         | 
| 123 | 
            +
                  "gpu_metrics": {
         | 
| 124 | 
            +
                    "gpu_utilization_mean": 49,
         | 
| 125 | 
            +
                    "gpu_utilization_max": 50,
         | 
| 126 | 
            +
                    "gpu_utilization_min": 46,
         | 
| 127 | 
            +
                    "gpu_memory_used_mean": 15356,
         | 
| 128 | 
            +
                    "gpu_memory_used_max": 15356,
         | 
| 129 | 
            +
                    "gpu_memory_used_min": 15356,
         | 
| 130 | 
            +
                    "sample_count": 12,
         | 
| 131 | 
            +
                    "gpu_monitoring_status": "success"
         | 
| 132 | 
            +
                  }
         | 
| 133 | 
            +
                },
         | 
| 134 | 
            +
                {
         | 
| 135 | 
            +
                  "scenario_name": "compiled_compile_max-autotune_eager_attn",
         | 
| 136 | 
            +
                  "metadata": {
         | 
| 137 | 
            +
                    "timestamp": "2025-09-16T14:33:40.254963",
         | 
| 138 | 
            +
                    "commit_id": null,
         | 
| 139 | 
            +
                    "hardware_info": {
         | 
| 140 | 
            +
                      "gpu_name": "NVIDIA A100-SXM4-80GB",
         | 
| 141 | 
            +
                      "gpu_memory_total_mb": 81920,
         | 
| 142 | 
            +
                      "cpu_count": 128,
         | 
| 143 | 
            +
                      "memory_total_mb": 515624,
         | 
| 144 | 
            +
                      "python_version": "3.10.12",
         | 
| 145 | 
            +
                      "torch_version": "2.8.0+cu126",
         | 
| 146 | 
            +
                      "cuda_version": "12.6"
         | 
| 147 | 
            +
                    },
         | 
| 148 | 
            +
                    "config": {
         | 
| 149 | 
            +
                      "name": "compiled",
         | 
| 150 | 
            +
                      "model_id": "Qwen/Qwen2-7B",
         | 
| 151 | 
            +
                      "variant": "compiled",
         | 
| 152 | 
            +
                      "warmup_iterations": 3,
         | 
| 153 | 
            +
                      "measurement_iterations": 5,
         | 
| 154 | 
            +
                      "num_tokens_to_generate": 100,
         | 
| 155 | 
            +
                      "device": "cuda",
         | 
| 156 | 
            +
                      "torch_dtype": "float16",
         | 
| 157 | 
            +
                      "compile_mode": "max-autotune",
         | 
| 158 | 
            +
                      "compile_options": {},
         | 
| 159 | 
            +
                      "use_cache": true,
         | 
| 160 | 
            +
                      "batch_size": 1,
         | 
| 161 | 
            +
                      "sequence_length": null,
         | 
| 162 | 
            +
                      "attn_implementation": "eager",
         | 
| 163 | 
            +
                      "sdpa_backend": null,
         | 
| 164 | 
            +
                      "custom_params": {}
         | 
| 165 | 
            +
                    }
         | 
| 166 | 
            +
                  },
         | 
| 167 | 
            +
                  "measurements": {
         | 
| 168 | 
            +
                    "latency_seconds": {
         | 
| 169 | 
            +
                      "name": "latency_seconds",
         | 
| 170 | 
            +
                      "measurements": [
         | 
| 171 | 
            +
                        6.4204189453125,
         | 
| 172 | 
            +
                        7.5098984375,
         | 
| 173 | 
            +
                        7.9186865234375,
         | 
| 174 | 
            +
                        6.87070166015625,
         | 
| 175 | 
            +
                        8.3134296875
         | 
| 176 | 
            +
                      ],
         | 
| 177 | 
            +
                      "mean": 7.406627050781251,
         | 
| 178 | 
            +
                      "median": 7.5098984375,
         | 
| 179 | 
            +
                      "std": 0.6862919723296647,
         | 
| 180 | 
            +
                      "min": 6.4204189453125,
         | 
| 181 | 
            +
                      "max": 8.3134296875,
         | 
| 182 | 
            +
                      "p25": 6.87070166015625,
         | 
| 183 | 
            +
                      "p75": 7.9186865234375,
         | 
| 184 | 
            +
                      "p90": 8.155532421875,
         | 
| 185 | 
            +
                      "p95": 8.2344810546875,
         | 
| 186 | 
            +
                      "p99": 8.297639960937499,
         | 
| 187 | 
            +
                      "unit": "seconds"
         | 
| 188 | 
            +
                    },
         | 
| 189 | 
            +
                    "time_to_first_token_seconds": {
         | 
| 190 | 
            +
                      "name": "time_to_first_token_seconds",
         | 
| 191 | 
            +
                      "measurements": [
         | 
| 192 | 
            +
                        0.03493379211425781,
         | 
| 193 | 
            +
                        0.03398665618896484,
         | 
| 194 | 
            +
                        0.043259166717529295,
         | 
| 195 | 
            +
                        0.03372019195556641,
         | 
| 196 | 
            +
                        0.04352550506591797
         | 
| 197 | 
            +
                      ],
         | 
| 198 | 
            +
                      "mean": 0.037885062408447266,
         | 
| 199 | 
            +
                      "median": 0.03493379211425781,
         | 
| 200 | 
            +
                      "std": 0.0045155133437484955,
         | 
| 201 | 
            +
                      "min": 0.03372019195556641,
         | 
| 202 | 
            +
                      "max": 0.04352550506591797,
         | 
| 203 | 
            +
                      "p25": 0.03398665618896484,
         | 
| 204 | 
            +
                      "p75": 0.043259166717529295,
         | 
| 205 | 
            +
                      "p90": 0.0434189697265625,
         | 
| 206 | 
            +
                      "p95": 0.04347223739624024,
         | 
| 207 | 
            +
                      "p99": 0.043514851531982424,
         | 
| 208 | 
            +
                      "unit": "seconds"
         | 
| 209 | 
            +
                    },
         | 
| 210 | 
            +
                    "tokens_per_second": {
         | 
| 211 | 
            +
                      "name": "tokens_per_second",
         | 
| 212 | 
            +
                      "measurements": [
         | 
| 213 | 
            +
                        15.575307600917423,
         | 
| 214 | 
            +
                        13.315759305167035,
         | 
| 215 | 
            +
                        12.628356950868415,
         | 
| 216 | 
            +
                        14.55455424296881,
         | 
| 217 | 
            +
                        12.02872986949768
         | 
| 218 | 
            +
                      ],
         | 
| 219 | 
            +
                      "mean": 13.620541593883871,
         | 
| 220 | 
            +
                      "median": 13.315759305167035,
         | 
| 221 | 
            +
                      "std": 1.2887728229714563,
         | 
| 222 | 
            +
                      "min": 12.02872986949768,
         | 
| 223 | 
            +
                      "max": 15.575307600917423,
         | 
| 224 | 
            +
                      "p25": 12.628356950868415,
         | 
| 225 | 
            +
                      "p75": 14.55455424296881,
         | 
| 226 | 
            +
                      "p90": 15.167006257737977,
         | 
| 227 | 
            +
                      "p95": 15.3711569293277,
         | 
| 228 | 
            +
                      "p99": 15.534477466599478,
         | 
| 229 | 
            +
                      "unit": "tokens/sec"
         | 
| 230 | 
            +
                    },
         | 
| 231 | 
            +
                    "time_per_output_token_seconds": {
         | 
| 232 | 
            +
                      "name": "time_per_output_token_seconds",
         | 
| 233 | 
            +
                      "measurements": [
         | 
| 234 | 
            +
                        0.064204189453125,
         | 
| 235 | 
            +
                        0.07509898437500001,
         | 
| 236 | 
            +
                        0.079186865234375,
         | 
| 237 | 
            +
                        0.0687070166015625,
         | 
| 238 | 
            +
                        0.083134296875
         | 
| 239 | 
            +
                      ],
         | 
| 240 | 
            +
                      "mean": 0.0740662705078125,
         | 
| 241 | 
            +
                      "median": 0.07509898437500001,
         | 
| 242 | 
            +
                      "std": 0.006862919723296648,
         | 
| 243 | 
            +
                      "min": 0.064204189453125,
         | 
| 244 | 
            +
                      "max": 0.083134296875,
         | 
| 245 | 
            +
                      "p25": 0.0687070166015625,
         | 
| 246 | 
            +
                      "p75": 0.079186865234375,
         | 
| 247 | 
            +
                      "p90": 0.08155532421875,
         | 
| 248 | 
            +
                      "p95": 0.082344810546875,
         | 
| 249 | 
            +
                      "p99": 0.082976399609375,
         | 
| 250 | 
            +
                      "unit": "seconds/token"
         | 
| 251 | 
            +
                    }
         | 
| 252 | 
            +
                  },
         | 
| 253 | 
            +
                  "gpu_metrics": {
         | 
| 254 | 
            +
                    "gpu_utilization_mean": 66,
         | 
| 255 | 
            +
                    "gpu_utilization_max": 100,
         | 
| 256 | 
            +
                    "gpu_utilization_min": 0,
         | 
| 257 | 
            +
                    "gpu_memory_used_mean": 71715.41176470589,
         | 
| 258 | 
            +
                    "gpu_memory_used_max": 78882,
         | 
| 259 | 
            +
                    "gpu_memory_used_min": 46602,
         | 
| 260 | 
            +
                    "sample_count": 17,
         | 
| 261 | 
            +
                    "gpu_monitoring_status": "success"
         | 
| 262 | 
            +
                  }
         | 
| 263 | 
            +
                },
         | 
| 264 | 
            +
                {
         | 
| 265 | 
            +
                  "scenario_name": "eager_sdpa_default",
         | 
| 266 | 
            +
                  "metadata": {
         | 
| 267 | 
            +
                    "timestamp": "2025-09-16T14:35:10.602807",
         | 
| 268 | 
            +
                    "commit_id": null,
         | 
| 269 | 
            +
                    "hardware_info": {
         | 
| 270 | 
            +
                      "gpu_name": "NVIDIA A100-SXM4-80GB",
         | 
| 271 | 
            +
                      "gpu_memory_total_mb": 81920,
         | 
| 272 | 
            +
                      "cpu_count": 128,
         | 
| 273 | 
            +
                      "memory_total_mb": 515624,
         | 
| 274 | 
            +
                      "python_version": "3.10.12",
         | 
| 275 | 
            +
                      "torch_version": "2.8.0+cu126",
         | 
| 276 | 
            +
                      "cuda_version": "12.6"
         | 
| 277 | 
            +
                    },
         | 
| 278 | 
            +
                    "config": {
         | 
| 279 | 
            +
                      "name": "eager",
         | 
| 280 | 
            +
                      "model_id": "Qwen/Qwen2-7B",
         | 
| 281 | 
            +
                      "variant": "eager",
         | 
| 282 | 
            +
                      "warmup_iterations": 3,
         | 
| 283 | 
            +
                      "measurement_iterations": 5,
         | 
| 284 | 
            +
                      "num_tokens_to_generate": 100,
         | 
| 285 | 
            +
                      "device": "cuda",
         | 
| 286 | 
            +
                      "torch_dtype": "float16",
         | 
| 287 | 
            +
                      "compile_mode": null,
         | 
| 288 | 
            +
                      "compile_options": {},
         | 
| 289 | 
            +
                      "use_cache": true,
         | 
| 290 | 
            +
                      "batch_size": 1,
         | 
| 291 | 
            +
                      "sequence_length": null,
         | 
| 292 | 
            +
                      "attn_implementation": "sdpa",
         | 
| 293 | 
            +
                      "sdpa_backend": null,
         | 
| 294 | 
            +
                      "custom_params": {}
         | 
| 295 | 
            +
                    }
         | 
| 296 | 
            +
                  },
         | 
| 297 | 
            +
                  "measurements": {
         | 
| 298 | 
            +
                    "latency_seconds": {
         | 
| 299 | 
            +
                      "name": "latency_seconds",
         | 
| 300 | 
            +
                      "measurements": [
         | 
| 301 | 
            +
                        2.3900068359375,
         | 
| 302 | 
            +
                        2.379837158203125,
         | 
| 303 | 
            +
                        2.39191650390625,
         | 
| 304 | 
            +
                        2.394760986328125,
         | 
| 305 | 
            +
                        2.38983203125
         | 
| 306 | 
            +
                      ],
         | 
| 307 | 
            +
                      "mean": 2.3892707031250002,
         | 
| 308 | 
            +
                      "median": 2.3900068359375,
         | 
| 309 | 
            +
                      "std": 0.0050396869347048,
         | 
| 310 | 
            +
                      "min": 2.379837158203125,
         | 
| 311 | 
            +
                      "max": 2.394760986328125,
         | 
| 312 | 
            +
                      "p25": 2.38983203125,
         | 
| 313 | 
            +
                      "p75": 2.39191650390625,
         | 
| 314 | 
            +
                      "p90": 2.393623193359375,
         | 
| 315 | 
            +
                      "p95": 2.39419208984375,
         | 
| 316 | 
            +
                      "p99": 2.3946472070312503,
         | 
| 317 | 
            +
                      "unit": "seconds"
         | 
| 318 | 
            +
                    },
         | 
| 319 | 
            +
                    "time_to_first_token_seconds": {
         | 
| 320 | 
            +
                      "name": "time_to_first_token_seconds",
         | 
| 321 | 
            +
                      "measurements": [
         | 
| 322 | 
            +
                        0.026343584060668945,
         | 
| 323 | 
            +
                        0.025955039978027342,
         | 
| 324 | 
            +
                        0.02592620849609375,
         | 
| 325 | 
            +
                        0.025973472595214844,
         | 
| 326 | 
            +
                        0.025634336471557616
         | 
| 327 | 
            +
                      ],
         | 
| 328 | 
            +
                      "mean": 0.025966528320312498,
         | 
| 329 | 
            +
                      "median": 0.025955039978027342,
         | 
| 330 | 
            +
                      "std": 0.0002255341876090389,
         | 
| 331 | 
            +
                      "min": 0.025634336471557616,
         | 
| 332 | 
            +
                      "max": 0.026343584060668945,
         | 
| 333 | 
            +
                      "p25": 0.02592620849609375,
         | 
| 334 | 
            +
                      "p75": 0.025973472595214844,
         | 
| 335 | 
            +
                      "p90": 0.026195539474487304,
         | 
| 336 | 
            +
                      "p95": 0.026269561767578126,
         | 
| 337 | 
            +
                      "p99": 0.02632877960205078,
         | 
| 338 | 
            +
                      "unit": "seconds"
         | 
| 339 | 
            +
                    },
         | 
| 340 | 
            +
                    "tokens_per_second": {
         | 
| 341 | 
            +
                      "name": "tokens_per_second",
         | 
| 342 | 
            +
                      "measurements": [
         | 
| 343 | 
            +
                        41.8408845097609,
         | 
| 344 | 
            +
                        42.01968174810083,
         | 
| 345 | 
            +
                        41.80747941522604,
         | 
| 346 | 
            +
                        41.757820747418094,
         | 
| 347 | 
            +
                        41.84394496867425
         | 
| 348 | 
            +
                      ],
         | 
| 349 | 
            +
                      "mean": 41.853962277836025,
         | 
| 350 | 
            +
                      "median": 41.8408845097609,
         | 
| 351 | 
            +
                      "std": 0.08847391447544005,
         | 
| 352 | 
            +
                      "min": 41.757820747418094,
         | 
| 353 | 
            +
                      "max": 42.01968174810083,
         | 
| 354 | 
            +
                      "p25": 41.80747941522604,
         | 
| 355 | 
            +
                      "p75": 41.84394496867425,
         | 
| 356 | 
            +
                      "p90": 41.9493870363302,
         | 
| 357 | 
            +
                      "p95": 41.984534392215515,
         | 
| 358 | 
            +
                      "p99": 42.01265227692377,
         | 
| 359 | 
            +
                      "unit": "tokens/sec"
         | 
| 360 | 
            +
                    },
         | 
| 361 | 
            +
                    "time_per_output_token_seconds": {
         | 
| 362 | 
            +
                      "name": "time_per_output_token_seconds",
         | 
| 363 | 
            +
                      "measurements": [
         | 
| 364 | 
            +
                        0.023900068359375002,
         | 
| 365 | 
            +
                        0.023798371582031252,
         | 
| 366 | 
            +
                        0.023919165039062502,
         | 
| 367 | 
            +
                        0.02394760986328125,
         | 
| 368 | 
            +
                        0.023898320312500002
         | 
| 369 | 
            +
                      ],
         | 
| 370 | 
            +
                      "mean": 0.02389270703125,
         | 
| 371 | 
            +
                      "median": 0.023900068359375002,
         | 
| 372 | 
            +
                      "std": 5.0396869347047166e-05,
         | 
| 373 | 
            +
                      "min": 0.023798371582031252,
         | 
| 374 | 
            +
                      "max": 0.02394760986328125,
         | 
| 375 | 
            +
                      "p25": 0.023898320312500002,
         | 
| 376 | 
            +
                      "p75": 0.023919165039062502,
         | 
| 377 | 
            +
                      "p90": 0.02393623193359375,
         | 
| 378 | 
            +
                      "p95": 0.0239419208984375,
         | 
| 379 | 
            +
                      "p99": 0.0239464720703125,
         | 
| 380 | 
            +
                      "unit": "seconds/token"
         | 
| 381 | 
            +
                    }
         | 
| 382 | 
            +
                  },
         | 
| 383 | 
            +
                  "gpu_metrics": {
         | 
| 384 | 
            +
                    "gpu_utilization_mean": 60.25,
         | 
| 385 | 
            +
                    "gpu_utilization_max": 61,
         | 
| 386 | 
            +
                    "gpu_utilization_min": 60,
         | 
| 387 | 
            +
                    "gpu_memory_used_mean": 15466,
         | 
| 388 | 
            +
                    "gpu_memory_used_max": 15466,
         | 
| 389 | 
            +
                    "gpu_memory_used_min": 15466,
         | 
| 390 | 
            +
                    "sample_count": 8,
         | 
| 391 | 
            +
                    "gpu_monitoring_status": "success"
         | 
| 392 | 
            +
                  }
         | 
| 393 | 
            +
                },
         | 
| 394 | 
            +
                {
         | 
| 395 | 
            +
                  "scenario_name": "eager_sdpa_math",
         | 
| 396 | 
            +
                  "metadata": {
         | 
| 397 | 
            +
                    "timestamp": "2025-09-16T14:35:47.417716",
         | 
| 398 | 
            +
                    "commit_id": null,
         | 
| 399 | 
            +
                    "hardware_info": {
         | 
| 400 | 
            +
                      "gpu_name": "NVIDIA A100-SXM4-80GB",
         | 
| 401 | 
            +
                      "gpu_memory_total_mb": 81920,
         | 
| 402 | 
            +
                      "cpu_count": 128,
         | 
| 403 | 
            +
                      "memory_total_mb": 515624,
         | 
| 404 | 
            +
                      "python_version": "3.10.12",
         | 
| 405 | 
            +
                      "torch_version": "2.8.0+cu126",
         | 
| 406 | 
            +
                      "cuda_version": "12.6"
         | 
| 407 | 
            +
                    },
         | 
| 408 | 
            +
                    "config": {
         | 
| 409 | 
            +
                      "name": "eager",
         | 
| 410 | 
            +
                      "model_id": "Qwen/Qwen2-7B",
         | 
| 411 | 
            +
                      "variant": "eager",
         | 
| 412 | 
            +
                      "warmup_iterations": 3,
         | 
| 413 | 
            +
                      "measurement_iterations": 5,
         | 
| 414 | 
            +
                      "num_tokens_to_generate": 100,
         | 
| 415 | 
            +
                      "device": "cuda",
         | 
| 416 | 
            +
                      "torch_dtype": "float16",
         | 
| 417 | 
            +
                      "compile_mode": null,
         | 
| 418 | 
            +
                      "compile_options": {},
         | 
| 419 | 
            +
                      "use_cache": true,
         | 
| 420 | 
            +
                      "batch_size": 1,
         | 
| 421 | 
            +
                      "sequence_length": null,
         | 
| 422 | 
            +
                      "attn_implementation": "sdpa",
         | 
| 423 | 
            +
                      "sdpa_backend": "math",
         | 
| 424 | 
            +
                      "custom_params": {}
         | 
| 425 | 
            +
                    }
         | 
| 426 | 
            +
                  },
         | 
| 427 | 
            +
                  "measurements": {
         | 
| 428 | 
            +
                    "latency_seconds": {
         | 
| 429 | 
            +
                      "name": "latency_seconds",
         | 
| 430 | 
            +
                      "measurements": [
         | 
| 431 | 
            +
                        2.9385849609375,
         | 
| 432 | 
            +
                        2.911900390625,
         | 
| 433 | 
            +
                        2.9431630859375,
         | 
| 434 | 
            +
                        2.923252197265625,
         | 
| 435 | 
            +
                        2.91033935546875
         | 
| 436 | 
            +
                      ],
         | 
| 437 | 
            +
                      "mean": 2.925447998046875,
         | 
| 438 | 
            +
                      "median": 2.923252197265625,
         | 
| 439 | 
            +
                      "std": 0.013439006075182301,
         | 
| 440 | 
            +
                      "min": 2.91033935546875,
         | 
| 441 | 
            +
                      "max": 2.9431630859375,
         | 
| 442 | 
            +
                      "p25": 2.911900390625,
         | 
| 443 | 
            +
                      "p75": 2.9385849609375,
         | 
| 444 | 
            +
                      "p90": 2.9413318359375,
         | 
| 445 | 
            +
                      "p95": 2.9422474609375,
         | 
| 446 | 
            +
                      "p99": 2.9429799609375,
         | 
| 447 | 
            +
                      "unit": "seconds"
         | 
| 448 | 
            +
                    },
         | 
| 449 | 
            +
                    "time_to_first_token_seconds": {
         | 
| 450 | 
            +
                      "name": "time_to_first_token_seconds",
         | 
| 451 | 
            +
                      "measurements": [
         | 
| 452 | 
            +
                        0.033364158630371094,
         | 
| 453 | 
            +
                        0.032983425140380856,
         | 
| 454 | 
            +
                        0.03354035186767578,
         | 
| 455 | 
            +
                        0.03323625564575195,
         | 
| 456 | 
            +
                        0.033615966796875
         | 
| 457 | 
            +
                      ],
         | 
| 458 | 
            +
                      "mean": 0.03334803161621094,
         | 
| 459 | 
            +
                      "median": 0.033364158630371094,
         | 
| 460 | 
            +
                      "std": 0.00022559617485054417,
         | 
| 461 | 
            +
                      "min": 0.032983425140380856,
         | 
| 462 | 
            +
                      "max": 0.033615966796875,
         | 
| 463 | 
            +
                      "p25": 0.03323625564575195,
         | 
| 464 | 
            +
                      "p75": 0.03354035186767578,
         | 
| 465 | 
            +
                      "p90": 0.033585720825195314,
         | 
| 466 | 
            +
                      "p95": 0.033600843811035154,
         | 
| 467 | 
            +
                      "p99": 0.03361294219970703,
         | 
| 468 | 
            +
                      "unit": "seconds"
         | 
| 469 | 
            +
                    },
         | 
| 470 | 
            +
                    "tokens_per_second": {
         | 
| 471 | 
            +
                      "name": "tokens_per_second",
         | 
| 472 | 
            +
                      "measurements": [
         | 
| 473 | 
            +
                        34.029984271101995,
         | 
| 474 | 
            +
                        34.34183405516023,
         | 
| 475 | 
            +
                        33.97705022796809,
         | 
| 476 | 
            +
                        34.20847509959585,
         | 
| 477 | 
            +
                        34.36025417863809
         | 
| 478 | 
            +
                      ],
         | 
| 479 | 
            +
                      "mean": 34.18351956649285,
         | 
| 480 | 
            +
                      "median": 34.20847509959585,
         | 
| 481 | 
            +
                      "std": 0.1569229452732795,
         | 
| 482 | 
            +
                      "min": 33.97705022796809,
         | 
| 483 | 
            +
                      "max": 34.36025417863809,
         | 
| 484 | 
            +
                      "p25": 34.029984271101995,
         | 
| 485 | 
            +
                      "p75": 34.34183405516023,
         | 
| 486 | 
            +
                      "p90": 34.35288612924694,
         | 
| 487 | 
            +
                      "p95": 34.35657015394251,
         | 
| 488 | 
            +
                      "p99": 34.35951737369897,
         | 
| 489 | 
            +
                      "unit": "tokens/sec"
         | 
| 490 | 
            +
                    },
         | 
| 491 | 
            +
                    "time_per_output_token_seconds": {
         | 
| 492 | 
            +
                      "name": "time_per_output_token_seconds",
         | 
| 493 | 
            +
                      "measurements": [
         | 
| 494 | 
            +
                        0.029385849609375,
         | 
| 495 | 
            +
                        0.02911900390625,
         | 
| 496 | 
            +
                        0.029431630859375,
         | 
| 497 | 
            +
                        0.029232521972656248,
         | 
| 498 | 
            +
                        0.0291033935546875
         | 
| 499 | 
            +
                      ],
         | 
| 500 | 
            +
                      "mean": 0.02925447998046875,
         | 
| 501 | 
            +
                      "median": 0.029232521972656248,
         | 
| 502 | 
            +
                      "std": 0.00013439006075182346,
         | 
| 503 | 
            +
                      "min": 0.0291033935546875,
         | 
| 504 | 
            +
                      "max": 0.029431630859375,
         | 
| 505 | 
            +
                      "p25": 0.02911900390625,
         | 
| 506 | 
            +
                      "p75": 0.029385849609375,
         | 
| 507 | 
            +
                      "p90": 0.029413318359375,
         | 
| 508 | 
            +
                      "p95": 0.029422474609375,
         | 
| 509 | 
            +
                      "p99": 0.029429799609374998,
         | 
| 510 | 
            +
                      "unit": "seconds/token"
         | 
| 511 | 
            +
                    }
         | 
| 512 | 
            +
                  },
         | 
| 513 | 
            +
                  "gpu_metrics": {
         | 
| 514 | 
            +
                    "gpu_utilization_mean": 54.77777777777778,
         | 
| 515 | 
            +
                    "gpu_utilization_max": 55,
         | 
| 516 | 
            +
                    "gpu_utilization_min": 54,
         | 
| 517 | 
            +
                    "gpu_memory_used_mean": 15466,
         | 
| 518 | 
            +
                    "gpu_memory_used_max": 15466,
         | 
| 519 | 
            +
                    "gpu_memory_used_min": 15466,
         | 
| 520 | 
            +
                    "sample_count": 9,
         | 
| 521 | 
            +
                    "gpu_monitoring_status": "success"
         | 
| 522 | 
            +
                  }
         | 
| 523 | 
            +
                },
         | 
| 524 | 
            +
                {
         | 
| 525 | 
            +
                  "scenario_name": "eager_sdpa_flash_attention",
         | 
| 526 | 
            +
                  "metadata": {
         | 
| 527 | 
            +
                    "timestamp": "2025-09-16T14:36:28.763857",
         | 
| 528 | 
            +
                    "commit_id": null,
         | 
| 529 | 
            +
                    "hardware_info": {
         | 
| 530 | 
            +
                      "gpu_name": "NVIDIA A100-SXM4-80GB",
         | 
| 531 | 
            +
                      "gpu_memory_total_mb": 81920,
         | 
| 532 | 
            +
                      "cpu_count": 128,
         | 
| 533 | 
            +
                      "memory_total_mb": 515624,
         | 
| 534 | 
            +
                      "python_version": "3.10.12",
         | 
| 535 | 
            +
                      "torch_version": "2.8.0+cu126",
         | 
| 536 | 
            +
                      "cuda_version": "12.6"
         | 
| 537 | 
            +
                    },
         | 
| 538 | 
            +
                    "config": {
         | 
| 539 | 
            +
                      "name": "eager",
         | 
| 540 | 
            +
                      "model_id": "Qwen/Qwen2-7B",
         | 
| 541 | 
            +
                      "variant": "eager",
         | 
| 542 | 
            +
                      "warmup_iterations": 3,
         | 
| 543 | 
            +
                      "measurement_iterations": 5,
         | 
| 544 | 
            +
                      "num_tokens_to_generate": 100,
         | 
| 545 | 
            +
                      "device": "cuda",
         | 
| 546 | 
            +
                      "torch_dtype": "float16",
         | 
| 547 | 
            +
                      "compile_mode": null,
         | 
| 548 | 
            +
                      "compile_options": {},
         | 
| 549 | 
            +
                      "use_cache": true,
         | 
| 550 | 
            +
                      "batch_size": 1,
         | 
| 551 | 
            +
                      "sequence_length": null,
         | 
| 552 | 
            +
                      "attn_implementation": "sdpa",
         | 
| 553 | 
            +
                      "sdpa_backend": "flash_attention",
         | 
| 554 | 
            +
                      "custom_params": {}
         | 
| 555 | 
            +
                    }
         | 
| 556 | 
            +
                  },
         | 
| 557 | 
            +
                  "measurements": {
         | 
| 558 | 
            +
                    "latency_seconds": {
         | 
| 559 | 
            +
                      "name": "latency_seconds",
         | 
| 560 | 
            +
                      "measurements": [
         | 
| 561 | 
            +
                        2.40218310546875,
         | 
| 562 | 
            +
                        2.39602734375,
         | 
| 563 | 
            +
                        2.416225341796875,
         | 
| 564 | 
            +
                        2.421543701171875,
         | 
| 565 | 
            +
                        2.434317138671875
         | 
| 566 | 
            +
                      ],
         | 
| 567 | 
            +
                      "mean": 2.414059326171875,
         | 
| 568 | 
            +
                      "median": 2.416225341796875,
         | 
| 569 | 
            +
                      "std": 0.013691482522836295,
         | 
| 570 | 
            +
                      "min": 2.39602734375,
         | 
| 571 | 
            +
                      "max": 2.434317138671875,
         | 
| 572 | 
            +
                      "p25": 2.40218310546875,
         | 
| 573 | 
            +
                      "p75": 2.421543701171875,
         | 
| 574 | 
            +
                      "p90": 2.429207763671875,
         | 
| 575 | 
            +
                      "p95": 2.431762451171875,
         | 
| 576 | 
            +
                      "p99": 2.433806201171875,
         | 
| 577 | 
            +
                      "unit": "seconds"
         | 
| 578 | 
            +
                    },
         | 
| 579 | 
            +
                    "time_to_first_token_seconds": {
         | 
| 580 | 
            +
                      "name": "time_to_first_token_seconds",
         | 
| 581 | 
            +
                      "measurements": [
         | 
| 582 | 
            +
                        0.02634345626831055,
         | 
| 583 | 
            +
                        0.025819807052612304,
         | 
| 584 | 
            +
                        0.02593836784362793,
         | 
| 585 | 
            +
                        0.025983327865600585,
         | 
| 586 | 
            +
                        0.02601523208618164
         | 
| 587 | 
            +
                      ],
         | 
| 588 | 
            +
                      "mean": 0.026020038223266602,
         | 
| 589 | 
            +
                      "median": 0.025983327865600585,
         | 
| 590 | 
            +
                      "std": 0.0001747756011493655,
         | 
| 591 | 
            +
                      "min": 0.025819807052612304,
         | 
| 592 | 
            +
                      "max": 0.02634345626831055,
         | 
| 593 | 
            +
                      "p25": 0.02593836784362793,
         | 
| 594 | 
            +
                      "p75": 0.02601523208618164,
         | 
| 595 | 
            +
                      "p90": 0.026212166595458986,
         | 
| 596 | 
            +
                      "p95": 0.026277811431884766,
         | 
| 597 | 
            +
                      "p99": 0.026330327301025393,
         | 
| 598 | 
            +
                      "unit": "seconds"
         | 
| 599 | 
            +
                    },
         | 
| 600 | 
            +
                    "tokens_per_second": {
         | 
| 601 | 
            +
                      "name": "tokens_per_second",
         | 
| 602 | 
            +
                      "measurements": [
         | 
| 603 | 
            +
                        41.62879997463245,
         | 
| 604 | 
            +
                        41.73575074627109,
         | 
| 605 | 
            +
                        41.386868298315655,
         | 
| 606 | 
            +
                        41.29597163644261,
         | 
| 607 | 
            +
                        41.07928191088464
         | 
| 608 | 
            +
                      ],
         | 
| 609 | 
            +
                      "mean": 41.42533451330929,
         | 
| 610 | 
            +
                      "median": 41.386868298315655,
         | 
| 611 | 
            +
                      "std": 0.23482897559273794,
         | 
| 612 | 
            +
                      "min": 41.07928191088464,
         | 
| 613 | 
            +
                      "max": 41.73575074627109,
         | 
| 614 | 
            +
                      "p25": 41.29597163644261,
         | 
| 615 | 
            +
                      "p75": 41.62879997463245,
         | 
| 616 | 
            +
                      "p90": 41.692970437615635,
         | 
| 617 | 
            +
                      "p95": 41.71436059194336,
         | 
| 618 | 
            +
                      "p99": 41.731472715405545,
         | 
| 619 | 
            +
                      "unit": "tokens/sec"
         | 
| 620 | 
            +
                    },
         | 
| 621 | 
            +
                    "time_per_output_token_seconds": {
         | 
| 622 | 
            +
                      "name": "time_per_output_token_seconds",
         | 
| 623 | 
            +
                      "measurements": [
         | 
| 624 | 
            +
                        0.0240218310546875,
         | 
| 625 | 
            +
                        0.023960273437500002,
         | 
| 626 | 
            +
                        0.02416225341796875,
         | 
| 627 | 
            +
                        0.02421543701171875,
         | 
| 628 | 
            +
                        0.02434317138671875
         | 
| 629 | 
            +
                      ],
         | 
| 630 | 
            +
                      "mean": 0.02414059326171875,
         | 
| 631 | 
            +
                      "median": 0.02416225341796875,
         | 
| 632 | 
            +
                      "std": 0.0001369148252283633,
         | 
| 633 | 
            +
                      "min": 0.023960273437500002,
         | 
| 634 | 
            +
                      "max": 0.02434317138671875,
         | 
| 635 | 
            +
                      "p25": 0.0240218310546875,
         | 
| 636 | 
            +
                      "p75": 0.02421543701171875,
         | 
| 637 | 
            +
                      "p90": 0.02429207763671875,
         | 
| 638 | 
            +
                      "p95": 0.02431762451171875,
         | 
| 639 | 
            +
                      "p99": 0.02433806201171875,
         | 
| 640 | 
            +
                      "unit": "seconds/token"
         | 
| 641 | 
            +
                    }
         | 
| 642 | 
            +
                  },
         | 
| 643 | 
            +
                  "gpu_metrics": {
         | 
| 644 | 
            +
                    "gpu_utilization_mean": 59.625,
         | 
| 645 | 
            +
                    "gpu_utilization_max": 60,
         | 
| 646 | 
            +
                    "gpu_utilization_min": 59,
         | 
| 647 | 
            +
                    "gpu_memory_used_mean": 15571.5,
         | 
| 648 | 
            +
                    "gpu_memory_used_max": 15888,
         | 
| 649 | 
            +
                    "gpu_memory_used_min": 15466,
         | 
| 650 | 
            +
                    "sample_count": 8,
         | 
| 651 | 
            +
                    "gpu_monitoring_status": "success"
         | 
| 652 | 
            +
                  }
         | 
| 653 | 
            +
                },
         | 
| 654 | 
            +
                {
         | 
| 655 | 
            +
                  "scenario_name": "compiled_compile_max-autotune_sdpa_default",
         | 
| 656 | 
            +
                  "metadata": {
         | 
| 657 | 
            +
                    "timestamp": "2025-09-16T14:37:19.442972",
         | 
| 658 | 
            +
                    "commit_id": null,
         | 
| 659 | 
            +
                    "hardware_info": {
         | 
| 660 | 
            +
                      "gpu_name": "NVIDIA A100-SXM4-80GB",
         | 
| 661 | 
            +
                      "gpu_memory_total_mb": 81920,
         | 
| 662 | 
            +
                      "cpu_count": 128,
         | 
| 663 | 
            +
                      "memory_total_mb": 515624,
         | 
| 664 | 
            +
                      "python_version": "3.10.12",
         | 
| 665 | 
            +
                      "torch_version": "2.8.0+cu126",
         | 
| 666 | 
            +
                      "cuda_version": "12.6"
         | 
| 667 | 
            +
                    },
         | 
| 668 | 
            +
                    "config": {
         | 
| 669 | 
            +
                      "name": "compiled",
         | 
| 670 | 
            +
                      "model_id": "Qwen/Qwen2-7B",
         | 
| 671 | 
            +
                      "variant": "compiled",
         | 
| 672 | 
            +
                      "warmup_iterations": 3,
         | 
| 673 | 
            +
                      "measurement_iterations": 5,
         | 
| 674 | 
            +
                      "num_tokens_to_generate": 100,
         | 
| 675 | 
            +
                      "device": "cuda",
         | 
| 676 | 
            +
                      "torch_dtype": "float16",
         | 
| 677 | 
            +
                      "compile_mode": "max-autotune",
         | 
| 678 | 
            +
                      "compile_options": {},
         | 
| 679 | 
            +
                      "use_cache": true,
         | 
| 680 | 
            +
                      "batch_size": 1,
         | 
| 681 | 
            +
                      "sequence_length": null,
         | 
| 682 | 
            +
                      "attn_implementation": "sdpa",
         | 
| 683 | 
            +
                      "sdpa_backend": null,
         | 
| 684 | 
            +
                      "custom_params": {}
         | 
| 685 | 
            +
                    }
         | 
| 686 | 
            +
                  },
         | 
| 687 | 
            +
                  "measurements": {
         | 
| 688 | 
            +
                    "latency_seconds": {
         | 
| 689 | 
            +
                      "name": "latency_seconds",
         | 
| 690 | 
            +
                      "measurements": [
         | 
| 691 | 
            +
                        3.05654345703125,
         | 
| 692 | 
            +
                        3.02232568359375,
         | 
| 693 | 
            +
                        3.01347021484375,
         | 
| 694 | 
            +
                        3.01363623046875,
         | 
| 695 | 
            +
                        2.980415283203125
         | 
| 696 | 
            +
                      ],
         | 
| 697 | 
            +
                      "mean": 3.0172781738281254,
         | 
| 698 | 
            +
                      "median": 3.01363623046875,
         | 
| 699 | 
            +
                      "std": 0.024305871011531265,
         | 
| 700 | 
            +
                      "min": 2.980415283203125,
         | 
| 701 | 
            +
                      "max": 3.05654345703125,
         | 
| 702 | 
            +
                      "p25": 3.01347021484375,
         | 
| 703 | 
            +
                      "p75": 3.02232568359375,
         | 
| 704 | 
            +
                      "p90": 3.04285634765625,
         | 
| 705 | 
            +
                      "p95": 3.0496999023437503,
         | 
| 706 | 
            +
                      "p99": 3.0551747460937504,
         | 
| 707 | 
            +
                      "unit": "seconds"
         | 
| 708 | 
            +
                    },
         | 
| 709 | 
            +
                    "time_to_first_token_seconds": {
         | 
| 710 | 
            +
                      "name": "time_to_first_token_seconds",
         | 
| 711 | 
            +
                      "measurements": [
         | 
| 712 | 
            +
                        0.033438655853271486,
         | 
| 713 | 
            +
                        0.03183209609985352,
         | 
| 714 | 
            +
                        0.03240959930419922,
         | 
| 715 | 
            +
                        0.03159875106811524,
         | 
| 716 | 
            +
                        0.031626720428466794
         | 
| 717 | 
            +
                      ],
         | 
| 718 | 
            +
                      "mean": 0.03218116455078125,
         | 
| 719 | 
            +
                      "median": 0.03183209609985352,
         | 
| 720 | 
            +
                      "std": 0.0006930987441051968,
         | 
| 721 | 
            +
                      "min": 0.03159875106811524,
         | 
| 722 | 
            +
                      "max": 0.033438655853271486,
         | 
| 723 | 
            +
                      "p25": 0.031626720428466794,
         | 
| 724 | 
            +
                      "p75": 0.03240959930419922,
         | 
| 725 | 
            +
                      "p90": 0.03302703323364258,
         | 
| 726 | 
            +
                      "p95": 0.033232844543457034,
         | 
| 727 | 
            +
                      "p99": 0.03339749359130859,
         | 
| 728 | 
            +
                      "unit": "seconds"
         | 
| 729 | 
            +
                    },
         | 
| 730 | 
            +
                    "tokens_per_second": {
         | 
| 731 | 
            +
                      "name": "tokens_per_second",
         | 
| 732 | 
            +
                      "measurements": [
         | 
| 733 | 
            +
                        32.71669498758826,
         | 
| 734 | 
            +
                        33.0871026053993,
         | 
| 735 | 
            +
                        33.18433330033263,
         | 
| 736 | 
            +
                        33.18250523701917,
         | 
| 737 | 
            +
                        33.55237122946422
         | 
| 738 | 
            +
                      ],
         | 
| 739 | 
            +
                      "mean": 33.14460147196072,
         | 
| 740 | 
            +
                      "median": 33.18250523701917,
         | 
| 741 | 
            +
                      "std": 0.2667214156192523,
         | 
| 742 | 
            +
                      "min": 32.71669498758826,
         | 
| 743 | 
            +
                      "max": 33.55237122946422,
         | 
| 744 | 
            +
                      "p25": 33.0871026053993,
         | 
| 745 | 
            +
                      "p75": 33.18433330033263,
         | 
| 746 | 
            +
                      "p90": 33.40515605781159,
         | 
| 747 | 
            +
                      "p95": 33.478763643637905,
         | 
| 748 | 
            +
                      "p99": 33.53764971229896,
         | 
| 749 | 
            +
                      "unit": "tokens/sec"
         | 
| 750 | 
            +
                    },
         | 
| 751 | 
            +
                    "time_per_output_token_seconds": {
         | 
| 752 | 
            +
                      "name": "time_per_output_token_seconds",
         | 
| 753 | 
            +
                      "measurements": [
         | 
| 754 | 
            +
                        0.0305654345703125,
         | 
| 755 | 
            +
                        0.0302232568359375,
         | 
| 756 | 
            +
                        0.0301347021484375,
         | 
| 757 | 
            +
                        0.030136362304687497,
         | 
| 758 | 
            +
                        0.029804152832031253
         | 
| 759 | 
            +
                      ],
         | 
| 760 | 
            +
                      "mean": 0.03017278173828125,
         | 
| 761 | 
            +
                      "median": 0.030136362304687497,
         | 
| 762 | 
            +
                      "std": 0.0002430587101153121,
         | 
| 763 | 
            +
                      "min": 0.029804152832031253,
         | 
| 764 | 
            +
                      "max": 0.0305654345703125,
         | 
| 765 | 
            +
                      "p25": 0.0301347021484375,
         | 
| 766 | 
            +
                      "p75": 0.0302232568359375,
         | 
| 767 | 
            +
                      "p90": 0.0304285634765625,
         | 
| 768 | 
            +
                      "p95": 0.030496999023437502,
         | 
| 769 | 
            +
                      "p99": 0.0305517474609375,
         | 
| 770 | 
            +
                      "unit": "seconds/token"
         | 
| 771 | 
            +
                    }
         | 
| 772 | 
            +
                  },
         | 
| 773 | 
            +
                  "gpu_metrics": {
         | 
| 774 | 
            +
                    "gpu_utilization_mean": 50.22222222222222,
         | 
| 775 | 
            +
                    "gpu_utilization_max": 51,
         | 
| 776 | 
            +
                    "gpu_utilization_min": 49,
         | 
| 777 | 
            +
                    "gpu_memory_used_mean": 15608.666666666666,
         | 
| 778 | 
            +
                    "gpu_memory_used_max": 15888,
         | 
| 779 | 
            +
                    "gpu_memory_used_min": 15466,
         | 
| 780 | 
            +
                    "sample_count": 9,
         | 
| 781 | 
            +
                    "gpu_monitoring_status": "success"
         | 
| 782 | 
            +
                  }
         | 
| 783 | 
            +
                },
         | 
| 784 | 
            +
                {
         | 
| 785 | 
            +
                  "scenario_name": "compiled_compile_max-autotune_sdpa_math",
         | 
| 786 | 
            +
                  "metadata": {
         | 
| 787 | 
            +
                    "timestamp": "2025-09-16T14:38:01.815515",
         | 
| 788 | 
            +
                    "commit_id": null,
         | 
| 789 | 
            +
                    "hardware_info": {
         | 
| 790 | 
            +
                      "gpu_name": "NVIDIA A100-SXM4-80GB",
         | 
| 791 | 
            +
                      "gpu_memory_total_mb": 81920,
         | 
| 792 | 
            +
                      "cpu_count": 128,
         | 
| 793 | 
            +
                      "memory_total_mb": 515624,
         | 
| 794 | 
            +
                      "python_version": "3.10.12",
         | 
| 795 | 
            +
                      "torch_version": "2.8.0+cu126",
         | 
| 796 | 
            +
                      "cuda_version": "12.6"
         | 
| 797 | 
            +
                    },
         | 
| 798 | 
            +
                    "config": {
         | 
| 799 | 
            +
                      "name": "compiled",
         | 
| 800 | 
            +
                      "model_id": "Qwen/Qwen2-7B",
         | 
| 801 | 
            +
                      "variant": "compiled",
         | 
| 802 | 
            +
                      "warmup_iterations": 3,
         | 
| 803 | 
            +
                      "measurement_iterations": 5,
         | 
| 804 | 
            +
                      "num_tokens_to_generate": 100,
         | 
| 805 | 
            +
                      "device": "cuda",
         | 
| 806 | 
            +
                      "torch_dtype": "float16",
         | 
| 807 | 
            +
                      "compile_mode": "max-autotune",
         | 
| 808 | 
            +
                      "compile_options": {},
         | 
| 809 | 
            +
                      "use_cache": true,
         | 
| 810 | 
            +
                      "batch_size": 1,
         | 
| 811 | 
            +
                      "sequence_length": null,
         | 
| 812 | 
            +
                      "attn_implementation": "sdpa",
         | 
| 813 | 
            +
                      "sdpa_backend": "math",
         | 
| 814 | 
            +
                      "custom_params": {}
         | 
| 815 | 
            +
                    }
         | 
| 816 | 
            +
                  },
         | 
| 817 | 
            +
                  "measurements": {
         | 
| 818 | 
            +
                    "latency_seconds": {
         | 
| 819 | 
            +
                      "name": "latency_seconds",
         | 
| 820 | 
            +
                      "measurements": [
         | 
| 821 | 
            +
                        3.39007763671875,
         | 
| 822 | 
            +
                        3.416772216796875,
         | 
| 823 | 
            +
                        3.38962255859375,
         | 
| 824 | 
            +
                        3.387712890625,
         | 
| 825 | 
            +
                        3.40566162109375
         | 
| 826 | 
            +
                      ],
         | 
| 827 | 
            +
                      "mean": 3.397969384765625,
         | 
| 828 | 
            +
                      "median": 3.39007763671875,
         | 
| 829 | 
            +
                      "std": 0.011400542606022364,
         | 
| 830 | 
            +
                      "min": 3.387712890625,
         | 
| 831 | 
            +
                      "max": 3.416772216796875,
         | 
| 832 | 
            +
                      "p25": 3.38962255859375,
         | 
| 833 | 
            +
                      "p75": 3.40566162109375,
         | 
| 834 | 
            +
                      "p90": 3.412327978515625,
         | 
| 835 | 
            +
                      "p95": 3.41455009765625,
         | 
| 836 | 
            +
                      "p99": 3.41632779296875,
         | 
| 837 | 
            +
                      "unit": "seconds"
         | 
| 838 | 
            +
                    },
         | 
| 839 | 
            +
                    "time_to_first_token_seconds": {
         | 
| 840 | 
            +
                      "name": "time_to_first_token_seconds",
         | 
| 841 | 
            +
                      "measurements": [
         | 
| 842 | 
            +
                        0.03628326416015625,
         | 
| 843 | 
            +
                        0.036549503326416016,
         | 
| 844 | 
            +
                        0.03622611236572266,
         | 
| 845 | 
            +
                        0.035679134368896484,
         | 
| 846 | 
            +
                        0.03579260635375976
         | 
| 847 | 
            +
                      ],
         | 
| 848 | 
            +
                      "mean": 0.036106124114990236,
         | 
| 849 | 
            +
                      "median": 0.03622611236572266,
         | 
| 850 | 
            +
                      "std": 0.0003234113575358685,
         | 
| 851 | 
            +
                      "min": 0.035679134368896484,
         | 
| 852 | 
            +
                      "max": 0.036549503326416016,
         | 
| 853 | 
            +
                      "p25": 0.03579260635375976,
         | 
| 854 | 
            +
                      "p75": 0.03628326416015625,
         | 
| 855 | 
            +
                      "p90": 0.03644300765991211,
         | 
| 856 | 
            +
                      "p95": 0.03649625549316406,
         | 
| 857 | 
            +
                      "p99": 0.03653885375976563,
         | 
| 858 | 
            +
                      "unit": "seconds"
         | 
| 859 | 
            +
                    },
         | 
| 860 | 
            +
                    "tokens_per_second": {
         | 
| 861 | 
            +
                      "name": "tokens_per_second",
         | 
| 862 | 
            +
                      "measurements": [
         | 
| 863 | 
            +
                        29.497849523230926,
         | 
| 864 | 
            +
                        29.26738853365739,
         | 
| 865 | 
            +
                        29.501809794860144,
         | 
| 866 | 
            +
                        29.518440088808994,
         | 
| 867 | 
            +
                        29.3628701632091
         | 
| 868 | 
            +
                      ],
         | 
| 869 | 
            +
                      "mean": 29.42967162075331,
         | 
| 870 | 
            +
                      "median": 29.497849523230926,
         | 
| 871 | 
            +
                      "std": 0.09851925553726182,
         | 
| 872 | 
            +
                      "min": 29.26738853365739,
         | 
| 873 | 
            +
                      "max": 29.518440088808994,
         | 
| 874 | 
            +
                      "p25": 29.3628701632091,
         | 
| 875 | 
            +
                      "p75": 29.501809794860144,
         | 
| 876 | 
            +
                      "p90": 29.511787971229452,
         | 
| 877 | 
            +
                      "p95": 29.515114030019223,
         | 
| 878 | 
            +
                      "p99": 29.51777487705104,
         | 
| 879 | 
            +
                      "unit": "tokens/sec"
         | 
| 880 | 
            +
                    },
         | 
| 881 | 
            +
                    "time_per_output_token_seconds": {
         | 
| 882 | 
            +
                      "name": "time_per_output_token_seconds",
         | 
| 883 | 
            +
                      "measurements": [
         | 
| 884 | 
            +
                        0.033900776367187496,
         | 
| 885 | 
            +
                        0.03416772216796875,
         | 
| 886 | 
            +
                        0.0338962255859375,
         | 
| 887 | 
            +
                        0.03387712890625,
         | 
| 888 | 
            +
                        0.0340566162109375
         | 
| 889 | 
            +
                      ],
         | 
| 890 | 
            +
                      "mean": 0.03397969384765625,
         | 
| 891 | 
            +
                      "median": 0.033900776367187496,
         | 
| 892 | 
            +
                      "std": 0.00011400542606022352,
         | 
| 893 | 
            +
                      "min": 0.03387712890625,
         | 
| 894 | 
            +
                      "max": 0.03416772216796875,
         | 
| 895 | 
            +
                      "p25": 0.0338962255859375,
         | 
| 896 | 
            +
                      "p75": 0.0340566162109375,
         | 
| 897 | 
            +
                      "p90": 0.03412327978515625,
         | 
| 898 | 
            +
                      "p95": 0.0341455009765625,
         | 
| 899 | 
            +
                      "p99": 0.0341632779296875,
         | 
| 900 | 
            +
                      "unit": "seconds/token"
         | 
| 901 | 
            +
                    }
         | 
| 902 | 
            +
                  },
         | 
| 903 | 
            +
                  "gpu_metrics": {
         | 
| 904 | 
            +
                    "gpu_utilization_mean": 49.36363636363637,
         | 
| 905 | 
            +
                    "gpu_utilization_max": 50,
         | 
| 906 | 
            +
                    "gpu_utilization_min": 49,
         | 
| 907 | 
            +
                    "gpu_memory_used_mean": 15473.454545454546,
         | 
| 908 | 
            +
                    "gpu_memory_used_max": 15548,
         | 
| 909 | 
            +
                    "gpu_memory_used_min": 15466,
         | 
| 910 | 
            +
                    "sample_count": 11,
         | 
| 911 | 
            +
                    "gpu_monitoring_status": "success"
         | 
| 912 | 
            +
                  }
         | 
| 913 | 
            +
                },
         | 
| 914 | 
            +
                {
         | 
| 915 | 
            +
                  "scenario_name": "compiled_compile_max-autotune_sdpa_efficient_attention",
         | 
| 916 | 
            +
                  "metadata": {
         | 
| 917 | 
            +
                    "timestamp": "2025-09-16T14:38:59.784157",
         | 
| 918 | 
            +
                    "commit_id": null,
         | 
| 919 | 
            +
                    "hardware_info": {
         | 
| 920 | 
            +
                      "gpu_name": "NVIDIA A100-SXM4-80GB",
         | 
| 921 | 
            +
                      "gpu_memory_total_mb": 81920,
         | 
| 922 | 
            +
                      "cpu_count": 128,
         | 
| 923 | 
            +
                      "memory_total_mb": 515624,
         | 
| 924 | 
            +
                      "python_version": "3.10.12",
         | 
| 925 | 
            +
                      "torch_version": "2.8.0+cu126",
         | 
| 926 | 
            +
                      "cuda_version": "12.6"
         | 
| 927 | 
            +
                    },
         | 
| 928 | 
            +
                    "config": {
         | 
| 929 | 
            +
                      "name": "compiled",
         | 
| 930 | 
            +
                      "model_id": "Qwen/Qwen2-7B",
         | 
| 931 | 
            +
                      "variant": "compiled",
         | 
| 932 | 
            +
                      "warmup_iterations": 3,
         | 
| 933 | 
            +
                      "measurement_iterations": 5,
         | 
| 934 | 
            +
                      "num_tokens_to_generate": 100,
         | 
| 935 | 
            +
                      "device": "cuda",
         | 
| 936 | 
            +
                      "torch_dtype": "float16",
         | 
| 937 | 
            +
                      "compile_mode": "max-autotune",
         | 
| 938 | 
            +
                      "compile_options": {},
         | 
| 939 | 
            +
                      "use_cache": true,
         | 
| 940 | 
            +
                      "batch_size": 1,
         | 
| 941 | 
            +
                      "sequence_length": null,
         | 
| 942 | 
            +
                      "attn_implementation": "sdpa",
         | 
| 943 | 
            +
                      "sdpa_backend": "efficient_attention",
         | 
| 944 | 
            +
                      "custom_params": {}
         | 
| 945 | 
            +
                    }
         | 
| 946 | 
            +
                  },
         | 
| 947 | 
            +
                  "measurements": {
         | 
| 948 | 
            +
                    "latency_seconds": {
         | 
| 949 | 
            +
                      "name": "latency_seconds",
         | 
| 950 | 
            +
                      "measurements": [
         | 
| 951 | 
            +
                        3.035596923828125,
         | 
| 952 | 
            +
                        3.00609326171875,
         | 
| 953 | 
            +
                        3.00232421875,
         | 
| 954 | 
            +
                        3.015933837890625,
         | 
| 955 | 
            +
                        2.995167724609375
         | 
| 956 | 
            +
                      ],
         | 
| 957 | 
            +
                      "mean": 3.011023193359375,
         | 
| 958 | 
            +
                      "median": 3.00609326171875,
         | 
| 959 | 
            +
                      "std": 0.013995391622824113,
         | 
| 960 | 
            +
                      "min": 2.995167724609375,
         | 
| 961 | 
            +
                      "max": 3.035596923828125,
         | 
| 962 | 
            +
                      "p25": 3.00232421875,
         | 
| 963 | 
            +
                      "p75": 3.015933837890625,
         | 
| 964 | 
            +
                      "p90": 3.027731689453125,
         | 
| 965 | 
            +
                      "p95": 3.031664306640625,
         | 
| 966 | 
            +
                      "p99": 3.034810400390625,
         | 
| 967 | 
            +
                      "unit": "seconds"
         | 
| 968 | 
            +
                    },
         | 
| 969 | 
            +
                    "time_to_first_token_seconds": {
         | 
| 970 | 
            +
                      "name": "time_to_first_token_seconds",
         | 
| 971 | 
            +
                      "measurements": [
         | 
| 972 | 
            +
                        0.03213036727905273,
         | 
| 973 | 
            +
                        0.032091232299804685,
         | 
| 974 | 
            +
                        0.031181343078613283,
         | 
| 975 | 
            +
                        0.03160671997070313,
         | 
| 976 | 
            +
                        0.0317238712310791
         | 
| 977 | 
            +
                      ],
         | 
| 978 | 
            +
                      "mean": 0.03174670677185058,
         | 
| 979 | 
            +
                      "median": 0.0317238712310791,
         | 
| 980 | 
            +
                      "std": 0.00034803651999392436,
         | 
| 981 | 
            +
                      "min": 0.031181343078613283,
         | 
| 982 | 
            +
                      "max": 0.03213036727905273,
         | 
| 983 | 
            +
                      "p25": 0.03160671997070313,
         | 
| 984 | 
            +
                      "p75": 0.032091232299804685,
         | 
| 985 | 
            +
                      "p90": 0.03211471328735351,
         | 
| 986 | 
            +
                      "p95": 0.032122540283203126,
         | 
| 987 | 
            +
                      "p99": 0.03212880187988281,
         | 
| 988 | 
            +
                      "unit": "seconds"
         | 
| 989 | 
            +
                    },
         | 
| 990 | 
            +
                    "tokens_per_second": {
         | 
| 991 | 
            +
                      "name": "tokens_per_second",
         | 
| 992 | 
            +
                      "measurements": [
         | 
| 993 | 
            +
                        32.94245003842347,
         | 
| 994 | 
            +
                        33.26576765712999,
         | 
| 995 | 
            +
                        33.30752867244777,
         | 
| 996 | 
            +
                        33.1572260450982,
         | 
| 997 | 
            +
                        33.38711190640979
         | 
| 998 | 
            +
                      ],
         | 
| 999 | 
            +
                      "mean": 33.212016863901844,
         | 
| 1000 | 
            +
                      "median": 33.26576765712999,
         | 
| 1001 | 
            +
                      "std": 0.15384292930056287,
         | 
| 1002 | 
            +
                      "min": 32.94245003842347,
         | 
| 1003 | 
            +
                      "max": 33.38711190640979,
         | 
| 1004 | 
            +
                      "p25": 33.1572260450982,
         | 
| 1005 | 
            +
                      "p75": 33.30752867244777,
         | 
| 1006 | 
            +
                      "p90": 33.35527861282498,
         | 
| 1007 | 
            +
                      "p95": 33.37119525961739,
         | 
| 1008 | 
            +
                      "p99": 33.383928577051314,
         | 
| 1009 | 
            +
                      "unit": "tokens/sec"
         | 
| 1010 | 
            +
                    },
         | 
| 1011 | 
            +
                    "time_per_output_token_seconds": {
         | 
| 1012 | 
            +
                      "name": "time_per_output_token_seconds",
         | 
| 1013 | 
            +
                      "measurements": [
         | 
| 1014 | 
            +
                        0.030355969238281252,
         | 
| 1015 | 
            +
                        0.0300609326171875,
         | 
| 1016 | 
            +
                        0.0300232421875,
         | 
| 1017 | 
            +
                        0.030159338378906247,
         | 
| 1018 | 
            +
                        0.029951677246093752
         | 
| 1019 | 
            +
                      ],
         | 
| 1020 | 
            +
                      "mean": 0.030110231933593752,
         | 
| 1021 | 
            +
                      "median": 0.0300609326171875,
         | 
| 1022 | 
            +
                      "std": 0.0001399539162282414,
         | 
| 1023 | 
            +
                      "min": 0.029951677246093752,
         | 
| 1024 | 
            +
                      "max": 0.030355969238281252,
         | 
| 1025 | 
            +
                      "p25": 0.0300232421875,
         | 
| 1026 | 
            +
                      "p75": 0.030159338378906247,
         | 
| 1027 | 
            +
                      "p90": 0.03027731689453125,
         | 
| 1028 | 
            +
                      "p95": 0.030316643066406253,
         | 
| 1029 | 
            +
                      "p99": 0.03034810400390625,
         | 
| 1030 | 
            +
                      "unit": "seconds/token"
         | 
| 1031 | 
            +
                    }
         | 
| 1032 | 
            +
                  },
         | 
| 1033 | 
            +
                  "gpu_metrics": {
         | 
| 1034 | 
            +
                    "gpu_utilization_mean": 50.4,
         | 
| 1035 | 
            +
                    "gpu_utilization_max": 51,
         | 
| 1036 | 
            +
                    "gpu_utilization_min": 50,
         | 
| 1037 | 
            +
                    "gpu_memory_used_mean": 15466,
         | 
| 1038 | 
            +
                    "gpu_memory_used_max": 15466,
         | 
| 1039 | 
            +
                    "gpu_memory_used_min": 15466,
         | 
| 1040 | 
            +
                    "sample_count": 10,
         | 
| 1041 | 
            +
                    "gpu_monitoring_status": "success"
         | 
| 1042 | 
            +
                  }
         | 
| 1043 | 
            +
                }
         | 
| 1044 | 
            +
              ]
         | 
| 1045 | 
            +
            }
         | 
    	
        benchmark_results/benchmark_summary_20250916_144139.json
    ADDED
    
    | @@ -0,0 +1,17 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "run_metadata": {
         | 
| 3 | 
            +
                "timestamp": "2025-09-16T14:41:39.732037",
         | 
| 4 | 
            +
                "total_benchmarks": 6,
         | 
| 5 | 
            +
                "successful_benchmarks": 5,
         | 
| 6 | 
            +
                "failed_benchmarks": 1
         | 
| 7 | 
            +
              },
         | 
| 8 | 
            +
              "benchmark_results": {
         | 
| 9 | 
            +
                "gpt2": "benchmark_results/gpt2/gpt2_benchmark_20250916_143134.json",
         | 
| 10 | 
            +
                "qwen2": "benchmark_results/Qwen2-7B/Qwen2-7B_benchmark_20250916_143929.json",
         | 
| 11 | 
            +
                "llama": "completed",
         | 
| 12 | 
            +
                "bert": "benchmark_results/bert-base-uncased/bert-base-uncased_benchmark_20250916_144120.json",
         | 
| 13 | 
            +
                "mistral3": "completed",
         | 
| 14 | 
            +
                "gemma3": null
         | 
| 15 | 
            +
              },
         | 
| 16 | 
            +
              "output_directory": "benchmark_results"
         | 
| 17 | 
            +
            }
         | 
    	
        benchmark_results/benchmark_summary_20250916_144602.json
    ADDED
    
    | @@ -0,0 +1,12 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "run_metadata": {
         | 
| 3 | 
            +
                "timestamp": "2025-09-16T14:46:02.029823",
         | 
| 4 | 
            +
                "total_benchmarks": 1,
         | 
| 5 | 
            +
                "successful_benchmarks": 1,
         | 
| 6 | 
            +
                "failed_benchmarks": 0
         | 
| 7 | 
            +
              },
         | 
| 8 | 
            +
              "benchmark_results": {
         | 
| 9 | 
            +
                "gemma3": "completed"
         | 
| 10 | 
            +
              },
         | 
| 11 | 
            +
              "output_directory": "benchmark_results"
         | 
| 12 | 
            +
            }
         | 
    	
        benchmark_results/bert-base-uncased/bert-base-uncased_benchmark_20250916_144120.json
    ADDED
    
    | @@ -0,0 +1,655 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "model_name": "bert-base-uncased",
         | 
| 3 | 
            +
              "benchmark_scenarios": [
         | 
| 4 | 
            +
                {
         | 
| 5 | 
            +
                  "scenario_name": "eager_eager_attn",
         | 
| 6 | 
            +
                  "metadata": {
         | 
| 7 | 
            +
                    "timestamp": "2025-09-16T14:39:55.683061",
         | 
| 8 | 
            +
                    "commit_id": null,
         | 
| 9 | 
            +
                    "hardware_info": {
         | 
| 10 | 
            +
                      "gpu_name": "NVIDIA A100-SXM4-80GB",
         | 
| 11 | 
            +
                      "gpu_memory_total_mb": 81920,
         | 
| 12 | 
            +
                      "cpu_count": 128,
         | 
| 13 | 
            +
                      "memory_total_mb": 515624,
         | 
| 14 | 
            +
                      "python_version": "3.10.12",
         | 
| 15 | 
            +
                      "torch_version": "2.8.0+cu126",
         | 
| 16 | 
            +
                      "cuda_version": "12.6"
         | 
| 17 | 
            +
                    },
         | 
| 18 | 
            +
                    "config": {
         | 
| 19 | 
            +
                      "name": "eager",
         | 
| 20 | 
            +
                      "model_id": "bert-base-uncased",
         | 
| 21 | 
            +
                      "variant": "eager",
         | 
| 22 | 
            +
                      "warmup_iterations": 3,
         | 
| 23 | 
            +
                      "measurement_iterations": 5,
         | 
| 24 | 
            +
                      "num_tokens_to_generate": 100,
         | 
| 25 | 
            +
                      "device": "cuda",
         | 
| 26 | 
            +
                      "torch_dtype": "float16",
         | 
| 27 | 
            +
                      "compile_mode": null,
         | 
| 28 | 
            +
                      "compile_options": {},
         | 
| 29 | 
            +
                      "use_cache": true,
         | 
| 30 | 
            +
                      "batch_size": 1,
         | 
| 31 | 
            +
                      "sequence_length": null,
         | 
| 32 | 
            +
                      "attn_implementation": "eager",
         | 
| 33 | 
            +
                      "sdpa_backend": null,
         | 
| 34 | 
            +
                      "custom_params": {}
         | 
| 35 | 
            +
                    }
         | 
| 36 | 
            +
                  },
         | 
| 37 | 
            +
                  "measurements": {
         | 
| 38 | 
            +
                    "latency_seconds": {
         | 
| 39 | 
            +
                      "name": "latency_seconds",
         | 
| 40 | 
            +
                      "measurements": [
         | 
| 41 | 
            +
                        0.7486727905273437,
         | 
| 42 | 
            +
                        0.7513528442382813,
         | 
| 43 | 
            +
                        0.7562908935546875,
         | 
| 44 | 
            +
                        0.7610662841796875,
         | 
| 45 | 
            +
                        0.7663279418945312
         | 
| 46 | 
            +
                      ],
         | 
| 47 | 
            +
                      "mean": 0.7567421508789062,
         | 
| 48 | 
            +
                      "median": 0.7562908935546875,
         | 
| 49 | 
            +
                      "std": 0.006402317610379491,
         | 
| 50 | 
            +
                      "min": 0.7486727905273437,
         | 
| 51 | 
            +
                      "max": 0.7663279418945312,
         | 
| 52 | 
            +
                      "p25": 0.7513528442382813,
         | 
| 53 | 
            +
                      "p75": 0.7610662841796875,
         | 
| 54 | 
            +
                      "p90": 0.7642232788085938,
         | 
| 55 | 
            +
                      "p95": 0.7652756103515624,
         | 
| 56 | 
            +
                      "p99": 0.7661174755859375,
         | 
| 57 | 
            +
                      "unit": "seconds"
         | 
| 58 | 
            +
                    },
         | 
| 59 | 
            +
                    "time_to_first_token_seconds": {
         | 
| 60 | 
            +
                      "name": "time_to_first_token_seconds",
         | 
| 61 | 
            +
                      "measurements": [
         | 
| 62 | 
            +
                        0.00977513599395752,
         | 
| 63 | 
            +
                        0.009344575881958007,
         | 
| 64 | 
            +
                        0.009353856086730956,
         | 
| 65 | 
            +
                        0.009663392066955566,
         | 
| 66 | 
            +
                        0.009657343864440919
         | 
| 67 | 
            +
                      ],
         | 
| 68 | 
            +
                      "mean": 0.009558860778808593,
         | 
| 69 | 
            +
                      "median": 0.009657343864440919,
         | 
| 70 | 
            +
                      "std": 0.00017626435705335133,
         | 
| 71 | 
            +
                      "min": 0.009344575881958007,
         | 
| 72 | 
            +
                      "max": 0.00977513599395752,
         | 
| 73 | 
            +
                      "p25": 0.009353856086730956,
         | 
| 74 | 
            +
                      "p75": 0.009663392066955566,
         | 
| 75 | 
            +
                      "p90": 0.009730438423156738,
         | 
| 76 | 
            +
                      "p95": 0.009752787208557129,
         | 
| 77 | 
            +
                      "p99": 0.009770666236877442,
         | 
| 78 | 
            +
                      "unit": "seconds"
         | 
| 79 | 
            +
                    },
         | 
| 80 | 
            +
                    "tokens_per_second": {
         | 
| 81 | 
            +
                      "name": "tokens_per_second",
         | 
| 82 | 
            +
                      "measurements": [
         | 
| 83 | 
            +
                        133.56969996139816,
         | 
| 84 | 
            +
                        133.09326073208604,
         | 
| 85 | 
            +
                        132.22425504819196,
         | 
| 86 | 
            +
                        131.39460002197396,
         | 
| 87 | 
            +
                        130.49243611394098
         | 
| 88 | 
            +
                      ],
         | 
| 89 | 
            +
                      "mean": 132.1548503755182,
         | 
| 90 | 
            +
                      "median": 132.22425504819196,
         | 
| 91 | 
            +
                      "std": 1.1161390714177948,
         | 
| 92 | 
            +
                      "min": 130.49243611394098,
         | 
| 93 | 
            +
                      "max": 133.56969996139816,
         | 
| 94 | 
            +
                      "p25": 131.39460002197396,
         | 
| 95 | 
            +
                      "p75": 133.09326073208604,
         | 
| 96 | 
            +
                      "p90": 133.3791242696733,
         | 
| 97 | 
            +
                      "p95": 133.47441211553573,
         | 
| 98 | 
            +
                      "p99": 133.55064239222568,
         | 
| 99 | 
            +
                      "unit": "tokens/sec"
         | 
| 100 | 
            +
                    },
         | 
| 101 | 
            +
                    "time_per_output_token_seconds": {
         | 
| 102 | 
            +
                      "name": "time_per_output_token_seconds",
         | 
| 103 | 
            +
                      "measurements": [
         | 
| 104 | 
            +
                        0.007486727905273437,
         | 
| 105 | 
            +
                        0.007513528442382813,
         | 
| 106 | 
            +
                        0.0075629089355468745,
         | 
| 107 | 
            +
                        0.007610662841796875,
         | 
| 108 | 
            +
                        0.007663279418945313
         | 
| 109 | 
            +
                      ],
         | 
| 110 | 
            +
                      "mean": 0.0075674215087890625,
         | 
| 111 | 
            +
                      "median": 0.0075629089355468745,
         | 
| 112 | 
            +
                      "std": 6.402317610379502e-05,
         | 
| 113 | 
            +
                      "min": 0.007486727905273437,
         | 
| 114 | 
            +
                      "max": 0.007663279418945313,
         | 
| 115 | 
            +
                      "p25": 0.007513528442382813,
         | 
| 116 | 
            +
                      "p75": 0.007610662841796875,
         | 
| 117 | 
            +
                      "p90": 0.007642232788085937,
         | 
| 118 | 
            +
                      "p95": 0.007652756103515625,
         | 
| 119 | 
            +
                      "p99": 0.007661174755859375,
         | 
| 120 | 
            +
                      "unit": "seconds/token"
         | 
| 121 | 
            +
                    }
         | 
| 122 | 
            +
                  },
         | 
| 123 | 
            +
                  "gpu_metrics": {
         | 
| 124 | 
            +
                    "gpu_utilization_mean": 17,
         | 
| 125 | 
            +
                    "gpu_utilization_max": 17,
         | 
| 126 | 
            +
                    "gpu_utilization_min": 17,
         | 
| 127 | 
            +
                    "gpu_memory_used_mean": 994,
         | 
| 128 | 
            +
                    "gpu_memory_used_max": 994,
         | 
| 129 | 
            +
                    "gpu_memory_used_min": 994,
         | 
| 130 | 
            +
                    "sample_count": 3,
         | 
| 131 | 
            +
                    "gpu_monitoring_status": "success"
         | 
| 132 | 
            +
                  }
         | 
| 133 | 
            +
                },
         | 
| 134 | 
            +
                {
         | 
| 135 | 
            +
                  "scenario_name": "eager_sdpa_default",
         | 
| 136 | 
            +
                  "metadata": {
         | 
| 137 | 
            +
                    "timestamp": "2025-09-16T14:40:13.059054",
         | 
| 138 | 
            +
                    "commit_id": null,
         | 
| 139 | 
            +
                    "hardware_info": {
         | 
| 140 | 
            +
                      "gpu_name": "NVIDIA A100-SXM4-80GB",
         | 
| 141 | 
            +
                      "gpu_memory_total_mb": 81920,
         | 
| 142 | 
            +
                      "cpu_count": 128,
         | 
| 143 | 
            +
                      "memory_total_mb": 515624,
         | 
| 144 | 
            +
                      "python_version": "3.10.12",
         | 
| 145 | 
            +
                      "torch_version": "2.8.0+cu126",
         | 
| 146 | 
            +
                      "cuda_version": "12.6"
         | 
| 147 | 
            +
                    },
         | 
| 148 | 
            +
                    "config": {
         | 
| 149 | 
            +
                      "name": "eager",
         | 
| 150 | 
            +
                      "model_id": "bert-base-uncased",
         | 
| 151 | 
            +
                      "variant": "eager",
         | 
| 152 | 
            +
                      "warmup_iterations": 3,
         | 
| 153 | 
            +
                      "measurement_iterations": 5,
         | 
| 154 | 
            +
                      "num_tokens_to_generate": 100,
         | 
| 155 | 
            +
                      "device": "cuda",
         | 
| 156 | 
            +
                      "torch_dtype": "float16",
         | 
| 157 | 
            +
                      "compile_mode": null,
         | 
| 158 | 
            +
                      "compile_options": {},
         | 
| 159 | 
            +
                      "use_cache": true,
         | 
| 160 | 
            +
                      "batch_size": 1,
         | 
| 161 | 
            +
                      "sequence_length": null,
         | 
| 162 | 
            +
                      "attn_implementation": "sdpa",
         | 
| 163 | 
            +
                      "sdpa_backend": null,
         | 
| 164 | 
            +
                      "custom_params": {}
         | 
| 165 | 
            +
                    }
         | 
| 166 | 
            +
                  },
         | 
| 167 | 
            +
                  "measurements": {
         | 
| 168 | 
            +
                    "latency_seconds": {
         | 
| 169 | 
            +
                      "name": "latency_seconds",
         | 
| 170 | 
            +
                      "measurements": [
         | 
| 171 | 
            +
                        0.6406459350585938,
         | 
| 172 | 
            +
                        0.643911376953125,
         | 
| 173 | 
            +
                        0.6423768920898437,
         | 
| 174 | 
            +
                        0.6458036499023437,
         | 
| 175 | 
            +
                        0.6438418579101562
         | 
| 176 | 
            +
                      ],
         | 
| 177 | 
            +
                      "mean": 0.6433159423828125,
         | 
| 178 | 
            +
                      "median": 0.6438418579101562,
         | 
| 179 | 
            +
                      "std": 0.001722241140854726,
         | 
| 180 | 
            +
                      "min": 0.6406459350585938,
         | 
| 181 | 
            +
                      "max": 0.6458036499023437,
         | 
| 182 | 
            +
                      "p25": 0.6423768920898437,
         | 
| 183 | 
            +
                      "p75": 0.643911376953125,
         | 
| 184 | 
            +
                      "p90": 0.6450467407226562,
         | 
| 185 | 
            +
                      "p95": 0.6454251953125,
         | 
| 186 | 
            +
                      "p99": 0.645727958984375,
         | 
| 187 | 
            +
                      "unit": "seconds"
         | 
| 188 | 
            +
                    },
         | 
| 189 | 
            +
                    "time_to_first_token_seconds": {
         | 
| 190 | 
            +
                      "name": "time_to_first_token_seconds",
         | 
| 191 | 
            +
                      "measurements": [
         | 
| 192 | 
            +
                        0.008202624320983887,
         | 
| 193 | 
            +
                        0.007760159969329834,
         | 
| 194 | 
            +
                        0.007827231884002686,
         | 
| 195 | 
            +
                        0.007747360229492187,
         | 
| 196 | 
            +
                        0.0077948799133300785
         | 
| 197 | 
            +
                      ],
         | 
| 198 | 
            +
                      "mean": 0.007866451263427733,
         | 
| 199 | 
            +
                      "median": 0.0077948799133300785,
         | 
| 200 | 
            +
                      "std": 0.00017038395233635333,
         | 
| 201 | 
            +
                      "min": 0.007747360229492187,
         | 
| 202 | 
            +
                      "max": 0.008202624320983887,
         | 
| 203 | 
            +
                      "p25": 0.007760159969329834,
         | 
| 204 | 
            +
                      "p75": 0.007827231884002686,
         | 
| 205 | 
            +
                      "p90": 0.008052467346191406,
         | 
| 206 | 
            +
                      "p95": 0.008127545833587647,
         | 
| 207 | 
            +
                      "p99": 0.00818760862350464,
         | 
| 208 | 
            +
                      "unit": "seconds"
         | 
| 209 | 
            +
                    },
         | 
| 210 | 
            +
                    "tokens_per_second": {
         | 
| 211 | 
            +
                      "name": "tokens_per_second",
         | 
| 212 | 
            +
                      "measurements": [
         | 
| 213 | 
            +
                        156.09246001202513,
         | 
| 214 | 
            +
                        155.30087459113142,
         | 
| 215 | 
            +
                        155.67185126269123,
         | 
| 216 | 
            +
                        154.84582661482582,
         | 
| 217 | 
            +
                        155.31764325573613
         | 
| 218 | 
            +
                      ],
         | 
| 219 | 
            +
                      "mean": 155.44573114728195,
         | 
| 220 | 
            +
                      "median": 155.31764325573613,
         | 
| 221 | 
            +
                      "std": 0.4163325375145587,
         | 
| 222 | 
            +
                      "min": 154.84582661482582,
         | 
| 223 | 
            +
                      "max": 156.09246001202513,
         | 
| 224 | 
            +
                      "p25": 155.30087459113142,
         | 
| 225 | 
            +
                      "p75": 155.67185126269123,
         | 
| 226 | 
            +
                      "p90": 155.92421651229157,
         | 
| 227 | 
            +
                      "p95": 156.00833826215836,
         | 
| 228 | 
            +
                      "p99": 156.07563566205178,
         | 
| 229 | 
            +
                      "unit": "tokens/sec"
         | 
| 230 | 
            +
                    },
         | 
| 231 | 
            +
                    "time_per_output_token_seconds": {
         | 
| 232 | 
            +
                      "name": "time_per_output_token_seconds",
         | 
| 233 | 
            +
                      "measurements": [
         | 
| 234 | 
            +
                        0.006406459350585938,
         | 
| 235 | 
            +
                        0.006439113769531249,
         | 
| 236 | 
            +
                        0.006423768920898437,
         | 
| 237 | 
            +
                        0.0064580364990234375,
         | 
| 238 | 
            +
                        0.006438418579101562
         | 
| 239 | 
            +
                      ],
         | 
| 240 | 
            +
                      "mean": 0.006433159423828124,
         | 
| 241 | 
            +
                      "median": 0.006438418579101562,
         | 
| 242 | 
            +
                      "std": 1.722241140854737e-05,
         | 
| 243 | 
            +
                      "min": 0.006406459350585938,
         | 
| 244 | 
            +
                      "max": 0.0064580364990234375,
         | 
| 245 | 
            +
                      "p25": 0.006423768920898437,
         | 
| 246 | 
            +
                      "p75": 0.006439113769531249,
         | 
| 247 | 
            +
                      "p90": 0.006450467407226562,
         | 
| 248 | 
            +
                      "p95": 0.006454251953125,
         | 
| 249 | 
            +
                      "p99": 0.00645727958984375,
         | 
| 250 | 
            +
                      "unit": "seconds/token"
         | 
| 251 | 
            +
                    }
         | 
| 252 | 
            +
                  },
         | 
| 253 | 
            +
                  "gpu_metrics": {
         | 
| 254 | 
            +
                    "gpu_utilization_mean": 18,
         | 
| 255 | 
            +
                    "gpu_utilization_max": 18,
         | 
| 256 | 
            +
                    "gpu_utilization_min": 18,
         | 
| 257 | 
            +
                    "gpu_memory_used_mean": 994,
         | 
| 258 | 
            +
                    "gpu_memory_used_max": 994,
         | 
| 259 | 
            +
                    "gpu_memory_used_min": 994,
         | 
| 260 | 
            +
                    "sample_count": 2,
         | 
| 261 | 
            +
                    "gpu_monitoring_status": "success"
         | 
| 262 | 
            +
                  }
         | 
| 263 | 
            +
                },
         | 
| 264 | 
            +
                {
         | 
| 265 | 
            +
                  "scenario_name": "eager_sdpa_math",
         | 
| 266 | 
            +
                  "metadata": {
         | 
| 267 | 
            +
                    "timestamp": "2025-09-16T14:40:27.225113",
         | 
| 268 | 
            +
                    "commit_id": null,
         | 
| 269 | 
            +
                    "hardware_info": {
         | 
| 270 | 
            +
                      "gpu_name": "NVIDIA A100-SXM4-80GB",
         | 
| 271 | 
            +
                      "gpu_memory_total_mb": 81920,
         | 
| 272 | 
            +
                      "cpu_count": 128,
         | 
| 273 | 
            +
                      "memory_total_mb": 515624,
         | 
| 274 | 
            +
                      "python_version": "3.10.12",
         | 
| 275 | 
            +
                      "torch_version": "2.8.0+cu126",
         | 
| 276 | 
            +
                      "cuda_version": "12.6"
         | 
| 277 | 
            +
                    },
         | 
| 278 | 
            +
                    "config": {
         | 
| 279 | 
            +
                      "name": "eager",
         | 
| 280 | 
            +
                      "model_id": "bert-base-uncased",
         | 
| 281 | 
            +
                      "variant": "eager",
         | 
| 282 | 
            +
                      "warmup_iterations": 3,
         | 
| 283 | 
            +
                      "measurement_iterations": 5,
         | 
| 284 | 
            +
                      "num_tokens_to_generate": 100,
         | 
| 285 | 
            +
                      "device": "cuda",
         | 
| 286 | 
            +
                      "torch_dtype": "float16",
         | 
| 287 | 
            +
                      "compile_mode": null,
         | 
| 288 | 
            +
                      "compile_options": {},
         | 
| 289 | 
            +
                      "use_cache": true,
         | 
| 290 | 
            +
                      "batch_size": 1,
         | 
| 291 | 
            +
                      "sequence_length": null,
         | 
| 292 | 
            +
                      "attn_implementation": "sdpa",
         | 
| 293 | 
            +
                      "sdpa_backend": "math",
         | 
| 294 | 
            +
                      "custom_params": {}
         | 
| 295 | 
            +
                    }
         | 
| 296 | 
            +
                  },
         | 
| 297 | 
            +
                  "measurements": {
         | 
| 298 | 
            +
                    "latency_seconds": {
         | 
| 299 | 
            +
                      "name": "latency_seconds",
         | 
| 300 | 
            +
                      "measurements": [
         | 
| 301 | 
            +
                        0.862056884765625,
         | 
| 302 | 
            +
                        0.836093505859375,
         | 
| 303 | 
            +
                        0.8566436767578125,
         | 
| 304 | 
            +
                        0.8781635131835938,
         | 
| 305 | 
            +
                        0.8709642333984375
         | 
| 306 | 
            +
                      ],
         | 
| 307 | 
            +
                      "mean": 0.8607843627929688,
         | 
| 308 | 
            +
                      "median": 0.862056884765625,
         | 
| 309 | 
            +
                      "std": 0.014381012780551117,
         | 
| 310 | 
            +
                      "min": 0.836093505859375,
         | 
| 311 | 
            +
                      "max": 0.8781635131835938,
         | 
| 312 | 
            +
                      "p25": 0.8566436767578125,
         | 
| 313 | 
            +
                      "p75": 0.8709642333984375,
         | 
| 314 | 
            +
                      "p90": 0.8752838012695313,
         | 
| 315 | 
            +
                      "p95": 0.8767236572265625,
         | 
| 316 | 
            +
                      "p99": 0.8778755419921875,
         | 
| 317 | 
            +
                      "unit": "seconds"
         | 
| 318 | 
            +
                    },
         | 
| 319 | 
            +
                    "time_to_first_token_seconds": {
         | 
| 320 | 
            +
                      "name": "time_to_first_token_seconds",
         | 
| 321 | 
            +
                      "measurements": [
         | 
| 322 | 
            +
                        0.01033017635345459,
         | 
| 323 | 
            +
                        0.010489888191223144,
         | 
| 324 | 
            +
                        0.010407615661621093,
         | 
| 325 | 
            +
                        0.010832351684570312,
         | 
| 326 | 
            +
                        0.010516511917114257
         | 
| 327 | 
            +
                      ],
         | 
| 328 | 
            +
                      "mean": 0.010515308761596679,
         | 
| 329 | 
            +
                      "median": 0.010489888191223144,
         | 
| 330 | 
            +
                      "std": 0.00017148508991502497,
         | 
| 331 | 
            +
                      "min": 0.01033017635345459,
         | 
| 332 | 
            +
                      "max": 0.010832351684570312,
         | 
| 333 | 
            +
                      "p25": 0.010407615661621093,
         | 
| 334 | 
            +
                      "p75": 0.010516511917114257,
         | 
| 335 | 
            +
                      "p90": 0.010706015777587891,
         | 
| 336 | 
            +
                      "p95": 0.010769183731079102,
         | 
| 337 | 
            +
                      "p99": 0.01081971809387207,
         | 
| 338 | 
            +
                      "unit": "seconds"
         | 
| 339 | 
            +
                    },
         | 
| 340 | 
            +
                    "tokens_per_second": {
         | 
| 341 | 
            +
                      "name": "tokens_per_second",
         | 
| 342 | 
            +
                      "measurements": [
         | 
| 343 | 
            +
                        116.00162560871824,
         | 
| 344 | 
            +
                        119.60384729602156,
         | 
| 345 | 
            +
                        116.73465025560643,
         | 
| 346 | 
            +
                        113.87400922348893,
         | 
| 347 | 
            +
                        114.81527732752865
         | 
| 348 | 
            +
                      ],
         | 
| 349 | 
            +
                      "mean": 116.20588194227278,
         | 
| 350 | 
            +
                      "median": 116.00162560871824,
         | 
| 351 | 
            +
                      "std": 1.9615757286128912,
         | 
| 352 | 
            +
                      "min": 113.87400922348893,
         | 
| 353 | 
            +
                      "max": 119.60384729602156,
         | 
| 354 | 
            +
                      "p25": 114.81527732752865,
         | 
| 355 | 
            +
                      "p75": 116.73465025560643,
         | 
| 356 | 
            +
                      "p90": 118.4561684798555,
         | 
| 357 | 
            +
                      "p95": 119.03000788793852,
         | 
| 358 | 
            +
                      "p99": 119.48907941440496,
         | 
| 359 | 
            +
                      "unit": "tokens/sec"
         | 
| 360 | 
            +
                    },
         | 
| 361 | 
            +
                    "time_per_output_token_seconds": {
         | 
| 362 | 
            +
                      "name": "time_per_output_token_seconds",
         | 
| 363 | 
            +
                      "measurements": [
         | 
| 364 | 
            +
                        0.008620568847656251,
         | 
| 365 | 
            +
                        0.00836093505859375,
         | 
| 366 | 
            +
                        0.008566436767578125,
         | 
| 367 | 
            +
                        0.008781635131835937,
         | 
| 368 | 
            +
                        0.008709642333984375
         | 
| 369 | 
            +
                      ],
         | 
| 370 | 
            +
                      "mean": 0.008607843627929688,
         | 
| 371 | 
            +
                      "median": 0.008620568847656251,
         | 
| 372 | 
            +
                      "std": 0.0001438101278055114,
         | 
| 373 | 
            +
                      "min": 0.00836093505859375,
         | 
| 374 | 
            +
                      "max": 0.008781635131835937,
         | 
| 375 | 
            +
                      "p25": 0.008566436767578125,
         | 
| 376 | 
            +
                      "p75": 0.008709642333984375,
         | 
| 377 | 
            +
                      "p90": 0.008752838012695312,
         | 
| 378 | 
            +
                      "p95": 0.008767236572265625,
         | 
| 379 | 
            +
                      "p99": 0.008778755419921874,
         | 
| 380 | 
            +
                      "unit": "seconds/token"
         | 
| 381 | 
            +
                    }
         | 
| 382 | 
            +
                  },
         | 
| 383 | 
            +
                  "gpu_metrics": {
         | 
| 384 | 
            +
                    "gpu_utilization_mean": 19.333333333333332,
         | 
| 385 | 
            +
                    "gpu_utilization_max": 20,
         | 
| 386 | 
            +
                    "gpu_utilization_min": 19,
         | 
| 387 | 
            +
                    "gpu_memory_used_mean": 1140.3333333333333,
         | 
| 388 | 
            +
                    "gpu_memory_used_max": 1416,
         | 
| 389 | 
            +
                    "gpu_memory_used_min": 994,
         | 
| 390 | 
            +
                    "sample_count": 3,
         | 
| 391 | 
            +
                    "gpu_monitoring_status": "success"
         | 
| 392 | 
            +
                  }
         | 
| 393 | 
            +
                },
         | 
| 394 | 
            +
                {
         | 
| 395 | 
            +
                  "scenario_name": "eager_sdpa_flash_attention",
         | 
| 396 | 
            +
                  "metadata": {
         | 
| 397 | 
            +
                    "timestamp": "2025-09-16T14:40:42.533371",
         | 
| 398 | 
            +
                    "commit_id": null,
         | 
| 399 | 
            +
                    "hardware_info": {
         | 
| 400 | 
            +
                      "gpu_name": "NVIDIA A100-SXM4-80GB",
         | 
| 401 | 
            +
                      "gpu_memory_total_mb": 81920,
         | 
| 402 | 
            +
                      "cpu_count": 128,
         | 
| 403 | 
            +
                      "memory_total_mb": 515624,
         | 
| 404 | 
            +
                      "python_version": "3.10.12",
         | 
| 405 | 
            +
                      "torch_version": "2.8.0+cu126",
         | 
| 406 | 
            +
                      "cuda_version": "12.6"
         | 
| 407 | 
            +
                    },
         | 
| 408 | 
            +
                    "config": {
         | 
| 409 | 
            +
                      "name": "eager",
         | 
| 410 | 
            +
                      "model_id": "bert-base-uncased",
         | 
| 411 | 
            +
                      "variant": "eager",
         | 
| 412 | 
            +
                      "warmup_iterations": 3,
         | 
| 413 | 
            +
                      "measurement_iterations": 5,
         | 
| 414 | 
            +
                      "num_tokens_to_generate": 100,
         | 
| 415 | 
            +
                      "device": "cuda",
         | 
| 416 | 
            +
                      "torch_dtype": "float16",
         | 
| 417 | 
            +
                      "compile_mode": null,
         | 
| 418 | 
            +
                      "compile_options": {},
         | 
| 419 | 
            +
                      "use_cache": true,
         | 
| 420 | 
            +
                      "batch_size": 1,
         | 
| 421 | 
            +
                      "sequence_length": null,
         | 
| 422 | 
            +
                      "attn_implementation": "sdpa",
         | 
| 423 | 
            +
                      "sdpa_backend": "flash_attention",
         | 
| 424 | 
            +
                      "custom_params": {}
         | 
| 425 | 
            +
                    }
         | 
| 426 | 
            +
                  },
         | 
| 427 | 
            +
                  "measurements": {
         | 
| 428 | 
            +
                    "latency_seconds": {
         | 
| 429 | 
            +
                      "name": "latency_seconds",
         | 
| 430 | 
            +
                      "measurements": [
         | 
| 431 | 
            +
                        0.6530625,
         | 
| 432 | 
            +
                        0.6555455932617188,
         | 
| 433 | 
            +
                        0.6554682006835938,
         | 
| 434 | 
            +
                        0.653178955078125,
         | 
| 435 | 
            +
                        0.6511043090820312
         | 
| 436 | 
            +
                      ],
         | 
| 437 | 
            +
                      "mean": 0.6536719116210937,
         | 
| 438 | 
            +
                      "median": 0.653178955078125,
         | 
| 439 | 
            +
                      "std": 0.0016699885485986382,
         | 
| 440 | 
            +
                      "min": 0.6511043090820312,
         | 
| 441 | 
            +
                      "max": 0.6555455932617188,
         | 
| 442 | 
            +
                      "p25": 0.6530625,
         | 
| 443 | 
            +
                      "p75": 0.6554682006835938,
         | 
| 444 | 
            +
                      "p90": 0.6555146362304688,
         | 
| 445 | 
            +
                      "p95": 0.6555301147460938,
         | 
| 446 | 
            +
                      "p99": 0.6555424975585938,
         | 
| 447 | 
            +
                      "unit": "seconds"
         | 
| 448 | 
            +
                    },
         | 
| 449 | 
            +
                    "time_to_first_token_seconds": {
         | 
| 450 | 
            +
                      "name": "time_to_first_token_seconds",
         | 
| 451 | 
            +
                      "measurements": [
         | 
| 452 | 
            +
                        0.008492608070373536,
         | 
| 453 | 
            +
                        0.008032447814941406,
         | 
| 454 | 
            +
                        0.008033151626586915,
         | 
| 455 | 
            +
                        0.008091520309448243,
         | 
| 456 | 
            +
                        0.008013664245605468
         | 
| 457 | 
            +
                      ],
         | 
| 458 | 
            +
                      "mean": 0.008132678413391114,
         | 
| 459 | 
            +
                      "median": 0.008033151626586915,
         | 
| 460 | 
            +
                      "std": 0.00018185679739098057,
         | 
| 461 | 
            +
                      "min": 0.008013664245605468,
         | 
| 462 | 
            +
                      "max": 0.008492608070373536,
         | 
| 463 | 
            +
                      "p25": 0.008032447814941406,
         | 
| 464 | 
            +
                      "p75": 0.008091520309448243,
         | 
| 465 | 
            +
                      "p90": 0.008332172966003418,
         | 
| 466 | 
            +
                      "p95": 0.008412390518188477,
         | 
| 467 | 
            +
                      "p99": 0.008476564559936523,
         | 
| 468 | 
            +
                      "unit": "seconds"
         | 
| 469 | 
            +
                    },
         | 
| 470 | 
            +
                    "tokens_per_second": {
         | 
| 471 | 
            +
                      "name": "tokens_per_second",
         | 
| 472 | 
            +
                      "measurements": [
         | 
| 473 | 
            +
                        153.1247009283185,
         | 
| 474 | 
            +
                        152.54469106022376,
         | 
| 475 | 
            +
                        152.5627023488082,
         | 
| 476 | 
            +
                        153.0974003717546,
         | 
| 477 | 
            +
                        153.58522222189936
         | 
| 478 | 
            +
                      ],
         | 
| 479 | 
            +
                      "mean": 152.98294338620087,
         | 
| 480 | 
            +
                      "median": 153.0974003717546,
         | 
| 481 | 
            +
                      "std": 0.3910506435112546,
         | 
| 482 | 
            +
                      "min": 152.54469106022376,
         | 
| 483 | 
            +
                      "max": 153.58522222189936,
         | 
| 484 | 
            +
                      "p25": 152.5627023488082,
         | 
| 485 | 
            +
                      "p75": 153.1247009283185,
         | 
| 486 | 
            +
                      "p90": 153.401013704467,
         | 
| 487 | 
            +
                      "p95": 153.49311796318318,
         | 
| 488 | 
            +
                      "p99": 153.56680137015613,
         | 
| 489 | 
            +
                      "unit": "tokens/sec"
         | 
| 490 | 
            +
                    },
         | 
| 491 | 
            +
                    "time_per_output_token_seconds": {
         | 
| 492 | 
            +
                      "name": "time_per_output_token_seconds",
         | 
| 493 | 
            +
                      "measurements": [
         | 
| 494 | 
            +
                        0.006530625,
         | 
| 495 | 
            +
                        0.006555455932617188,
         | 
| 496 | 
            +
                        0.006554682006835938,
         | 
| 497 | 
            +
                        0.006531789550781249,
         | 
| 498 | 
            +
                        0.006511043090820312
         | 
| 499 | 
            +
                      ],
         | 
| 500 | 
            +
                      "mean": 0.0065367191162109374,
         | 
| 501 | 
            +
                      "median": 0.006531789550781249,
         | 
| 502 | 
            +
                      "std": 1.6699885485986405e-05,
         | 
| 503 | 
            +
                      "min": 0.006511043090820312,
         | 
| 504 | 
            +
                      "max": 0.006555455932617188,
         | 
| 505 | 
            +
                      "p25": 0.006530625,
         | 
| 506 | 
            +
                      "p75": 0.006554682006835938,
         | 
| 507 | 
            +
                      "p90": 0.006555146362304688,
         | 
| 508 | 
            +
                      "p95": 0.006555301147460938,
         | 
| 509 | 
            +
                      "p99": 0.006555424975585938,
         | 
| 510 | 
            +
                      "unit": "seconds/token"
         | 
| 511 | 
            +
                    }
         | 
| 512 | 
            +
                  },
         | 
| 513 | 
            +
                  "gpu_metrics": {
         | 
| 514 | 
            +
                    "gpu_utilization_mean": 17.5,
         | 
| 515 | 
            +
                    "gpu_utilization_max": 18,
         | 
| 516 | 
            +
                    "gpu_utilization_min": 17,
         | 
| 517 | 
            +
                    "gpu_memory_used_mean": 1416,
         | 
| 518 | 
            +
                    "gpu_memory_used_max": 1416,
         | 
| 519 | 
            +
                    "gpu_memory_used_min": 1416,
         | 
| 520 | 
            +
                    "sample_count": 2,
         | 
| 521 | 
            +
                    "gpu_monitoring_status": "success"
         | 
| 522 | 
            +
                  }
         | 
| 523 | 
            +
                },
         | 
| 524 | 
            +
                {
         | 
| 525 | 
            +
                  "scenario_name": "eager_sdpa_efficient_attention",
         | 
| 526 | 
            +
                  "metadata": {
         | 
| 527 | 
            +
                    "timestamp": "2025-09-16T14:40:55.420871",
         | 
| 528 | 
            +
                    "commit_id": null,
         | 
| 529 | 
            +
                    "hardware_info": {
         | 
| 530 | 
            +
                      "gpu_name": "NVIDIA A100-SXM4-80GB",
         | 
| 531 | 
            +
                      "gpu_memory_total_mb": 81920,
         | 
| 532 | 
            +
                      "cpu_count": 128,
         | 
| 533 | 
            +
                      "memory_total_mb": 515624,
         | 
| 534 | 
            +
                      "python_version": "3.10.12",
         | 
| 535 | 
            +
                      "torch_version": "2.8.0+cu126",
         | 
| 536 | 
            +
                      "cuda_version": "12.6"
         | 
| 537 | 
            +
                    },
         | 
| 538 | 
            +
                    "config": {
         | 
| 539 | 
            +
                      "name": "eager",
         | 
| 540 | 
            +
                      "model_id": "bert-base-uncased",
         | 
| 541 | 
            +
                      "variant": "eager",
         | 
| 542 | 
            +
                      "warmup_iterations": 3,
         | 
| 543 | 
            +
                      "measurement_iterations": 5,
         | 
| 544 | 
            +
                      "num_tokens_to_generate": 100,
         | 
| 545 | 
            +
                      "device": "cuda",
         | 
| 546 | 
            +
                      "torch_dtype": "float16",
         | 
| 547 | 
            +
                      "compile_mode": null,
         | 
| 548 | 
            +
                      "compile_options": {},
         | 
| 549 | 
            +
                      "use_cache": true,
         | 
| 550 | 
            +
                      "batch_size": 1,
         | 
| 551 | 
            +
                      "sequence_length": null,
         | 
| 552 | 
            +
                      "attn_implementation": "sdpa",
         | 
| 553 | 
            +
                      "sdpa_backend": "efficient_attention",
         | 
| 554 | 
            +
                      "custom_params": {}
         | 
| 555 | 
            +
                    }
         | 
| 556 | 
            +
                  },
         | 
| 557 | 
            +
                  "measurements": {
         | 
| 558 | 
            +
                    "latency_seconds": {
         | 
| 559 | 
            +
                      "name": "latency_seconds",
         | 
| 560 | 
            +
                      "measurements": [
         | 
| 561 | 
            +
                        0.6364302978515625,
         | 
| 562 | 
            +
                        0.6355804443359375,
         | 
| 563 | 
            +
                        0.6347394409179687,
         | 
| 564 | 
            +
                        0.6406351928710937,
         | 
| 565 | 
            +
                        0.636865478515625
         | 
| 566 | 
            +
                      ],
         | 
| 567 | 
            +
                      "mean": 0.6368501708984375,
         | 
| 568 | 
            +
                      "median": 0.6364302978515625,
         | 
| 569 | 
            +
                      "std": 0.0020283148486413094,
         | 
| 570 | 
            +
                      "min": 0.6347394409179687,
         | 
| 571 | 
            +
                      "max": 0.6406351928710937,
         | 
| 572 | 
            +
                      "p25": 0.6355804443359375,
         | 
| 573 | 
            +
                      "p75": 0.636865478515625,
         | 
| 574 | 
            +
                      "p90": 0.6391273071289062,
         | 
| 575 | 
            +
                      "p95": 0.63988125,
         | 
| 576 | 
            +
                      "p99": 0.6404844042968749,
         | 
| 577 | 
            +
                      "unit": "seconds"
         | 
| 578 | 
            +
                    },
         | 
| 579 | 
            +
                    "time_to_first_token_seconds": {
         | 
| 580 | 
            +
                      "name": "time_to_first_token_seconds",
         | 
| 581 | 
            +
                      "measurements": [
         | 
| 582 | 
            +
                        0.008025568008422851,
         | 
| 583 | 
            +
                        0.007955679893493653,
         | 
| 584 | 
            +
                        0.00798521614074707,
         | 
| 585 | 
            +
                        0.007934783935546875,
         | 
| 586 | 
            +
                        0.008005632400512695
         | 
| 587 | 
            +
                      ],
         | 
| 588 | 
            +
                      "mean": 0.007981376075744628,
         | 
| 589 | 
            +
                      "median": 0.00798521614074707,
         | 
| 590 | 
            +
                      "std": 3.282427033399499e-05,
         | 
| 591 | 
            +
                      "min": 0.007934783935546875,
         | 
| 592 | 
            +
                      "max": 0.008025568008422851,
         | 
| 593 | 
            +
                      "p25": 0.007955679893493653,
         | 
| 594 | 
            +
                      "p75": 0.008005632400512695,
         | 
| 595 | 
            +
                      "p90": 0.008017593765258789,
         | 
| 596 | 
            +
                      "p95": 0.00802158088684082,
         | 
| 597 | 
            +
                      "p99": 0.008024770584106444,
         | 
| 598 | 
            +
                      "unit": "seconds"
         | 
| 599 | 
            +
                    },
         | 
| 600 | 
            +
                    "tokens_per_second": {
         | 
| 601 | 
            +
                      "name": "tokens_per_second",
         | 
| 602 | 
            +
                      "measurements": [
         | 
| 603 | 
            +
                        157.1263975608582,
         | 
| 604 | 
            +
                        157.3364959403074,
         | 
| 605 | 
            +
                        157.5449602680726,
         | 
| 606 | 
            +
                        156.09507737443585,
         | 
| 607 | 
            +
                        157.01903050715688
         | 
| 608 | 
            +
                      ],
         | 
| 609 | 
            +
                      "mean": 157.0243923301662,
         | 
| 610 | 
            +
                      "median": 157.1263975608582,
         | 
| 611 | 
            +
                      "std": 0.49848966782029014,
         | 
| 612 | 
            +
                      "min": 156.09507737443585,
         | 
| 613 | 
            +
                      "max": 157.5449602680726,
         | 
| 614 | 
            +
                      "p25": 157.01903050715688,
         | 
| 615 | 
            +
                      "p75": 157.3364959403074,
         | 
| 616 | 
            +
                      "p90": 157.4615745369665,
         | 
| 617 | 
            +
                      "p95": 157.50326740251955,
         | 
| 618 | 
            +
                      "p99": 157.53662169496198,
         | 
| 619 | 
            +
                      "unit": "tokens/sec"
         | 
| 620 | 
            +
                    },
         | 
| 621 | 
            +
                    "time_per_output_token_seconds": {
         | 
| 622 | 
            +
                      "name": "time_per_output_token_seconds",
         | 
| 623 | 
            +
                      "measurements": [
         | 
| 624 | 
            +
                        0.006364302978515625,
         | 
| 625 | 
            +
                        0.006355804443359375,
         | 
| 626 | 
            +
                        0.006347394409179688,
         | 
| 627 | 
            +
                        0.006406351928710937,
         | 
| 628 | 
            +
                        0.00636865478515625
         | 
| 629 | 
            +
                      ],
         | 
| 630 | 
            +
                      "mean": 0.006368501708984375,
         | 
| 631 | 
            +
                      "median": 0.006364302978515625,
         | 
| 632 | 
            +
                      "std": 2.028314848641316e-05,
         | 
| 633 | 
            +
                      "min": 0.006347394409179688,
         | 
| 634 | 
            +
                      "max": 0.006406351928710937,
         | 
| 635 | 
            +
                      "p25": 0.006355804443359375,
         | 
| 636 | 
            +
                      "p75": 0.00636865478515625,
         | 
| 637 | 
            +
                      "p90": 0.006391273071289063,
         | 
| 638 | 
            +
                      "p95": 0.0063988125,
         | 
| 639 | 
            +
                      "p99": 0.00640484404296875,
         | 
| 640 | 
            +
                      "unit": "seconds/token"
         | 
| 641 | 
            +
                    }
         | 
| 642 | 
            +
                  },
         | 
| 643 | 
            +
                  "gpu_metrics": {
         | 
| 644 | 
            +
                    "gpu_utilization_mean": 18.5,
         | 
| 645 | 
            +
                    "gpu_utilization_max": 19,
         | 
| 646 | 
            +
                    "gpu_utilization_min": 18,
         | 
| 647 | 
            +
                    "gpu_memory_used_mean": 994,
         | 
| 648 | 
            +
                    "gpu_memory_used_max": 994,
         | 
| 649 | 
            +
                    "gpu_memory_used_min": 994,
         | 
| 650 | 
            +
                    "sample_count": 2,
         | 
| 651 | 
            +
                    "gpu_monitoring_status": "success"
         | 
| 652 | 
            +
                  }
         | 
| 653 | 
            +
                }
         | 
| 654 | 
            +
              ]
         | 
| 655 | 
            +
            }
         | 
    	
        benchmark_results/gpt2/gpt2_benchmark_20250916_143134.json
    ADDED
    
    | @@ -0,0 +1,1175 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "model_name": "gpt2",
         | 
| 3 | 
            +
              "benchmark_scenarios": [
         | 
| 4 | 
            +
                {
         | 
| 5 | 
            +
                  "scenario_name": "eager_eager_attn",
         | 
| 6 | 
            +
                  "metadata": {
         | 
| 7 | 
            +
                    "timestamp": "2025-09-16T14:29:02.079552",
         | 
| 8 | 
            +
                    "commit_id": null,
         | 
| 9 | 
            +
                    "hardware_info": {
         | 
| 10 | 
            +
                      "gpu_name": "NVIDIA A100-SXM4-80GB",
         | 
| 11 | 
            +
                      "gpu_memory_total_mb": 81920,
         | 
| 12 | 
            +
                      "cpu_count": 128,
         | 
| 13 | 
            +
                      "memory_total_mb": 515624,
         | 
| 14 | 
            +
                      "python_version": "3.10.12",
         | 
| 15 | 
            +
                      "torch_version": "2.8.0+cu126",
         | 
| 16 | 
            +
                      "cuda_version": "12.6"
         | 
| 17 | 
            +
                    },
         | 
| 18 | 
            +
                    "config": {
         | 
| 19 | 
            +
                      "name": "eager",
         | 
| 20 | 
            +
                      "model_id": "gpt2",
         | 
| 21 | 
            +
                      "variant": "eager",
         | 
| 22 | 
            +
                      "warmup_iterations": 3,
         | 
| 23 | 
            +
                      "measurement_iterations": 5,
         | 
| 24 | 
            +
                      "num_tokens_to_generate": 100,
         | 
| 25 | 
            +
                      "device": "cuda",
         | 
| 26 | 
            +
                      "torch_dtype": "float16",
         | 
| 27 | 
            +
                      "compile_mode": null,
         | 
| 28 | 
            +
                      "compile_options": {},
         | 
| 29 | 
            +
                      "use_cache": true,
         | 
| 30 | 
            +
                      "batch_size": 1,
         | 
| 31 | 
            +
                      "sequence_length": null,
         | 
| 32 | 
            +
                      "attn_implementation": "eager",
         | 
| 33 | 
            +
                      "sdpa_backend": null,
         | 
| 34 | 
            +
                      "custom_params": {}
         | 
| 35 | 
            +
                    }
         | 
| 36 | 
            +
                  },
         | 
| 37 | 
            +
                  "measurements": {
         | 
| 38 | 
            +
                    "latency_seconds": {
         | 
| 39 | 
            +
                      "name": "latency_seconds",
         | 
| 40 | 
            +
                      "measurements": [
         | 
| 41 | 
            +
                        1.0541953125,
         | 
| 42 | 
            +
                        1.0639735107421875,
         | 
| 43 | 
            +
                        1.0578663330078124,
         | 
| 44 | 
            +
                        1.0600103759765624,
         | 
| 45 | 
            +
                        1.060989990234375
         | 
| 46 | 
            +
                      ],
         | 
| 47 | 
            +
                      "mean": 1.0594071044921873,
         | 
| 48 | 
            +
                      "median": 1.0600103759765624,
         | 
| 49 | 
            +
                      "std": 0.0032636875565412596,
         | 
| 50 | 
            +
                      "min": 1.0541953125,
         | 
| 51 | 
            +
                      "max": 1.0639735107421875,
         | 
| 52 | 
            +
                      "p25": 1.0578663330078124,
         | 
| 53 | 
            +
                      "p75": 1.060989990234375,
         | 
| 54 | 
            +
                      "p90": 1.0627801025390624,
         | 
| 55 | 
            +
                      "p95": 1.063376806640625,
         | 
| 56 | 
            +
                      "p99": 1.063854169921875,
         | 
| 57 | 
            +
                      "unit": "seconds"
         | 
| 58 | 
            +
                    },
         | 
| 59 | 
            +
                    "time_to_first_token_seconds": {
         | 
| 60 | 
            +
                      "name": "time_to_first_token_seconds",
         | 
| 61 | 
            +
                      "measurements": [
         | 
| 62 | 
            +
                        0.012086463928222655,
         | 
| 63 | 
            +
                        0.012136608123779298,
         | 
| 64 | 
            +
                        0.011906720161437989,
         | 
| 65 | 
            +
                        0.011981280326843261,
         | 
| 66 | 
            +
                        0.011886783599853516
         | 
| 67 | 
            +
                      ],
         | 
| 68 | 
            +
                      "mean": 0.011999571228027342,
         | 
| 69 | 
            +
                      "median": 0.011981280326843261,
         | 
| 70 | 
            +
                      "std": 9.798609987804252e-05,
         | 
| 71 | 
            +
                      "min": 0.011886783599853516,
         | 
| 72 | 
            +
                      "max": 0.012136608123779298,
         | 
| 73 | 
            +
                      "p25": 0.011906720161437989,
         | 
| 74 | 
            +
                      "p75": 0.012086463928222655,
         | 
| 75 | 
            +
                      "p90": 0.01211655044555664,
         | 
| 76 | 
            +
                      "p95": 0.01212657928466797,
         | 
| 77 | 
            +
                      "p99": 0.012134602355957032,
         | 
| 78 | 
            +
                      "unit": "seconds"
         | 
| 79 | 
            +
                    },
         | 
| 80 | 
            +
                    "tokens_per_second": {
         | 
| 81 | 
            +
                      "name": "tokens_per_second",
         | 
| 82 | 
            +
                      "measurements": [
         | 
| 83 | 
            +
                        94.85908238659522,
         | 
| 84 | 
            +
                        93.98730230627997,
         | 
| 85 | 
            +
                        94.52990125479444,
         | 
| 86 | 
            +
                        94.33869919232853,
         | 
| 87 | 
            +
                        94.25159607576485
         | 
| 88 | 
            +
                      ],
         | 
| 89 | 
            +
                      "mean": 94.3933162431526,
         | 
| 90 | 
            +
                      "median": 94.33869919232853,
         | 
| 91 | 
            +
                      "std": 0.29103556854877793,
         | 
| 92 | 
            +
                      "min": 93.98730230627997,
         | 
| 93 | 
            +
                      "max": 94.85908238659522,
         | 
| 94 | 
            +
                      "p25": 94.25159607576485,
         | 
| 95 | 
            +
                      "p75": 94.52990125479444,
         | 
| 96 | 
            +
                      "p90": 94.72740993387491,
         | 
| 97 | 
            +
                      "p95": 94.79324616023506,
         | 
| 98 | 
            +
                      "p99": 94.84591514132319,
         | 
| 99 | 
            +
                      "unit": "tokens/sec"
         | 
| 100 | 
            +
                    },
         | 
| 101 | 
            +
                    "time_per_output_token_seconds": {
         | 
| 102 | 
            +
                      "name": "time_per_output_token_seconds",
         | 
| 103 | 
            +
                      "measurements": [
         | 
| 104 | 
            +
                        0.010541953125000001,
         | 
| 105 | 
            +
                        0.010639735107421874,
         | 
| 106 | 
            +
                        0.010578663330078125,
         | 
| 107 | 
            +
                        0.010600103759765625,
         | 
| 108 | 
            +
                        0.010609899902343749
         | 
| 109 | 
            +
                      ],
         | 
| 110 | 
            +
                      "mean": 0.010594071044921875,
         | 
| 111 | 
            +
                      "median": 0.010600103759765625,
         | 
| 112 | 
            +
                      "std": 3.2636875565412244e-05,
         | 
| 113 | 
            +
                      "min": 0.010541953125000001,
         | 
| 114 | 
            +
                      "max": 0.010639735107421874,
         | 
| 115 | 
            +
                      "p25": 0.010578663330078125,
         | 
| 116 | 
            +
                      "p75": 0.010609899902343749,
         | 
| 117 | 
            +
                      "p90": 0.010627801025390625,
         | 
| 118 | 
            +
                      "p95": 0.010633768066406249,
         | 
| 119 | 
            +
                      "p99": 0.010638541699218748,
         | 
| 120 | 
            +
                      "unit": "seconds/token"
         | 
| 121 | 
            +
                    }
         | 
| 122 | 
            +
                  },
         | 
| 123 | 
            +
                  "gpu_metrics": {
         | 
| 124 | 
            +
                    "gpu_utilization_mean": 15.5,
         | 
| 125 | 
            +
                    "gpu_utilization_max": 16,
         | 
| 126 | 
            +
                    "gpu_utilization_min": 15,
         | 
| 127 | 
            +
                    "gpu_memory_used_mean": 32022,
         | 
| 128 | 
            +
                    "gpu_memory_used_max": 32022,
         | 
| 129 | 
            +
                    "gpu_memory_used_min": 32022,
         | 
| 130 | 
            +
                    "sample_count": 4,
         | 
| 131 | 
            +
                    "gpu_monitoring_status": "success"
         | 
| 132 | 
            +
                  }
         | 
| 133 | 
            +
                },
         | 
| 134 | 
            +
                {
         | 
| 135 | 
            +
                  "scenario_name": "compiled_compile_max-autotune_eager_attn",
         | 
| 136 | 
            +
                  "metadata": {
         | 
| 137 | 
            +
                    "timestamp": "2025-09-16T14:29:18.852198",
         | 
| 138 | 
            +
                    "commit_id": null,
         | 
| 139 | 
            +
                    "hardware_info": {
         | 
| 140 | 
            +
                      "gpu_name": "NVIDIA A100-SXM4-80GB",
         | 
| 141 | 
            +
                      "gpu_memory_total_mb": 81920,
         | 
| 142 | 
            +
                      "cpu_count": 128,
         | 
| 143 | 
            +
                      "memory_total_mb": 515624,
         | 
| 144 | 
            +
                      "python_version": "3.10.12",
         | 
| 145 | 
            +
                      "torch_version": "2.8.0+cu126",
         | 
| 146 | 
            +
                      "cuda_version": "12.6"
         | 
| 147 | 
            +
                    },
         | 
| 148 | 
            +
                    "config": {
         | 
| 149 | 
            +
                      "name": "compiled",
         | 
| 150 | 
            +
                      "model_id": "gpt2",
         | 
| 151 | 
            +
                      "variant": "compiled",
         | 
| 152 | 
            +
                      "warmup_iterations": 3,
         | 
| 153 | 
            +
                      "measurement_iterations": 5,
         | 
| 154 | 
            +
                      "num_tokens_to_generate": 100,
         | 
| 155 | 
            +
                      "device": "cuda",
         | 
| 156 | 
            +
                      "torch_dtype": "float16",
         | 
| 157 | 
            +
                      "compile_mode": "max-autotune",
         | 
| 158 | 
            +
                      "compile_options": {},
         | 
| 159 | 
            +
                      "use_cache": true,
         | 
| 160 | 
            +
                      "batch_size": 1,
         | 
| 161 | 
            +
                      "sequence_length": null,
         | 
| 162 | 
            +
                      "attn_implementation": "eager",
         | 
| 163 | 
            +
                      "sdpa_backend": null,
         | 
| 164 | 
            +
                      "custom_params": {}
         | 
| 165 | 
            +
                    }
         | 
| 166 | 
            +
                  },
         | 
| 167 | 
            +
                  "measurements": {
         | 
| 168 | 
            +
                    "latency_seconds": {
         | 
| 169 | 
            +
                      "name": "latency_seconds",
         | 
| 170 | 
            +
                      "measurements": [
         | 
| 171 | 
            +
                        2.321836669921875,
         | 
| 172 | 
            +
                        2.480459228515625,
         | 
| 173 | 
            +
                        3.250630126953125,
         | 
| 174 | 
            +
                        2.559803466796875,
         | 
| 175 | 
            +
                        3.32717822265625
         | 
| 176 | 
            +
                      ],
         | 
| 177 | 
            +
                      "mean": 2.78798154296875,
         | 
| 178 | 
            +
                      "median": 2.559803466796875,
         | 
| 179 | 
            +
                      "std": 0.41682202980379135,
         | 
| 180 | 
            +
                      "min": 2.321836669921875,
         | 
| 181 | 
            +
                      "max": 3.32717822265625,
         | 
| 182 | 
            +
                      "p25": 2.480459228515625,
         | 
| 183 | 
            +
                      "p75": 3.250630126953125,
         | 
| 184 | 
            +
                      "p90": 3.296558984375,
         | 
| 185 | 
            +
                      "p95": 3.311868603515625,
         | 
| 186 | 
            +
                      "p99": 3.324116298828125,
         | 
| 187 | 
            +
                      "unit": "seconds"
         | 
| 188 | 
            +
                    },
         | 
| 189 | 
            +
                    "time_to_first_token_seconds": {
         | 
| 190 | 
            +
                      "name": "time_to_first_token_seconds",
         | 
| 191 | 
            +
                      "measurements": [
         | 
| 192 | 
            +
                        0.013586976051330567,
         | 
| 193 | 
            +
                        0.012644543647766113,
         | 
| 194 | 
            +
                        0.012610912322998047,
         | 
| 195 | 
            +
                        0.012712160110473632,
         | 
| 196 | 
            +
                        0.012882143974304198
         | 
| 197 | 
            +
                      ],
         | 
| 198 | 
            +
                      "mean": 0.012887347221374513,
         | 
| 199 | 
            +
                      "median": 0.012712160110473632,
         | 
| 200 | 
            +
                      "std": 0.00036209609931866615,
         | 
| 201 | 
            +
                      "min": 0.012610912322998047,
         | 
| 202 | 
            +
                      "max": 0.013586976051330567,
         | 
| 203 | 
            +
                      "p25": 0.012644543647766113,
         | 
| 204 | 
            +
                      "p75": 0.012882143974304198,
         | 
| 205 | 
            +
                      "p90": 0.01330504322052002,
         | 
| 206 | 
            +
                      "p95": 0.013446009635925293,
         | 
| 207 | 
            +
                      "p99": 0.013558782768249513,
         | 
| 208 | 
            +
                      "unit": "seconds"
         | 
| 209 | 
            +
                    },
         | 
| 210 | 
            +
                    "tokens_per_second": {
         | 
| 211 | 
            +
                      "name": "tokens_per_second",
         | 
| 212 | 
            +
                      "measurements": [
         | 
| 213 | 
            +
                        43.06935164537857,
         | 
| 214 | 
            +
                        40.3151153828248,
         | 
| 215 | 
            +
                        30.76326622670289,
         | 
| 216 | 
            +
                        39.06549908893267,
         | 
| 217 | 
            +
                        30.055498475872174
         | 
| 218 | 
            +
                      ],
         | 
| 219 | 
            +
                      "mean": 36.653746163942216,
         | 
| 220 | 
            +
                      "median": 39.06549908893267,
         | 
| 221 | 
            +
                      "std": 5.265297652854161,
         | 
| 222 | 
            +
                      "min": 30.055498475872174,
         | 
| 223 | 
            +
                      "max": 43.06935164537857,
         | 
| 224 | 
            +
                      "p25": 30.76326622670289,
         | 
| 225 | 
            +
                      "p75": 40.3151153828248,
         | 
| 226 | 
            +
                      "p90": 41.96765714035706,
         | 
| 227 | 
            +
                      "p95": 42.51850439286781,
         | 
| 228 | 
            +
                      "p99": 42.95918219487642,
         | 
| 229 | 
            +
                      "unit": "tokens/sec"
         | 
| 230 | 
            +
                    },
         | 
| 231 | 
            +
                    "time_per_output_token_seconds": {
         | 
| 232 | 
            +
                      "name": "time_per_output_token_seconds",
         | 
| 233 | 
            +
                      "measurements": [
         | 
| 234 | 
            +
                        0.02321836669921875,
         | 
| 235 | 
            +
                        0.02480459228515625,
         | 
| 236 | 
            +
                        0.03250630126953125,
         | 
| 237 | 
            +
                        0.02559803466796875,
         | 
| 238 | 
            +
                        0.0332717822265625
         | 
| 239 | 
            +
                      ],
         | 
| 240 | 
            +
                      "mean": 0.0278798154296875,
         | 
| 241 | 
            +
                      "median": 0.02559803466796875,
         | 
| 242 | 
            +
                      "std": 0.004168220298037914,
         | 
| 243 | 
            +
                      "min": 0.02321836669921875,
         | 
| 244 | 
            +
                      "max": 0.0332717822265625,
         | 
| 245 | 
            +
                      "p25": 0.02480459228515625,
         | 
| 246 | 
            +
                      "p75": 0.03250630126953125,
         | 
| 247 | 
            +
                      "p90": 0.03296558984375,
         | 
| 248 | 
            +
                      "p95": 0.03311868603515625,
         | 
| 249 | 
            +
                      "p99": 0.033241162988281246,
         | 
| 250 | 
            +
                      "unit": "seconds/token"
         | 
| 251 | 
            +
                    }
         | 
| 252 | 
            +
                  },
         | 
| 253 | 
            +
                  "gpu_metrics": {
         | 
| 254 | 
            +
                    "gpu_utilization_mean": 4,
         | 
| 255 | 
            +
                    "gpu_utilization_max": 25,
         | 
| 256 | 
            +
                    "gpu_utilization_min": 0,
         | 
| 257 | 
            +
                    "gpu_memory_used_mean": 32112.5,
         | 
| 258 | 
            +
                    "gpu_memory_used_max": 32126,
         | 
| 259 | 
            +
                    "gpu_memory_used_min": 32096,
         | 
| 260 | 
            +
                    "sample_count": 8,
         | 
| 261 | 
            +
                    "gpu_monitoring_status": "success"
         | 
| 262 | 
            +
                  }
         | 
| 263 | 
            +
                },
         | 
| 264 | 
            +
                {
         | 
| 265 | 
            +
                  "scenario_name": "eager_sdpa_default",
         | 
| 266 | 
            +
                  "metadata": {
         | 
| 267 | 
            +
                    "timestamp": "2025-09-16T14:29:57.578821",
         | 
| 268 | 
            +
                    "commit_id": null,
         | 
| 269 | 
            +
                    "hardware_info": {
         | 
| 270 | 
            +
                      "gpu_name": "NVIDIA A100-SXM4-80GB",
         | 
| 271 | 
            +
                      "gpu_memory_total_mb": 81920,
         | 
| 272 | 
            +
                      "cpu_count": 128,
         | 
| 273 | 
            +
                      "memory_total_mb": 515624,
         | 
| 274 | 
            +
                      "python_version": "3.10.12",
         | 
| 275 | 
            +
                      "torch_version": "2.8.0+cu126",
         | 
| 276 | 
            +
                      "cuda_version": "12.6"
         | 
| 277 | 
            +
                    },
         | 
| 278 | 
            +
                    "config": {
         | 
| 279 | 
            +
                      "name": "eager",
         | 
| 280 | 
            +
                      "model_id": "gpt2",
         | 
| 281 | 
            +
                      "variant": "eager",
         | 
| 282 | 
            +
                      "warmup_iterations": 3,
         | 
| 283 | 
            +
                      "measurement_iterations": 5,
         | 
| 284 | 
            +
                      "num_tokens_to_generate": 100,
         | 
| 285 | 
            +
                      "device": "cuda",
         | 
| 286 | 
            +
                      "torch_dtype": "float16",
         | 
| 287 | 
            +
                      "compile_mode": null,
         | 
| 288 | 
            +
                      "compile_options": {},
         | 
| 289 | 
            +
                      "use_cache": true,
         | 
| 290 | 
            +
                      "batch_size": 1,
         | 
| 291 | 
            +
                      "sequence_length": null,
         | 
| 292 | 
            +
                      "attn_implementation": "sdpa",
         | 
| 293 | 
            +
                      "sdpa_backend": null,
         | 
| 294 | 
            +
                      "custom_params": {}
         | 
| 295 | 
            +
                    }
         | 
| 296 | 
            +
                  },
         | 
| 297 | 
            +
                  "measurements": {
         | 
| 298 | 
            +
                    "latency_seconds": {
         | 
| 299 | 
            +
                      "name": "latency_seconds",
         | 
| 300 | 
            +
                      "measurements": [
         | 
| 301 | 
            +
                        0.6811693725585938,
         | 
| 302 | 
            +
                        0.6940160522460938,
         | 
| 303 | 
            +
                        0.6914998168945312,
         | 
| 304 | 
            +
                        0.6926322021484375,
         | 
| 305 | 
            +
                        0.6934620971679688
         | 
| 306 | 
            +
                      ],
         | 
| 307 | 
            +
                      "mean": 0.690555908203125,
         | 
| 308 | 
            +
                      "median": 0.6926322021484375,
         | 
| 309 | 
            +
                      "std": 0.004769225150243603,
         | 
| 310 | 
            +
                      "min": 0.6811693725585938,
         | 
| 311 | 
            +
                      "max": 0.6940160522460938,
         | 
| 312 | 
            +
                      "p25": 0.6914998168945312,
         | 
| 313 | 
            +
                      "p75": 0.6934620971679688,
         | 
| 314 | 
            +
                      "p90": 0.6937944702148438,
         | 
| 315 | 
            +
                      "p95": 0.6939052612304688,
         | 
| 316 | 
            +
                      "p99": 0.6939938940429687,
         | 
| 317 | 
            +
                      "unit": "seconds"
         | 
| 318 | 
            +
                    },
         | 
| 319 | 
            +
                    "time_to_first_token_seconds": {
         | 
| 320 | 
            +
                      "name": "time_to_first_token_seconds",
         | 
| 321 | 
            +
                      "measurements": [
         | 
| 322 | 
            +
                        0.008297727584838868,
         | 
| 323 | 
            +
                        0.008120736122131348,
         | 
| 324 | 
            +
                        0.008297151565551757,
         | 
| 325 | 
            +
                        0.00855510425567627,
         | 
| 326 | 
            +
                        0.008345760345458985
         | 
| 327 | 
            +
                      ],
         | 
| 328 | 
            +
                      "mean": 0.008323295974731446,
         | 
| 329 | 
            +
                      "median": 0.008297727584838868,
         | 
| 330 | 
            +
                      "std": 0.00013900179397777972,
         | 
| 331 | 
            +
                      "min": 0.008120736122131348,
         | 
| 332 | 
            +
                      "max": 0.00855510425567627,
         | 
| 333 | 
            +
                      "p25": 0.008297151565551757,
         | 
| 334 | 
            +
                      "p75": 0.008345760345458985,
         | 
| 335 | 
            +
                      "p90": 0.008471366691589356,
         | 
| 336 | 
            +
                      "p95": 0.008513235473632813,
         | 
| 337 | 
            +
                      "p99": 0.008546730499267578,
         | 
| 338 | 
            +
                      "unit": "seconds"
         | 
| 339 | 
            +
                    },
         | 
| 340 | 
            +
                    "tokens_per_second": {
         | 
| 341 | 
            +
                      "name": "tokens_per_second",
         | 
| 342 | 
            +
                      "measurements": [
         | 
| 343 | 
            +
                        146.80636568315182,
         | 
| 344 | 
            +
                        144.0888862388166,
         | 
| 345 | 
            +
                        144.6131980903361,
         | 
| 346 | 
            +
                        144.3767697918398,
         | 
| 347 | 
            +
                        144.20398808873648
         | 
| 348 | 
            +
                      ],
         | 
| 349 | 
            +
                      "mean": 144.81784157857618,
         | 
| 350 | 
            +
                      "median": 144.3767697918398,
         | 
| 351 | 
            +
                      "std": 1.009835965606756,
         | 
| 352 | 
            +
                      "min": 144.0888862388166,
         | 
| 353 | 
            +
                      "max": 146.80636568315182,
         | 
| 354 | 
            +
                      "p25": 144.20398808873648,
         | 
| 355 | 
            +
                      "p75": 144.6131980903361,
         | 
| 356 | 
            +
                      "p90": 145.92909864602555,
         | 
| 357 | 
            +
                      "p95": 146.3677321645887,
         | 
| 358 | 
            +
                      "p99": 146.7186389794392,
         | 
| 359 | 
            +
                      "unit": "tokens/sec"
         | 
| 360 | 
            +
                    },
         | 
| 361 | 
            +
                    "time_per_output_token_seconds": {
         | 
| 362 | 
            +
                      "name": "time_per_output_token_seconds",
         | 
| 363 | 
            +
                      "measurements": [
         | 
| 364 | 
            +
                        0.006811693725585937,
         | 
| 365 | 
            +
                        0.006940160522460937,
         | 
| 366 | 
            +
                        0.006914998168945312,
         | 
| 367 | 
            +
                        0.0069263220214843746,
         | 
| 368 | 
            +
                        0.006934620971679688
         | 
| 369 | 
            +
                      ],
         | 
| 370 | 
            +
                      "mean": 0.00690555908203125,
         | 
| 371 | 
            +
                      "median": 0.0069263220214843746,
         | 
| 372 | 
            +
                      "std": 4.7692251502436116e-05,
         | 
| 373 | 
            +
                      "min": 0.006811693725585937,
         | 
| 374 | 
            +
                      "max": 0.006940160522460937,
         | 
| 375 | 
            +
                      "p25": 0.006914998168945312,
         | 
| 376 | 
            +
                      "p75": 0.006934620971679688,
         | 
| 377 | 
            +
                      "p90": 0.006937944702148437,
         | 
| 378 | 
            +
                      "p95": 0.006939052612304687,
         | 
| 379 | 
            +
                      "p99": 0.006939938940429687,
         | 
| 380 | 
            +
                      "unit": "seconds/token"
         | 
| 381 | 
            +
                    }
         | 
| 382 | 
            +
                  },
         | 
| 383 | 
            +
                  "gpu_metrics": {
         | 
| 384 | 
            +
                    "gpu_utilization_mean": 20,
         | 
| 385 | 
            +
                    "gpu_utilization_max": 20,
         | 
| 386 | 
            +
                    "gpu_utilization_min": 20,
         | 
| 387 | 
            +
                    "gpu_memory_used_mean": 32154,
         | 
| 388 | 
            +
                    "gpu_memory_used_max": 32154,
         | 
| 389 | 
            +
                    "gpu_memory_used_min": 32154,
         | 
| 390 | 
            +
                    "sample_count": 3,
         | 
| 391 | 
            +
                    "gpu_monitoring_status": "success"
         | 
| 392 | 
            +
                  }
         | 
| 393 | 
            +
                },
         | 
| 394 | 
            +
                {
         | 
| 395 | 
            +
                  "scenario_name": "eager_sdpa_math",
         | 
| 396 | 
            +
                  "metadata": {
         | 
| 397 | 
            +
                    "timestamp": "2025-09-16T14:30:10.004302",
         | 
| 398 | 
            +
                    "commit_id": null,
         | 
| 399 | 
            +
                    "hardware_info": {
         | 
| 400 | 
            +
                      "gpu_name": "NVIDIA A100-SXM4-80GB",
         | 
| 401 | 
            +
                      "gpu_memory_total_mb": 81920,
         | 
| 402 | 
            +
                      "cpu_count": 128,
         | 
| 403 | 
            +
                      "memory_total_mb": 515624,
         | 
| 404 | 
            +
                      "python_version": "3.10.12",
         | 
| 405 | 
            +
                      "torch_version": "2.8.0+cu126",
         | 
| 406 | 
            +
                      "cuda_version": "12.6"
         | 
| 407 | 
            +
                    },
         | 
| 408 | 
            +
                    "config": {
         | 
| 409 | 
            +
                      "name": "eager",
         | 
| 410 | 
            +
                      "model_id": "gpt2",
         | 
| 411 | 
            +
                      "variant": "eager",
         | 
| 412 | 
            +
                      "warmup_iterations": 3,
         | 
| 413 | 
            +
                      "measurement_iterations": 5,
         | 
| 414 | 
            +
                      "num_tokens_to_generate": 100,
         | 
| 415 | 
            +
                      "device": "cuda",
         | 
| 416 | 
            +
                      "torch_dtype": "float16",
         | 
| 417 | 
            +
                      "compile_mode": null,
         | 
| 418 | 
            +
                      "compile_options": {},
         | 
| 419 | 
            +
                      "use_cache": true,
         | 
| 420 | 
            +
                      "batch_size": 1,
         | 
| 421 | 
            +
                      "sequence_length": null,
         | 
| 422 | 
            +
                      "attn_implementation": "sdpa",
         | 
| 423 | 
            +
                      "sdpa_backend": "math",
         | 
| 424 | 
            +
                      "custom_params": {}
         | 
| 425 | 
            +
                    }
         | 
| 426 | 
            +
                  },
         | 
| 427 | 
            +
                  "measurements": {
         | 
| 428 | 
            +
                    "latency_seconds": {
         | 
| 429 | 
            +
                      "name": "latency_seconds",
         | 
| 430 | 
            +
                      "measurements": [
         | 
| 431 | 
            +
                        0.8700221557617187,
         | 
| 432 | 
            +
                        0.8757317504882812,
         | 
| 433 | 
            +
                        0.8745044555664062,
         | 
| 434 | 
            +
                        0.8775747680664062,
         | 
| 435 | 
            +
                        0.8737710571289062
         | 
| 436 | 
            +
                      ],
         | 
| 437 | 
            +
                      "mean": 0.8743208374023437,
         | 
| 438 | 
            +
                      "median": 0.8745044555664062,
         | 
| 439 | 
            +
                      "std": 0.0025057285698685374,
         | 
| 440 | 
            +
                      "min": 0.8700221557617187,
         | 
| 441 | 
            +
                      "max": 0.8775747680664062,
         | 
| 442 | 
            +
                      "p25": 0.8737710571289062,
         | 
| 443 | 
            +
                      "p75": 0.8757317504882812,
         | 
| 444 | 
            +
                      "p90": 0.8768375610351562,
         | 
| 445 | 
            +
                      "p95": 0.8772061645507813,
         | 
| 446 | 
            +
                      "p99": 0.8775010473632813,
         | 
| 447 | 
            +
                      "unit": "seconds"
         | 
| 448 | 
            +
                    },
         | 
| 449 | 
            +
                    "time_to_first_token_seconds": {
         | 
| 450 | 
            +
                      "name": "time_to_first_token_seconds",
         | 
| 451 | 
            +
                      "measurements": [
         | 
| 452 | 
            +
                        0.011120479583740234,
         | 
| 453 | 
            +
                        0.011192288398742676,
         | 
| 454 | 
            +
                        0.011178720474243163,
         | 
| 455 | 
            +
                        0.011525568008422851,
         | 
| 456 | 
            +
                        0.011380319595336913
         | 
| 457 | 
            +
                      ],
         | 
| 458 | 
            +
                      "mean": 0.011279475212097167,
         | 
| 459 | 
            +
                      "median": 0.011192288398742676,
         | 
| 460 | 
            +
                      "std": 0.00015084026086821458,
         | 
| 461 | 
            +
                      "min": 0.011120479583740234,
         | 
| 462 | 
            +
                      "max": 0.011525568008422851,
         | 
| 463 | 
            +
                      "p25": 0.011178720474243163,
         | 
| 464 | 
            +
                      "p75": 0.011380319595336913,
         | 
| 465 | 
            +
                      "p90": 0.011467468643188476,
         | 
| 466 | 
            +
                      "p95": 0.011496518325805663,
         | 
| 467 | 
            +
                      "p99": 0.011519758071899413,
         | 
| 468 | 
            +
                      "unit": "seconds"
         | 
| 469 | 
            +
                    },
         | 
| 470 | 
            +
                    "tokens_per_second": {
         | 
| 471 | 
            +
                      "name": "tokens_per_second",
         | 
| 472 | 
            +
                      "measurements": [
         | 
| 473 | 
            +
                        114.93960163859086,
         | 
| 474 | 
            +
                        114.1902185734879,
         | 
| 475 | 
            +
                        114.350475133064,
         | 
| 476 | 
            +
                        113.95040472771772,
         | 
| 477 | 
            +
                        114.4464550343273
         | 
| 478 | 
            +
                      ],
         | 
| 479 | 
            +
                      "mean": 114.37543102143755,
         | 
| 480 | 
            +
                      "median": 114.350475133064,
         | 
| 481 | 
            +
                      "std": 0.3283006832948525,
         | 
| 482 | 
            +
                      "min": 113.95040472771772,
         | 
| 483 | 
            +
                      "max": 114.93960163859086,
         | 
| 484 | 
            +
                      "p25": 114.1902185734879,
         | 
| 485 | 
            +
                      "p75": 114.4464550343273,
         | 
| 486 | 
            +
                      "p90": 114.74234299688544,
         | 
| 487 | 
            +
                      "p95": 114.84097231773815,
         | 
| 488 | 
            +
                      "p99": 114.91987577442032,
         | 
| 489 | 
            +
                      "unit": "tokens/sec"
         | 
| 490 | 
            +
                    },
         | 
| 491 | 
            +
                    "time_per_output_token_seconds": {
         | 
| 492 | 
            +
                      "name": "time_per_output_token_seconds",
         | 
| 493 | 
            +
                      "measurements": [
         | 
| 494 | 
            +
                        0.008700221557617188,
         | 
| 495 | 
            +
                        0.008757317504882811,
         | 
| 496 | 
            +
                        0.008745044555664062,
         | 
| 497 | 
            +
                        0.008775747680664062,
         | 
| 498 | 
            +
                        0.008737710571289062
         | 
| 499 | 
            +
                      ],
         | 
| 500 | 
            +
                      "mean": 0.008743208374023436,
         | 
| 501 | 
            +
                      "median": 0.008745044555664062,
         | 
| 502 | 
            +
                      "std": 2.5057285698684983e-05,
         | 
| 503 | 
            +
                      "min": 0.008700221557617188,
         | 
| 504 | 
            +
                      "max": 0.008775747680664062,
         | 
| 505 | 
            +
                      "p25": 0.008737710571289062,
         | 
| 506 | 
            +
                      "p75": 0.008757317504882811,
         | 
| 507 | 
            +
                      "p90": 0.008768375610351561,
         | 
| 508 | 
            +
                      "p95": 0.008772061645507812,
         | 
| 509 | 
            +
                      "p99": 0.008775010473632812,
         | 
| 510 | 
            +
                      "unit": "seconds/token"
         | 
| 511 | 
            +
                    }
         | 
| 512 | 
            +
                  },
         | 
| 513 | 
            +
                  "gpu_metrics": {
         | 
| 514 | 
            +
                    "gpu_utilization_mean": 21.333333333333332,
         | 
| 515 | 
            +
                    "gpu_utilization_max": 22,
         | 
| 516 | 
            +
                    "gpu_utilization_min": 21,
         | 
| 517 | 
            +
                    "gpu_memory_used_mean": 32132,
         | 
| 518 | 
            +
                    "gpu_memory_used_max": 32132,
         | 
| 519 | 
            +
                    "gpu_memory_used_min": 32132,
         | 
| 520 | 
            +
                    "sample_count": 3,
         | 
| 521 | 
            +
                    "gpu_monitoring_status": "success"
         | 
| 522 | 
            +
                  }
         | 
| 523 | 
            +
                },
         | 
| 524 | 
            +
                {
         | 
| 525 | 
            +
                  "scenario_name": "eager_sdpa_flash_attention",
         | 
| 526 | 
            +
                  "metadata": {
         | 
| 527 | 
            +
                    "timestamp": "2025-09-16T14:30:23.342107",
         | 
| 528 | 
            +
                    "commit_id": null,
         | 
| 529 | 
            +
                    "hardware_info": {
         | 
| 530 | 
            +
                      "gpu_name": "NVIDIA A100-SXM4-80GB",
         | 
| 531 | 
            +
                      "gpu_memory_total_mb": 81920,
         | 
| 532 | 
            +
                      "cpu_count": 128,
         | 
| 533 | 
            +
                      "memory_total_mb": 515624,
         | 
| 534 | 
            +
                      "python_version": "3.10.12",
         | 
| 535 | 
            +
                      "torch_version": "2.8.0+cu126",
         | 
| 536 | 
            +
                      "cuda_version": "12.6"
         | 
| 537 | 
            +
                    },
         | 
| 538 | 
            +
                    "config": {
         | 
| 539 | 
            +
                      "name": "eager",
         | 
| 540 | 
            +
                      "model_id": "gpt2",
         | 
| 541 | 
            +
                      "variant": "eager",
         | 
| 542 | 
            +
                      "warmup_iterations": 3,
         | 
| 543 | 
            +
                      "measurement_iterations": 5,
         | 
| 544 | 
            +
                      "num_tokens_to_generate": 100,
         | 
| 545 | 
            +
                      "device": "cuda",
         | 
| 546 | 
            +
                      "torch_dtype": "float16",
         | 
| 547 | 
            +
                      "compile_mode": null,
         | 
| 548 | 
            +
                      "compile_options": {},
         | 
| 549 | 
            +
                      "use_cache": true,
         | 
| 550 | 
            +
                      "batch_size": 1,
         | 
| 551 | 
            +
                      "sequence_length": null,
         | 
| 552 | 
            +
                      "attn_implementation": "sdpa",
         | 
| 553 | 
            +
                      "sdpa_backend": "flash_attention",
         | 
| 554 | 
            +
                      "custom_params": {}
         | 
| 555 | 
            +
                    }
         | 
| 556 | 
            +
                  },
         | 
| 557 | 
            +
                  "measurements": {
         | 
| 558 | 
            +
                    "latency_seconds": {
         | 
| 559 | 
            +
                      "name": "latency_seconds",
         | 
| 560 | 
            +
                      "measurements": [
         | 
| 561 | 
            +
                        0.7245529174804688,
         | 
| 562 | 
            +
                        0.7257909545898438,
         | 
| 563 | 
            +
                        0.7065213012695313,
         | 
| 564 | 
            +
                        0.6885786743164063,
         | 
| 565 | 
            +
                        0.6876067504882812
         | 
| 566 | 
            +
                      ],
         | 
| 567 | 
            +
                      "mean": 0.7066101196289063,
         | 
| 568 | 
            +
                      "median": 0.7065213012695313,
         | 
| 569 | 
            +
                      "std": 0.01658986059009694,
         | 
| 570 | 
            +
                      "min": 0.6876067504882812,
         | 
| 571 | 
            +
                      "max": 0.7257909545898438,
         | 
| 572 | 
            +
                      "p25": 0.6885786743164063,
         | 
| 573 | 
            +
                      "p75": 0.7245529174804688,
         | 
| 574 | 
            +
                      "p90": 0.7252957397460937,
         | 
| 575 | 
            +
                      "p95": 0.7255433471679688,
         | 
| 576 | 
            +
                      "p99": 0.7257414331054688,
         | 
| 577 | 
            +
                      "unit": "seconds"
         | 
| 578 | 
            +
                    },
         | 
| 579 | 
            +
                    "time_to_first_token_seconds": {
         | 
| 580 | 
            +
                      "name": "time_to_first_token_seconds",
         | 
| 581 | 
            +
                      "measurements": [
         | 
| 582 | 
            +
                        0.008233535766601562,
         | 
| 583 | 
            +
                        0.008958335876464843,
         | 
| 584 | 
            +
                        0.009003999710083008,
         | 
| 585 | 
            +
                        0.00853872013092041,
         | 
| 586 | 
            +
                        0.008412192344665528
         | 
| 587 | 
            +
                      ],
         | 
| 588 | 
            +
                      "mean": 0.008629356765747071,
         | 
| 589 | 
            +
                      "median": 0.00853872013092041,
         | 
| 590 | 
            +
                      "std": 0.0003035240483883572,
         | 
| 591 | 
            +
                      "min": 0.008233535766601562,
         | 
| 592 | 
            +
                      "max": 0.009003999710083008,
         | 
| 593 | 
            +
                      "p25": 0.008412192344665528,
         | 
| 594 | 
            +
                      "p75": 0.008958335876464843,
         | 
| 595 | 
            +
                      "p90": 0.008985734176635743,
         | 
| 596 | 
            +
                      "p95": 0.008994866943359376,
         | 
| 597 | 
            +
                      "p99": 0.009002173156738283,
         | 
| 598 | 
            +
                      "unit": "seconds"
         | 
| 599 | 
            +
                    },
         | 
| 600 | 
            +
                    "tokens_per_second": {
         | 
| 601 | 
            +
                      "name": "tokens_per_second",
         | 
| 602 | 
            +
                      "measurements": [
         | 
| 603 | 
            +
                        138.01614428347895,
         | 
| 604 | 
            +
                        137.78071959647338,
         | 
| 605 | 
            +
                        141.5385492557866,
         | 
| 606 | 
            +
                        145.22668756664015,
         | 
| 607 | 
            +
                        145.43196373361417
         | 
| 608 | 
            +
                      ],
         | 
| 609 | 
            +
                      "mean": 141.59881288719868,
         | 
| 610 | 
            +
                      "median": 141.5385492557866,
         | 
| 611 | 
            +
                      "std": 3.3248008213166687,
         | 
| 612 | 
            +
                      "min": 137.78071959647338,
         | 
| 613 | 
            +
                      "max": 145.43196373361417,
         | 
| 614 | 
            +
                      "p25": 138.01614428347895,
         | 
| 615 | 
            +
                      "p75": 145.22668756664015,
         | 
| 616 | 
            +
                      "p90": 145.34985326682457,
         | 
| 617 | 
            +
                      "p95": 145.39090850021935,
         | 
| 618 | 
            +
                      "p99": 145.42375268693522,
         | 
| 619 | 
            +
                      "unit": "tokens/sec"
         | 
| 620 | 
            +
                    },
         | 
| 621 | 
            +
                    "time_per_output_token_seconds": {
         | 
| 622 | 
            +
                      "name": "time_per_output_token_seconds",
         | 
| 623 | 
            +
                      "measurements": [
         | 
| 624 | 
            +
                        0.007245529174804688,
         | 
| 625 | 
            +
                        0.0072579095458984375,
         | 
| 626 | 
            +
                        0.0070652130126953126,
         | 
| 627 | 
            +
                        0.006885786743164063,
         | 
| 628 | 
            +
                        0.006876067504882812
         | 
| 629 | 
            +
                      ],
         | 
| 630 | 
            +
                      "mean": 0.007066101196289062,
         | 
| 631 | 
            +
                      "median": 0.0070652130126953126,
         | 
| 632 | 
            +
                      "std": 0.00016589860590096936,
         | 
| 633 | 
            +
                      "min": 0.006876067504882812,
         | 
| 634 | 
            +
                      "max": 0.0072579095458984375,
         | 
| 635 | 
            +
                      "p25": 0.006885786743164063,
         | 
| 636 | 
            +
                      "p75": 0.007245529174804688,
         | 
| 637 | 
            +
                      "p90": 0.007252957397460937,
         | 
| 638 | 
            +
                      "p95": 0.007255433471679688,
         | 
| 639 | 
            +
                      "p99": 0.007257414331054687,
         | 
| 640 | 
            +
                      "unit": "seconds/token"
         | 
| 641 | 
            +
                    }
         | 
| 642 | 
            +
                  },
         | 
| 643 | 
            +
                  "gpu_metrics": {
         | 
| 644 | 
            +
                    "gpu_utilization_mean": 20,
         | 
| 645 | 
            +
                    "gpu_utilization_max": 20,
         | 
| 646 | 
            +
                    "gpu_utilization_min": 20,
         | 
| 647 | 
            +
                    "gpu_memory_used_mean": 922,
         | 
| 648 | 
            +
                    "gpu_memory_used_max": 922,
         | 
| 649 | 
            +
                    "gpu_memory_used_min": 922,
         | 
| 650 | 
            +
                    "sample_count": 2,
         | 
| 651 | 
            +
                    "gpu_monitoring_status": "success"
         | 
| 652 | 
            +
                  }
         | 
| 653 | 
            +
                },
         | 
| 654 | 
            +
                {
         | 
| 655 | 
            +
                  "scenario_name": "eager_sdpa_efficient_attention",
         | 
| 656 | 
            +
                  "metadata": {
         | 
| 657 | 
            +
                    "timestamp": "2025-09-16T14:30:35.101570",
         | 
| 658 | 
            +
                    "commit_id": null,
         | 
| 659 | 
            +
                    "hardware_info": {
         | 
| 660 | 
            +
                      "gpu_name": "NVIDIA A100-SXM4-80GB",
         | 
| 661 | 
            +
                      "gpu_memory_total_mb": 81920,
         | 
| 662 | 
            +
                      "cpu_count": 128,
         | 
| 663 | 
            +
                      "memory_total_mb": 515624,
         | 
| 664 | 
            +
                      "python_version": "3.10.12",
         | 
| 665 | 
            +
                      "torch_version": "2.8.0+cu126",
         | 
| 666 | 
            +
                      "cuda_version": "12.6"
         | 
| 667 | 
            +
                    },
         | 
| 668 | 
            +
                    "config": {
         | 
| 669 | 
            +
                      "name": "eager",
         | 
| 670 | 
            +
                      "model_id": "gpt2",
         | 
| 671 | 
            +
                      "variant": "eager",
         | 
| 672 | 
            +
                      "warmup_iterations": 3,
         | 
| 673 | 
            +
                      "measurement_iterations": 5,
         | 
| 674 | 
            +
                      "num_tokens_to_generate": 100,
         | 
| 675 | 
            +
                      "device": "cuda",
         | 
| 676 | 
            +
                      "torch_dtype": "float16",
         | 
| 677 | 
            +
                      "compile_mode": null,
         | 
| 678 | 
            +
                      "compile_options": {},
         | 
| 679 | 
            +
                      "use_cache": true,
         | 
| 680 | 
            +
                      "batch_size": 1,
         | 
| 681 | 
            +
                      "sequence_length": null,
         | 
| 682 | 
            +
                      "attn_implementation": "sdpa",
         | 
| 683 | 
            +
                      "sdpa_backend": "efficient_attention",
         | 
| 684 | 
            +
                      "custom_params": {}
         | 
| 685 | 
            +
                    }
         | 
| 686 | 
            +
                  },
         | 
| 687 | 
            +
                  "measurements": {
         | 
| 688 | 
            +
                    "latency_seconds": {
         | 
| 689 | 
            +
                      "name": "latency_seconds",
         | 
| 690 | 
            +
                      "measurements": [
         | 
| 691 | 
            +
                        0.688720458984375,
         | 
| 692 | 
            +
                        0.6877328491210938,
         | 
| 693 | 
            +
                        0.688767822265625,
         | 
| 694 | 
            +
                        0.6873019409179687,
         | 
| 695 | 
            +
                        0.6927123413085937
         | 
| 696 | 
            +
                      ],
         | 
| 697 | 
            +
                      "mean": 0.6890470825195312,
         | 
| 698 | 
            +
                      "median": 0.688720458984375,
         | 
| 699 | 
            +
                      "std": 0.0019178904999505159,
         | 
| 700 | 
            +
                      "min": 0.6873019409179687,
         | 
| 701 | 
            +
                      "max": 0.6927123413085937,
         | 
| 702 | 
            +
                      "p25": 0.6877328491210938,
         | 
| 703 | 
            +
                      "p75": 0.688767822265625,
         | 
| 704 | 
            +
                      "p90": 0.6911345336914062,
         | 
| 705 | 
            +
                      "p95": 0.6919234375,
         | 
| 706 | 
            +
                      "p99": 0.6925545605468749,
         | 
| 707 | 
            +
                      "unit": "seconds"
         | 
| 708 | 
            +
                    },
         | 
| 709 | 
            +
                    "time_to_first_token_seconds": {
         | 
| 710 | 
            +
                      "name": "time_to_first_token_seconds",
         | 
| 711 | 
            +
                      "measurements": [
         | 
| 712 | 
            +
                        0.008227007865905762,
         | 
| 713 | 
            +
                        0.008864255905151367,
         | 
| 714 | 
            +
                        0.008487392425537109,
         | 
| 715 | 
            +
                        0.008654623985290528,
         | 
| 716 | 
            +
                        0.008882783889770507
         | 
| 717 | 
            +
                      ],
         | 
| 718 | 
            +
                      "mean": 0.008623212814331056,
         | 
| 719 | 
            +
                      "median": 0.008654623985290528,
         | 
| 720 | 
            +
                      "std": 0.0002457198061479278,
         | 
| 721 | 
            +
                      "min": 0.008227007865905762,
         | 
| 722 | 
            +
                      "max": 0.008882783889770507,
         | 
| 723 | 
            +
                      "p25": 0.008487392425537109,
         | 
| 724 | 
            +
                      "p75": 0.008864255905151367,
         | 
| 725 | 
            +
                      "p90": 0.008875372695922852,
         | 
| 726 | 
            +
                      "p95": 0.00887907829284668,
         | 
| 727 | 
            +
                      "p99": 0.008882042770385741,
         | 
| 728 | 
            +
                      "unit": "seconds"
         | 
| 729 | 
            +
                    },
         | 
| 730 | 
            +
                    "tokens_per_second": {
         | 
| 731 | 
            +
                      "name": "tokens_per_second",
         | 
| 732 | 
            +
                      "measurements": [
         | 
| 733 | 
            +
                        145.19679021509756,
         | 
| 734 | 
            +
                        145.40529818780306,
         | 
| 735 | 
            +
                        145.18680572367788,
         | 
| 736 | 
            +
                        145.49646093889797,
         | 
| 737 | 
            +
                        144.360066995618
         | 
| 738 | 
            +
                      ],
         | 
| 739 | 
            +
                      "mean": 145.1290844122189,
         | 
| 740 | 
            +
                      "median": 145.19679021509756,
         | 
| 741 | 
            +
                      "std": 0.4026321335295338,
         | 
| 742 | 
            +
                      "min": 144.360066995618,
         | 
| 743 | 
            +
                      "max": 145.49646093889797,
         | 
| 744 | 
            +
                      "p25": 145.18680572367788,
         | 
| 745 | 
            +
                      "p75": 145.40529818780306,
         | 
| 746 | 
            +
                      "p90": 145.45999583846,
         | 
| 747 | 
            +
                      "p95": 145.47822838867899,
         | 
| 748 | 
            +
                      "p99": 145.49281442885416,
         | 
| 749 | 
            +
                      "unit": "tokens/sec"
         | 
| 750 | 
            +
                    },
         | 
| 751 | 
            +
                    "time_per_output_token_seconds": {
         | 
| 752 | 
            +
                      "name": "time_per_output_token_seconds",
         | 
| 753 | 
            +
                      "measurements": [
         | 
| 754 | 
            +
                        0.006887204589843749,
         | 
| 755 | 
            +
                        0.006877328491210938,
         | 
| 756 | 
            +
                        0.006887678222656251,
         | 
| 757 | 
            +
                        0.006873019409179687,
         | 
| 758 | 
            +
                        0.006927123413085937
         | 
| 759 | 
            +
                      ],
         | 
| 760 | 
            +
                      "mean": 0.006890470825195312,
         | 
| 761 | 
            +
                      "median": 0.006887204589843749,
         | 
| 762 | 
            +
                      "std": 1.917890499950527e-05,
         | 
| 763 | 
            +
                      "min": 0.006873019409179687,
         | 
| 764 | 
            +
                      "max": 0.006927123413085937,
         | 
| 765 | 
            +
                      "p25": 0.006877328491210938,
         | 
| 766 | 
            +
                      "p75": 0.006887678222656251,
         | 
| 767 | 
            +
                      "p90": 0.006911345336914063,
         | 
| 768 | 
            +
                      "p95": 0.006919234375,
         | 
| 769 | 
            +
                      "p99": 0.00692554560546875,
         | 
| 770 | 
            +
                      "unit": "seconds/token"
         | 
| 771 | 
            +
                    }
         | 
| 772 | 
            +
                  },
         | 
| 773 | 
            +
                  "gpu_metrics": {
         | 
| 774 | 
            +
                    "gpu_utilization_mean": 20,
         | 
| 775 | 
            +
                    "gpu_utilization_max": 20,
         | 
| 776 | 
            +
                    "gpu_utilization_min": 20,
         | 
| 777 | 
            +
                    "gpu_memory_used_mean": 922,
         | 
| 778 | 
            +
                    "gpu_memory_used_max": 922,
         | 
| 779 | 
            +
                    "gpu_memory_used_min": 922,
         | 
| 780 | 
            +
                    "sample_count": 3,
         | 
| 781 | 
            +
                    "gpu_monitoring_status": "success"
         | 
| 782 | 
            +
                  }
         | 
| 783 | 
            +
                },
         | 
| 784 | 
            +
                {
         | 
| 785 | 
            +
                  "scenario_name": "compiled_compile_max-autotune_sdpa_default",
         | 
| 786 | 
            +
                  "metadata": {
         | 
| 787 | 
            +
                    "timestamp": "2025-09-16T14:30:49.306518",
         | 
| 788 | 
            +
                    "commit_id": null,
         | 
| 789 | 
            +
                    "hardware_info": {
         | 
| 790 | 
            +
                      "gpu_name": "NVIDIA A100-SXM4-80GB",
         | 
| 791 | 
            +
                      "gpu_memory_total_mb": 81920,
         | 
| 792 | 
            +
                      "cpu_count": 128,
         | 
| 793 | 
            +
                      "memory_total_mb": 515624,
         | 
| 794 | 
            +
                      "python_version": "3.10.12",
         | 
| 795 | 
            +
                      "torch_version": "2.8.0+cu126",
         | 
| 796 | 
            +
                      "cuda_version": "12.6"
         | 
| 797 | 
            +
                    },
         | 
| 798 | 
            +
                    "config": {
         | 
| 799 | 
            +
                      "name": "compiled",
         | 
| 800 | 
            +
                      "model_id": "gpt2",
         | 
| 801 | 
            +
                      "variant": "compiled",
         | 
| 802 | 
            +
                      "warmup_iterations": 3,
         | 
| 803 | 
            +
                      "measurement_iterations": 5,
         | 
| 804 | 
            +
                      "num_tokens_to_generate": 100,
         | 
| 805 | 
            +
                      "device": "cuda",
         | 
| 806 | 
            +
                      "torch_dtype": "float16",
         | 
| 807 | 
            +
                      "compile_mode": "max-autotune",
         | 
| 808 | 
            +
                      "compile_options": {},
         | 
| 809 | 
            +
                      "use_cache": true,
         | 
| 810 | 
            +
                      "batch_size": 1,
         | 
| 811 | 
            +
                      "sequence_length": null,
         | 
| 812 | 
            +
                      "attn_implementation": "sdpa",
         | 
| 813 | 
            +
                      "sdpa_backend": null,
         | 
| 814 | 
            +
                      "custom_params": {}
         | 
| 815 | 
            +
                    }
         | 
| 816 | 
            +
                  },
         | 
| 817 | 
            +
                  "measurements": {
         | 
| 818 | 
            +
                    "latency_seconds": {
         | 
| 819 | 
            +
                      "name": "latency_seconds",
         | 
| 820 | 
            +
                      "measurements": [
         | 
| 821 | 
            +
                        0.9974157104492187,
         | 
| 822 | 
            +
                        1.0014816284179688,
         | 
| 823 | 
            +
                        1.0079267578125,
         | 
| 824 | 
            +
                        1.012246337890625,
         | 
| 825 | 
            +
                        1.056821044921875
         | 
| 826 | 
            +
                      ],
         | 
| 827 | 
            +
                      "mean": 1.0151782958984374,
         | 
| 828 | 
            +
                      "median": 1.0079267578125,
         | 
| 829 | 
            +
                      "std": 0.021440185962401076,
         | 
| 830 | 
            +
                      "min": 0.9974157104492187,
         | 
| 831 | 
            +
                      "max": 1.056821044921875,
         | 
| 832 | 
            +
                      "p25": 1.0014816284179688,
         | 
| 833 | 
            +
                      "p75": 1.012246337890625,
         | 
| 834 | 
            +
                      "p90": 1.038991162109375,
         | 
| 835 | 
            +
                      "p95": 1.047906103515625,
         | 
| 836 | 
            +
                      "p99": 1.055038056640625,
         | 
| 837 | 
            +
                      "unit": "seconds"
         | 
| 838 | 
            +
                    },
         | 
| 839 | 
            +
                    "time_to_first_token_seconds": {
         | 
| 840 | 
            +
                      "name": "time_to_first_token_seconds",
         | 
| 841 | 
            +
                      "measurements": [
         | 
| 842 | 
            +
                        0.011328672409057617,
         | 
| 843 | 
            +
                        0.01172815990447998,
         | 
| 844 | 
            +
                        0.011475808143615722,
         | 
| 845 | 
            +
                        0.012047455787658692,
         | 
| 846 | 
            +
                        0.011731488227844238
         | 
| 847 | 
            +
                      ],
         | 
| 848 | 
            +
                      "mean": 0.01166231689453125,
         | 
| 849 | 
            +
                      "median": 0.01172815990447998,
         | 
| 850 | 
            +
                      "std": 0.0002463964687920149,
         | 
| 851 | 
            +
                      "min": 0.011328672409057617,
         | 
| 852 | 
            +
                      "max": 0.012047455787658692,
         | 
| 853 | 
            +
                      "p25": 0.011475808143615722,
         | 
| 854 | 
            +
                      "p75": 0.011731488227844238,
         | 
| 855 | 
            +
                      "p90": 0.01192106876373291,
         | 
| 856 | 
            +
                      "p95": 0.011984262275695802,
         | 
| 857 | 
            +
                      "p99": 0.012034817085266113,
         | 
| 858 | 
            +
                      "unit": "seconds"
         | 
| 859 | 
            +
                    },
         | 
| 860 | 
            +
                    "tokens_per_second": {
         | 
| 861 | 
            +
                      "name": "tokens_per_second",
         | 
| 862 | 
            +
                      "measurements": [
         | 
| 863 | 
            +
                        100.25909854072955,
         | 
| 864 | 
            +
                        99.85205635571076,
         | 
| 865 | 
            +
                        99.21355815280633,
         | 
| 866 | 
            +
                        98.79018205033523,
         | 
| 867 | 
            +
                        94.62339956278261
         | 
| 868 | 
            +
                      ],
         | 
| 869 | 
            +
                      "mean": 98.5476589324729,
         | 
| 870 | 
            +
                      "median": 99.21355815280633,
         | 
| 871 | 
            +
                      "std": 2.0264515294178453,
         | 
| 872 | 
            +
                      "min": 94.62339956278261,
         | 
| 873 | 
            +
                      "max": 100.25909854072955,
         | 
| 874 | 
            +
                      "p25": 98.79018205033523,
         | 
| 875 | 
            +
                      "p75": 99.85205635571076,
         | 
| 876 | 
            +
                      "p90": 100.09628166672204,
         | 
| 877 | 
            +
                      "p95": 100.1776901037258,
         | 
| 878 | 
            +
                      "p99": 100.2428168533288,
         | 
| 879 | 
            +
                      "unit": "tokens/sec"
         | 
| 880 | 
            +
                    },
         | 
| 881 | 
            +
                    "time_per_output_token_seconds": {
         | 
| 882 | 
            +
                      "name": "time_per_output_token_seconds",
         | 
| 883 | 
            +
                      "measurements": [
         | 
| 884 | 
            +
                        0.009974157104492187,
         | 
| 885 | 
            +
                        0.010014816284179688,
         | 
| 886 | 
            +
                        0.010079267578125,
         | 
| 887 | 
            +
                        0.01012246337890625,
         | 
| 888 | 
            +
                        0.010568210449218749
         | 
| 889 | 
            +
                      ],
         | 
| 890 | 
            +
                      "mean": 0.010151782958984374,
         | 
| 891 | 
            +
                      "median": 0.010079267578125,
         | 
| 892 | 
            +
                      "std": 0.00021440185962401083,
         | 
| 893 | 
            +
                      "min": 0.009974157104492187,
         | 
| 894 | 
            +
                      "max": 0.010568210449218749,
         | 
| 895 | 
            +
                      "p25": 0.010014816284179688,
         | 
| 896 | 
            +
                      "p75": 0.01012246337890625,
         | 
| 897 | 
            +
                      "p90": 0.01038991162109375,
         | 
| 898 | 
            +
                      "p95": 0.010479061035156249,
         | 
| 899 | 
            +
                      "p99": 0.010550380566406248,
         | 
| 900 | 
            +
                      "unit": "seconds/token"
         | 
| 901 | 
            +
                    }
         | 
| 902 | 
            +
                  },
         | 
| 903 | 
            +
                  "gpu_metrics": {
         | 
| 904 | 
            +
                    "gpu_utilization_mean": 16,
         | 
| 905 | 
            +
                    "gpu_utilization_max": 16,
         | 
| 906 | 
            +
                    "gpu_utilization_min": 16,
         | 
| 907 | 
            +
                    "gpu_memory_used_mean": 922,
         | 
| 908 | 
            +
                    "gpu_memory_used_max": 922,
         | 
| 909 | 
            +
                    "gpu_memory_used_min": 922,
         | 
| 910 | 
            +
                    "sample_count": 4,
         | 
| 911 | 
            +
                    "gpu_monitoring_status": "success"
         | 
| 912 | 
            +
                  }
         | 
| 913 | 
            +
                },
         | 
| 914 | 
            +
                {
         | 
| 915 | 
            +
                  "scenario_name": "compiled_compile_max-autotune_sdpa_math",
         | 
| 916 | 
            +
                  "metadata": {
         | 
| 917 | 
            +
                    "timestamp": "2025-09-16T14:31:03.520152",
         | 
| 918 | 
            +
                    "commit_id": null,
         | 
| 919 | 
            +
                    "hardware_info": {
         | 
| 920 | 
            +
                      "gpu_name": "NVIDIA A100-SXM4-80GB",
         | 
| 921 | 
            +
                      "gpu_memory_total_mb": 81920,
         | 
| 922 | 
            +
                      "cpu_count": 128,
         | 
| 923 | 
            +
                      "memory_total_mb": 515624,
         | 
| 924 | 
            +
                      "python_version": "3.10.12",
         | 
| 925 | 
            +
                      "torch_version": "2.8.0+cu126",
         | 
| 926 | 
            +
                      "cuda_version": "12.6"
         | 
| 927 | 
            +
                    },
         | 
| 928 | 
            +
                    "config": {
         | 
| 929 | 
            +
                      "name": "compiled",
         | 
| 930 | 
            +
                      "model_id": "gpt2",
         | 
| 931 | 
            +
                      "variant": "compiled",
         | 
| 932 | 
            +
                      "warmup_iterations": 3,
         | 
| 933 | 
            +
                      "measurement_iterations": 5,
         | 
| 934 | 
            +
                      "num_tokens_to_generate": 100,
         | 
| 935 | 
            +
                      "device": "cuda",
         | 
| 936 | 
            +
                      "torch_dtype": "float16",
         | 
| 937 | 
            +
                      "compile_mode": "max-autotune",
         | 
| 938 | 
            +
                      "compile_options": {},
         | 
| 939 | 
            +
                      "use_cache": true,
         | 
| 940 | 
            +
                      "batch_size": 1,
         | 
| 941 | 
            +
                      "sequence_length": null,
         | 
| 942 | 
            +
                      "attn_implementation": "sdpa",
         | 
| 943 | 
            +
                      "sdpa_backend": "math",
         | 
| 944 | 
            +
                      "custom_params": {}
         | 
| 945 | 
            +
                    }
         | 
| 946 | 
            +
                  },
         | 
| 947 | 
            +
                  "measurements": {
         | 
| 948 | 
            +
                    "latency_seconds": {
         | 
| 949 | 
            +
                      "name": "latency_seconds",
         | 
| 950 | 
            +
                      "measurements": [
         | 
| 951 | 
            +
                        1.1809921875,
         | 
| 952 | 
            +
                        1.17560693359375,
         | 
| 953 | 
            +
                        1.179835693359375,
         | 
| 954 | 
            +
                        1.1900877685546876,
         | 
| 955 | 
            +
                        1.196610107421875
         | 
| 956 | 
            +
                      ],
         | 
| 957 | 
            +
                      "mean": 1.1846265380859375,
         | 
| 958 | 
            +
                      "median": 1.1809921875,
         | 
| 959 | 
            +
                      "std": 0.007628170617298067,
         | 
| 960 | 
            +
                      "min": 1.17560693359375,
         | 
| 961 | 
            +
                      "max": 1.196610107421875,
         | 
| 962 | 
            +
                      "p25": 1.179835693359375,
         | 
| 963 | 
            +
                      "p75": 1.1900877685546876,
         | 
| 964 | 
            +
                      "p90": 1.1940011718749999,
         | 
| 965 | 
            +
                      "p95": 1.1953056396484374,
         | 
| 966 | 
            +
                      "p99": 1.1963492138671874,
         | 
| 967 | 
            +
                      "unit": "seconds"
         | 
| 968 | 
            +
                    },
         | 
| 969 | 
            +
                    "time_to_first_token_seconds": {
         | 
| 970 | 
            +
                      "name": "time_to_first_token_seconds",
         | 
| 971 | 
            +
                      "measurements": [
         | 
| 972 | 
            +
                        0.015000831604003907,
         | 
| 973 | 
            +
                        0.013680319786071777,
         | 
| 974 | 
            +
                        0.013097855567932129,
         | 
| 975 | 
            +
                        0.013719264030456544,
         | 
| 976 | 
            +
                        0.014447936058044434
         | 
| 977 | 
            +
                      ],
         | 
| 978 | 
            +
                      "mean": 0.013989241409301759,
         | 
| 979 | 
            +
                      "median": 0.013719264030456544,
         | 
| 980 | 
            +
                      "std": 0.0006628128808923555,
         | 
| 981 | 
            +
                      "min": 0.013097855567932129,
         | 
| 982 | 
            +
                      "max": 0.015000831604003907,
         | 
| 983 | 
            +
                      "p25": 0.013680319786071777,
         | 
| 984 | 
            +
                      "p75": 0.014447936058044434,
         | 
| 985 | 
            +
                      "p90": 0.014779673385620118,
         | 
| 986 | 
            +
                      "p95": 0.014890252494812012,
         | 
| 987 | 
            +
                      "p99": 0.014978715782165529,
         | 
| 988 | 
            +
                      "unit": "seconds"
         | 
| 989 | 
            +
                    },
         | 
| 990 | 
            +
                    "tokens_per_second": {
         | 
| 991 | 
            +
                      "name": "tokens_per_second",
         | 
| 992 | 
            +
                      "measurements": [
         | 
| 993 | 
            +
                        84.67456521595322,
         | 
| 994 | 
            +
                        85.06244488904709,
         | 
| 995 | 
            +
                        84.75756460229437,
         | 
| 996 | 
            +
                        84.02741599591926,
         | 
| 997 | 
            +
                        83.56940943399884
         | 
| 998 | 
            +
                      ],
         | 
| 999 | 
            +
                      "mean": 84.41828002744255,
         | 
| 1000 | 
            +
                      "median": 84.67456521595322,
         | 
| 1001 | 
            +
                      "std": 0.542051743851163,
         | 
| 1002 | 
            +
                      "min": 83.56940943399884,
         | 
| 1003 | 
            +
                      "max": 85.06244488904709,
         | 
| 1004 | 
            +
                      "p25": 84.02741599591926,
         | 
| 1005 | 
            +
                      "p75": 84.75756460229437,
         | 
| 1006 | 
            +
                      "p90": 84.940492774346,
         | 
| 1007 | 
            +
                      "p95": 85.00146883169654,
         | 
| 1008 | 
            +
                      "p99": 85.05024967757697,
         | 
| 1009 | 
            +
                      "unit": "tokens/sec"
         | 
| 1010 | 
            +
                    },
         | 
| 1011 | 
            +
                    "time_per_output_token_seconds": {
         | 
| 1012 | 
            +
                      "name": "time_per_output_token_seconds",
         | 
| 1013 | 
            +
                      "measurements": [
         | 
| 1014 | 
            +
                        0.011809921875,
         | 
| 1015 | 
            +
                        0.011756069335937501,
         | 
| 1016 | 
            +
                        0.01179835693359375,
         | 
| 1017 | 
            +
                        0.011900877685546875,
         | 
| 1018 | 
            +
                        0.011966101074218749
         | 
| 1019 | 
            +
                      ],
         | 
| 1020 | 
            +
                      "mean": 0.011846265380859375,
         | 
| 1021 | 
            +
                      "median": 0.011809921875,
         | 
| 1022 | 
            +
                      "std": 7.62817061729803e-05,
         | 
| 1023 | 
            +
                      "min": 0.011756069335937501,
         | 
| 1024 | 
            +
                      "max": 0.011966101074218749,
         | 
| 1025 | 
            +
                      "p25": 0.01179835693359375,
         | 
| 1026 | 
            +
                      "p75": 0.011900877685546875,
         | 
| 1027 | 
            +
                      "p90": 0.011940011718749999,
         | 
| 1028 | 
            +
                      "p95": 0.011953056396484375,
         | 
| 1029 | 
            +
                      "p99": 0.011963492138671874,
         | 
| 1030 | 
            +
                      "unit": "seconds/token"
         | 
| 1031 | 
            +
                    }
         | 
| 1032 | 
            +
                  },
         | 
| 1033 | 
            +
                  "gpu_metrics": {
         | 
| 1034 | 
            +
                    "gpu_utilization_mean": 18,
         | 
| 1035 | 
            +
                    "gpu_utilization_max": 18,
         | 
| 1036 | 
            +
                    "gpu_utilization_min": 18,
         | 
| 1037 | 
            +
                    "gpu_memory_used_mean": 922,
         | 
| 1038 | 
            +
                    "gpu_memory_used_max": 922,
         | 
| 1039 | 
            +
                    "gpu_memory_used_min": 922,
         | 
| 1040 | 
            +
                    "sample_count": 4,
         | 
| 1041 | 
            +
                    "gpu_monitoring_status": "success"
         | 
| 1042 | 
            +
                  }
         | 
| 1043 | 
            +
                },
         | 
| 1044 | 
            +
                {
         | 
| 1045 | 
            +
                  "scenario_name": "compiled_compile_max-autotune_sdpa_efficient_attention",
         | 
| 1046 | 
            +
                  "metadata": {
         | 
| 1047 | 
            +
                    "timestamp": "2025-09-16T14:31:21.084642",
         | 
| 1048 | 
            +
                    "commit_id": null,
         | 
| 1049 | 
            +
                    "hardware_info": {
         | 
| 1050 | 
            +
                      "gpu_name": "NVIDIA A100-SXM4-80GB",
         | 
| 1051 | 
            +
                      "gpu_memory_total_mb": 81920,
         | 
| 1052 | 
            +
                      "cpu_count": 128,
         | 
| 1053 | 
            +
                      "memory_total_mb": 515624,
         | 
| 1054 | 
            +
                      "python_version": "3.10.12",
         | 
| 1055 | 
            +
                      "torch_version": "2.8.0+cu126",
         | 
| 1056 | 
            +
                      "cuda_version": "12.6"
         | 
| 1057 | 
            +
                    },
         | 
| 1058 | 
            +
                    "config": {
         | 
| 1059 | 
            +
                      "name": "compiled",
         | 
| 1060 | 
            +
                      "model_id": "gpt2",
         | 
| 1061 | 
            +
                      "variant": "compiled",
         | 
| 1062 | 
            +
                      "warmup_iterations": 3,
         | 
| 1063 | 
            +
                      "measurement_iterations": 5,
         | 
| 1064 | 
            +
                      "num_tokens_to_generate": 100,
         | 
| 1065 | 
            +
                      "device": "cuda",
         | 
| 1066 | 
            +
                      "torch_dtype": "float16",
         | 
| 1067 | 
            +
                      "compile_mode": "max-autotune",
         | 
| 1068 | 
            +
                      "compile_options": {},
         | 
| 1069 | 
            +
                      "use_cache": true,
         | 
| 1070 | 
            +
                      "batch_size": 1,
         | 
| 1071 | 
            +
                      "sequence_length": null,
         | 
| 1072 | 
            +
                      "attn_implementation": "sdpa",
         | 
| 1073 | 
            +
                      "sdpa_backend": "efficient_attention",
         | 
| 1074 | 
            +
                      "custom_params": {}
         | 
| 1075 | 
            +
                    }
         | 
| 1076 | 
            +
                  },
         | 
| 1077 | 
            +
                  "measurements": {
         | 
| 1078 | 
            +
                    "latency_seconds": {
         | 
| 1079 | 
            +
                      "name": "latency_seconds",
         | 
| 1080 | 
            +
                      "measurements": [
         | 
| 1081 | 
            +
                        0.9932705688476563,
         | 
| 1082 | 
            +
                        0.988389404296875,
         | 
| 1083 | 
            +
                        0.9866908569335937,
         | 
| 1084 | 
            +
                        1.03518359375,
         | 
| 1085 | 
            +
                        0.9851827392578125
         | 
| 1086 | 
            +
                      ],
         | 
| 1087 | 
            +
                      "mean": 0.9977434326171875,
         | 
| 1088 | 
            +
                      "median": 0.988389404296875,
         | 
| 1089 | 
            +
                      "std": 0.01891666180211917,
         | 
| 1090 | 
            +
                      "min": 0.9851827392578125,
         | 
| 1091 | 
            +
                      "max": 1.03518359375,
         | 
| 1092 | 
            +
                      "p25": 0.9866908569335937,
         | 
| 1093 | 
            +
                      "p75": 0.9932705688476563,
         | 
| 1094 | 
            +
                      "p90": 1.0184183837890626,
         | 
| 1095 | 
            +
                      "p95": 1.0268009887695313,
         | 
| 1096 | 
            +
                      "p99": 1.0335070727539062,
         | 
| 1097 | 
            +
                      "unit": "seconds"
         | 
| 1098 | 
            +
                    },
         | 
| 1099 | 
            +
                    "time_to_first_token_seconds": {
         | 
| 1100 | 
            +
                      "name": "time_to_first_token_seconds",
         | 
| 1101 | 
            +
                      "measurements": [
         | 
| 1102 | 
            +
                        0.011541312217712402,
         | 
| 1103 | 
            +
                        0.011281023979187012,
         | 
| 1104 | 
            +
                        0.011197983741760254,
         | 
| 1105 | 
            +
                        0.010969951629638671,
         | 
| 1106 | 
            +
                        0.011184351921081543
         | 
| 1107 | 
            +
                      ],
         | 
| 1108 | 
            +
                      "mean": 0.011234924697875976,
         | 
| 1109 | 
            +
                      "median": 0.011197983741760254,
         | 
| 1110 | 
            +
                      "std": 0.00018446214946782157,
         | 
| 1111 | 
            +
                      "min": 0.010969951629638671,
         | 
| 1112 | 
            +
                      "max": 0.011541312217712402,
         | 
| 1113 | 
            +
                      "p25": 0.011184351921081543,
         | 
| 1114 | 
            +
                      "p75": 0.011281023979187012,
         | 
| 1115 | 
            +
                      "p90": 0.011437196922302245,
         | 
| 1116 | 
            +
                      "p95": 0.011489254570007323,
         | 
| 1117 | 
            +
                      "p99": 0.011530900688171386,
         | 
| 1118 | 
            +
                      "unit": "seconds"
         | 
| 1119 | 
            +
                    },
         | 
| 1120 | 
            +
                    "tokens_per_second": {
         | 
| 1121 | 
            +
                      "name": "tokens_per_second",
         | 
| 1122 | 
            +
                      "measurements": [
         | 
| 1123 | 
            +
                        100.67750232045543,
         | 
| 1124 | 
            +
                        101.17469851990012,
         | 
| 1125 | 
            +
                        101.34886656472808,
         | 
| 1126 | 
            +
                        96.60122185451705,
         | 
| 1127 | 
            +
                        101.50401140334128
         | 
| 1128 | 
            +
                      ],
         | 
| 1129 | 
            +
                      "mean": 100.26126013258839,
         | 
| 1130 | 
            +
                      "median": 101.17469851990012,
         | 
| 1131 | 
            +
                      "std": 1.8509903249618553,
         | 
| 1132 | 
            +
                      "min": 96.60122185451705,
         | 
| 1133 | 
            +
                      "max": 101.50401140334128,
         | 
| 1134 | 
            +
                      "p25": 100.67750232045543,
         | 
| 1135 | 
            +
                      "p75": 101.34886656472808,
         | 
| 1136 | 
            +
                      "p90": 101.441953467896,
         | 
| 1137 | 
            +
                      "p95": 101.47298243561865,
         | 
| 1138 | 
            +
                      "p99": 101.49780560979676,
         | 
| 1139 | 
            +
                      "unit": "tokens/sec"
         | 
| 1140 | 
            +
                    },
         | 
| 1141 | 
            +
                    "time_per_output_token_seconds": {
         | 
| 1142 | 
            +
                      "name": "time_per_output_token_seconds",
         | 
| 1143 | 
            +
                      "measurements": [
         | 
| 1144 | 
            +
                        0.009932705688476562,
         | 
| 1145 | 
            +
                        0.00988389404296875,
         | 
| 1146 | 
            +
                        0.009866908569335937,
         | 
| 1147 | 
            +
                        0.0103518359375,
         | 
| 1148 | 
            +
                        0.009851827392578125
         | 
| 1149 | 
            +
                      ],
         | 
| 1150 | 
            +
                      "mean": 0.009977434326171875,
         | 
| 1151 | 
            +
                      "median": 0.00988389404296875,
         | 
| 1152 | 
            +
                      "std": 0.00018916661802119162,
         | 
| 1153 | 
            +
                      "min": 0.009851827392578125,
         | 
| 1154 | 
            +
                      "max": 0.0103518359375,
         | 
| 1155 | 
            +
                      "p25": 0.009866908569335937,
         | 
| 1156 | 
            +
                      "p75": 0.009932705688476562,
         | 
| 1157 | 
            +
                      "p90": 0.010184183837890624,
         | 
| 1158 | 
            +
                      "p95": 0.010268009887695313,
         | 
| 1159 | 
            +
                      "p99": 0.010335070727539062,
         | 
| 1160 | 
            +
                      "unit": "seconds/token"
         | 
| 1161 | 
            +
                    }
         | 
| 1162 | 
            +
                  },
         | 
| 1163 | 
            +
                  "gpu_metrics": {
         | 
| 1164 | 
            +
                    "gpu_utilization_mean": 15.333333333333334,
         | 
| 1165 | 
            +
                    "gpu_utilization_max": 16,
         | 
| 1166 | 
            +
                    "gpu_utilization_min": 14,
         | 
| 1167 | 
            +
                    "gpu_memory_used_mean": 922,
         | 
| 1168 | 
            +
                    "gpu_memory_used_max": 922,
         | 
| 1169 | 
            +
                    "gpu_memory_used_min": 922,
         | 
| 1170 | 
            +
                    "sample_count": 3,
         | 
| 1171 | 
            +
                    "gpu_monitoring_status": "success"
         | 
| 1172 | 
            +
                  }
         | 
| 1173 | 
            +
                }
         | 
| 1174 | 
            +
              ]
         | 
| 1175 | 
            +
            }
         | 
    	
        dashboard.py
    ADDED
    
    | @@ -0,0 +1,541 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            #!/usr/bin/env python3
         | 
| 2 | 
            +
            """
         | 
| 3 | 
            +
            LLM Inference Performance Dashboard
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            A Gradio-based dashboard for visualizing and analyzing LLM inference benchmark results.
         | 
| 6 | 
            +
            Provides filtering, comparison, and historical analysis capabilities.
         | 
| 7 | 
            +
            """
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            import gradio as gr
         | 
| 10 | 
            +
            import plotly.graph_objects as go
         | 
| 11 | 
            +
            import plotly.express as px
         | 
| 12 | 
            +
            from plotly.subplots import make_subplots
         | 
| 13 | 
            +
            import pandas as pd
         | 
| 14 | 
            +
            import polars as pl
         | 
| 15 | 
            +
            from datetime import datetime
         | 
| 16 | 
            +
            from typing import List, Dict, Any, Optional, Tuple
         | 
| 17 | 
            +
            import logging
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            from benchmark_data_reader import BenchmarkDataReader
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            logging.basicConfig(level=logging.INFO)
         | 
| 22 | 
            +
            logger = logging.getLogger(__name__)
         | 
| 23 | 
            +
             | 
| 24 | 
            +
             | 
| 25 | 
            +
            class BenchmarkDashboard:
         | 
| 26 | 
            +
                """Main dashboard class for LLM inference performance visualization."""
         | 
| 27 | 
            +
             | 
| 28 | 
            +
                def __init__(self):
         | 
| 29 | 
            +
                    """Initialize the dashboard and load data."""
         | 
| 30 | 
            +
                    self.reader = BenchmarkDataReader()
         | 
| 31 | 
            +
                    self.df = None
         | 
| 32 | 
            +
                    self.load_data()
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                def load_data(self) -> None:
         | 
| 35 | 
            +
                    """Load benchmark data from files."""
         | 
| 36 | 
            +
                    try:
         | 
| 37 | 
            +
                        self.df = self.reader.read_benchmark_files()
         | 
| 38 | 
            +
                        if not self.df.is_empty():
         | 
| 39 | 
            +
                            # Convert to pandas for easier plotting with plotly
         | 
| 40 | 
            +
                            self.df_pandas = self.df.to_pandas()
         | 
| 41 | 
            +
                            # Convert timestamp to datetime
         | 
| 42 | 
            +
                            self.df_pandas['timestamp'] = pd.to_datetime(self.df_pandas['timestamp'])
         | 
| 43 | 
            +
                            logger.info(f"Loaded {len(self.df_pandas)} benchmark scenarios")
         | 
| 44 | 
            +
                        else:
         | 
| 45 | 
            +
                            logger.warning("No benchmark data loaded")
         | 
| 46 | 
            +
                            self.df_pandas = pd.DataFrame()
         | 
| 47 | 
            +
                    except Exception as e:
         | 
| 48 | 
            +
                        logger.error(f"Error loading data: {e}")
         | 
| 49 | 
            +
                        self.df_pandas = pd.DataFrame()
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                def get_filter_options(self) -> Tuple[List[str], List[str], List[str], List[str], str, str]:
         | 
| 52 | 
            +
                    """Get unique values for filter dropdowns and date range."""
         | 
| 53 | 
            +
                    if self.df_pandas.empty:
         | 
| 54 | 
            +
                        return [], [], [], [], "", ""
         | 
| 55 | 
            +
             | 
| 56 | 
            +
                    models = sorted(self.df_pandas['model_name'].dropna().unique().tolist())
         | 
| 57 | 
            +
                    scenarios = sorted(self.df_pandas['scenario_name'].dropna().unique().tolist())
         | 
| 58 | 
            +
                    gpus = sorted(self.df_pandas['gpu_name'].dropna().unique().tolist())
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                    # Get benchmark runs grouped by date (or commit_id if available)
         | 
| 61 | 
            +
                    benchmark_runs = []
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                    # Group by commit_id if available, otherwise group by date
         | 
| 64 | 
            +
                    if self.df_pandas['commit_id'].notna().any():
         | 
| 65 | 
            +
                        # Group by commit_id
         | 
| 66 | 
            +
                        for commit_id in self.df_pandas['commit_id'].dropna().unique():
         | 
| 67 | 
            +
                            commit_data = self.df_pandas[self.df_pandas['commit_id'] == commit_id]
         | 
| 68 | 
            +
                            date_str = commit_data['timestamp'].min().strftime('%Y-%m-%d')
         | 
| 69 | 
            +
                            models_count = len(commit_data['model_name'].unique())
         | 
| 70 | 
            +
                            scenarios_count = len(commit_data['scenario_name'].unique())
         | 
| 71 | 
            +
                            run_id = f"Commit {commit_id[:8]} ({date_str}) - {models_count} models, {scenarios_count} scenarios"
         | 
| 72 | 
            +
                            benchmark_runs.append(run_id)
         | 
| 73 | 
            +
                    else:
         | 
| 74 | 
            +
                        # Group by date since commit_id is not available
         | 
| 75 | 
            +
                        self.df_pandas['date'] = self.df_pandas['timestamp'].dt.date
         | 
| 76 | 
            +
                        for date in sorted(self.df_pandas['date'].unique()):
         | 
| 77 | 
            +
                            date_data = self.df_pandas[self.df_pandas['date'] == date]
         | 
| 78 | 
            +
                            models_count = len(date_data['model_name'].unique())
         | 
| 79 | 
            +
                            scenarios_count = len(date_data['scenario_name'].unique())
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                            # Check if any commit_id exists for this date (even if null)
         | 
| 82 | 
            +
                            unique_commits = date_data['commit_id'].dropna().unique()
         | 
| 83 | 
            +
                            if len(unique_commits) > 0:
         | 
| 84 | 
            +
                                commit_display = f"Commit {unique_commits[0][:8]}"
         | 
| 85 | 
            +
                            else:
         | 
| 86 | 
            +
                                commit_display = "No commit ID"
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                            run_id = f"{date} - {commit_display} - {models_count} models, {scenarios_count} scenarios"
         | 
| 89 | 
            +
                            benchmark_runs.append(run_id)
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                    benchmark_runs = sorted(benchmark_runs)
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                    # Get date range
         | 
| 94 | 
            +
                    min_date = self.df_pandas['timestamp'].min().strftime('%Y-%m-%d')
         | 
| 95 | 
            +
                    max_date = self.df_pandas['timestamp'].max().strftime('%Y-%m-%d')
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                    return models, scenarios, gpus, benchmark_runs, min_date, max_date
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                def filter_data(self, selected_models: List[str], selected_scenarios: List[str],
         | 
| 100 | 
            +
                               selected_gpus: List[str], selected_run: str = None,
         | 
| 101 | 
            +
                               start_date: str = None, end_date: str = None) -> pd.DataFrame:
         | 
| 102 | 
            +
                    """Filter data based on user selections."""
         | 
| 103 | 
            +
                    if self.df_pandas.empty:
         | 
| 104 | 
            +
                        return pd.DataFrame()
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                    filtered_df = self.df_pandas.copy()
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                    if selected_models:
         | 
| 109 | 
            +
                        filtered_df = filtered_df[filtered_df['model_name'].isin(selected_models)]
         | 
| 110 | 
            +
                    if selected_scenarios:
         | 
| 111 | 
            +
                        filtered_df = filtered_df[filtered_df['scenario_name'].isin(selected_scenarios)]
         | 
| 112 | 
            +
                    if selected_gpus:
         | 
| 113 | 
            +
                        filtered_df = filtered_df[filtered_df['gpu_name'].isin(selected_gpus)]
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                    # Filter by date range
         | 
| 116 | 
            +
                    if start_date and end_date:
         | 
| 117 | 
            +
                        start_datetime = pd.to_datetime(start_date)
         | 
| 118 | 
            +
                        end_datetime = pd.to_datetime(end_date) + pd.Timedelta(days=1)  # Include end date
         | 
| 119 | 
            +
                        filtered_df = filtered_df[
         | 
| 120 | 
            +
                            (filtered_df['timestamp'] >= start_datetime) &
         | 
| 121 | 
            +
                            (filtered_df['timestamp'] < end_datetime)
         | 
| 122 | 
            +
                        ]
         | 
| 123 | 
            +
             | 
| 124 | 
            +
                    # Filter by specific benchmark run (commit or date-based grouping)
         | 
| 125 | 
            +
                    if selected_run:
         | 
| 126 | 
            +
                        if selected_run.startswith("Commit "):
         | 
| 127 | 
            +
                            # Extract commit_id from the run_id format: "Commit 12345678 (2025-09-16) - models"
         | 
| 128 | 
            +
                            try:
         | 
| 129 | 
            +
                                commit_id_part = selected_run.split('Commit ')[1].split(' ')[0]  # Get commit hash
         | 
| 130 | 
            +
                                # Find all data with this commit_id
         | 
| 131 | 
            +
                                filtered_df = filtered_df[filtered_df['commit_id'] == commit_id_part]
         | 
| 132 | 
            +
                            except (IndexError, ValueError):
         | 
| 133 | 
            +
                                # Fallback if parsing fails
         | 
| 134 | 
            +
                                logger.warning(f"Failed to parse commit from: {selected_run}")
         | 
| 135 | 
            +
                        else:
         | 
| 136 | 
            +
                            # Date-based grouping format: "2025-09-16 - X models, Y scenarios"
         | 
| 137 | 
            +
                            try:
         | 
| 138 | 
            +
                                date_str = selected_run.split(' - ')[0]
         | 
| 139 | 
            +
                                selected_date = pd.to_datetime(date_str).date()
         | 
| 140 | 
            +
             | 
| 141 | 
            +
                                # Add date column if not exists
         | 
| 142 | 
            +
                                if 'date' not in filtered_df.columns:
         | 
| 143 | 
            +
                                    filtered_df = filtered_df.copy()
         | 
| 144 | 
            +
                                    filtered_df['date'] = filtered_df['timestamp'].dt.date
         | 
| 145 | 
            +
             | 
| 146 | 
            +
                                # Filter by date
         | 
| 147 | 
            +
                                filtered_df = filtered_df[filtered_df['date'] == selected_date]
         | 
| 148 | 
            +
                            except (IndexError, ValueError) as e:
         | 
| 149 | 
            +
                                logger.warning(f"Failed to parse date from: {selected_run}, error: {e}")
         | 
| 150 | 
            +
                                # Return empty dataframe if parsing fails
         | 
| 151 | 
            +
                                filtered_df = filtered_df.iloc[0:0]
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                    return filtered_df
         | 
| 154 | 
            +
             | 
| 155 | 
            +
                def create_performance_comparison_chart(self, filtered_df: pd.DataFrame,
         | 
| 156 | 
            +
                                                      metric: str = "tokens_per_second_mean") -> go.Figure:
         | 
| 157 | 
            +
                    """Create performance comparison chart."""
         | 
| 158 | 
            +
                    if filtered_df.empty:
         | 
| 159 | 
            +
                        fig = go.Figure()
         | 
| 160 | 
            +
                        fig.add_annotation(text="No data available for selected filters",
         | 
| 161 | 
            +
                                         xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False)
         | 
| 162 | 
            +
                        return fig
         | 
| 163 | 
            +
             | 
| 164 | 
            +
                    # Create bar chart comparing performance across models and scenarios
         | 
| 165 | 
            +
                    fig = px.bar(
         | 
| 166 | 
            +
                        filtered_df,
         | 
| 167 | 
            +
                        x='scenario_name',
         | 
| 168 | 
            +
                        y=metric,
         | 
| 169 | 
            +
                        color='model_name',
         | 
| 170 | 
            +
                        title=f'Performance Comparison: {metric.replace("_", " ").title()}',
         | 
| 171 | 
            +
                        labels={
         | 
| 172 | 
            +
                            metric: metric.replace("_", " ").title(),
         | 
| 173 | 
            +
                            'scenario_name': 'Benchmark Scenario',
         | 
| 174 | 
            +
                            'model_name': 'Model'
         | 
| 175 | 
            +
                        },
         | 
| 176 | 
            +
                        hover_data=['gpu_name', 'timestamp']
         | 
| 177 | 
            +
                    )
         | 
| 178 | 
            +
             | 
| 179 | 
            +
                    fig.update_layout(
         | 
| 180 | 
            +
                        xaxis_tickangle=-45,
         | 
| 181 | 
            +
                        height=500,
         | 
| 182 | 
            +
                        showlegend=True,
         | 
| 183 | 
            +
                        plot_bgcolor='rgba(235, 242, 250, 1.0)',
         | 
| 184 | 
            +
                        paper_bgcolor='rgba(245, 248, 252, 0.7)'
         | 
| 185 | 
            +
                    )
         | 
| 186 | 
            +
             | 
| 187 | 
            +
                    return fig
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                def create_historical_trend_chart(self, filtered_df: pd.DataFrame,
         | 
| 190 | 
            +
                                                metric: str = "tokens_per_second_mean") -> go.Figure:
         | 
| 191 | 
            +
                    """Create historical trend chart showing performance across different benchmark runs for the same scenarios."""
         | 
| 192 | 
            +
                    if filtered_df.empty:
         | 
| 193 | 
            +
                        fig = go.Figure()
         | 
| 194 | 
            +
                        fig.add_annotation(text="No data available for selected filters",
         | 
| 195 | 
            +
                                         xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False)
         | 
| 196 | 
            +
                        return fig
         | 
| 197 | 
            +
             | 
| 198 | 
            +
                    fig = go.Figure()
         | 
| 199 | 
            +
             | 
| 200 | 
            +
                    # Group by model and scenario combination to show trends across benchmark runs
         | 
| 201 | 
            +
                    for model in filtered_df['model_name'].unique():
         | 
| 202 | 
            +
                        model_data = filtered_df[filtered_df['model_name'] == model]
         | 
| 203 | 
            +
             | 
| 204 | 
            +
                        for scenario in model_data['scenario_name'].unique():
         | 
| 205 | 
            +
                            scenario_data = model_data[model_data['scenario_name'] == scenario]
         | 
| 206 | 
            +
             | 
| 207 | 
            +
                            # Sort by timestamp to show chronological progression
         | 
| 208 | 
            +
                            scenario_data = scenario_data.sort_values('timestamp')
         | 
| 209 | 
            +
             | 
| 210 | 
            +
                            # Only show trends if we have multiple data points for this model-scenario combination
         | 
| 211 | 
            +
                            if len(scenario_data) > 1:
         | 
| 212 | 
            +
                                fig.add_trace(go.Scatter(
         | 
| 213 | 
            +
                                    x=scenario_data['timestamp'],
         | 
| 214 | 
            +
                                    y=scenario_data[metric],
         | 
| 215 | 
            +
                                    mode='lines+markers',
         | 
| 216 | 
            +
                                    name=f'{model} - {scenario}',
         | 
| 217 | 
            +
                                    line=dict(width=2),
         | 
| 218 | 
            +
                                    marker=dict(size=6),
         | 
| 219 | 
            +
                                    hovertemplate=f'<b>{model}</b><br>' +
         | 
| 220 | 
            +
                                                 f'Scenario: {scenario}<br>' +
         | 
| 221 | 
            +
                                                 'Time: %{x}<br>' +
         | 
| 222 | 
            +
                                                 f'{metric.replace("_", " ").title()}: %{{y}}<br>' +
         | 
| 223 | 
            +
                                                 '<extra></extra>'
         | 
| 224 | 
            +
                                ))
         | 
| 225 | 
            +
             | 
| 226 | 
            +
                    # If no trends found (all scenarios have only single runs), show a message
         | 
| 227 | 
            +
                    if len(fig.data) == 0:
         | 
| 228 | 
            +
                        fig.add_annotation(
         | 
| 229 | 
            +
                            text="No historical trends available.<br>Each scenario only has one benchmark run.<br>Historical trends require multiple runs of the same scenario over time.",
         | 
| 230 | 
            +
                            xref="paper", yref="paper", x=0.5, y=0.5,
         | 
| 231 | 
            +
                            showarrow=False,
         | 
| 232 | 
            +
                            font=dict(size=14)
         | 
| 233 | 
            +
                        )
         | 
| 234 | 
            +
             | 
| 235 | 
            +
                    fig.update_layout(
         | 
| 236 | 
            +
                        title=f'Historical Trends Across Benchmark Runs: {metric.replace("_", " ").title()}',
         | 
| 237 | 
            +
                        xaxis_title='Timestamp',
         | 
| 238 | 
            +
                        yaxis_title=metric.replace("_", " ").title(),
         | 
| 239 | 
            +
                        height=500,
         | 
| 240 | 
            +
                        hovermode='closest',
         | 
| 241 | 
            +
                        showlegend=True,
         | 
| 242 | 
            +
                        plot_bgcolor='rgba(235, 242, 250, 1.0)',
         | 
| 243 | 
            +
                        paper_bgcolor='rgba(245, 248, 252, 0.7)'
         | 
| 244 | 
            +
                    )
         | 
| 245 | 
            +
             | 
| 246 | 
            +
                    return fig
         | 
| 247 | 
            +
             | 
| 248 | 
            +
                def create_gpu_comparison_chart(self, filtered_df: pd.DataFrame) -> go.Figure:
         | 
| 249 | 
            +
                    """Create GPU utilization and memory usage comparison."""
         | 
| 250 | 
            +
                    if filtered_df.empty:
         | 
| 251 | 
            +
                        fig = go.Figure()
         | 
| 252 | 
            +
                        fig.add_annotation(text="No data available for selected filters",
         | 
| 253 | 
            +
                                         xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False)
         | 
| 254 | 
            +
                        return fig
         | 
| 255 | 
            +
             | 
| 256 | 
            +
                    # Create subplots for GPU metrics
         | 
| 257 | 
            +
                    fig = make_subplots(
         | 
| 258 | 
            +
                        rows=2, cols=2,
         | 
| 259 | 
            +
                        subplot_titles=('GPU Utilization Mean (%)', 'GPU Memory Used (MB)',
         | 
| 260 | 
            +
                                      'GPU Utilization vs Performance', 'Memory Usage vs Performance'),
         | 
| 261 | 
            +
                        specs=[[{"secondary_y": False}, {"secondary_y": False}],
         | 
| 262 | 
            +
                               [{"secondary_y": False}, {"secondary_y": False}]]
         | 
| 263 | 
            +
                    )
         | 
| 264 | 
            +
             | 
| 265 | 
            +
                    # GPU Utilization bar chart
         | 
| 266 | 
            +
                    gpu_util_data = filtered_df.groupby(['model_name', 'gpu_name'])['gpu_gpu_utilization_mean'].mean().reset_index()
         | 
| 267 | 
            +
                    for model in gpu_util_data['model_name'].unique():
         | 
| 268 | 
            +
                        model_data = gpu_util_data[gpu_util_data['model_name'] == model]
         | 
| 269 | 
            +
                        fig.add_trace(
         | 
| 270 | 
            +
                            go.Bar(x=model_data['gpu_name'], y=model_data['gpu_gpu_utilization_mean'],
         | 
| 271 | 
            +
                                  name=f'{model} - Utilization', showlegend=True),
         | 
| 272 | 
            +
                            row=1, col=1
         | 
| 273 | 
            +
                        )
         | 
| 274 | 
            +
             | 
| 275 | 
            +
                    # GPU Memory Usage bar chart
         | 
| 276 | 
            +
                    gpu_mem_data = filtered_df.groupby(['model_name', 'gpu_name'])['gpu_gpu_memory_used_mean'].mean().reset_index()
         | 
| 277 | 
            +
                    for model in gpu_mem_data['model_name'].unique():
         | 
| 278 | 
            +
                        model_data = gpu_mem_data[gpu_mem_data['model_name'] == model]
         | 
| 279 | 
            +
                        fig.add_trace(
         | 
| 280 | 
            +
                            go.Bar(x=model_data['gpu_name'], y=model_data['gpu_gpu_memory_used_mean'],
         | 
| 281 | 
            +
                                  name=f'{model} - Memory', showlegend=True),
         | 
| 282 | 
            +
                            row=1, col=2
         | 
| 283 | 
            +
                        )
         | 
| 284 | 
            +
             | 
| 285 | 
            +
                    # GPU Utilization vs Performance scatter
         | 
| 286 | 
            +
                    fig.add_trace(
         | 
| 287 | 
            +
                        go.Scatter(x=filtered_df['gpu_gpu_utilization_mean'],
         | 
| 288 | 
            +
                                  y=filtered_df['tokens_per_second_mean'],
         | 
| 289 | 
            +
                                  mode='markers',
         | 
| 290 | 
            +
                                  text=filtered_df['model_name'],
         | 
| 291 | 
            +
                                  name='Util vs Performance',
         | 
| 292 | 
            +
                                  showlegend=True),
         | 
| 293 | 
            +
                        row=2, col=1
         | 
| 294 | 
            +
                    )
         | 
| 295 | 
            +
             | 
| 296 | 
            +
                    # Memory Usage vs Performance scatter
         | 
| 297 | 
            +
                    fig.add_trace(
         | 
| 298 | 
            +
                        go.Scatter(x=filtered_df['gpu_gpu_memory_used_mean'],
         | 
| 299 | 
            +
                                  y=filtered_df['tokens_per_second_mean'],
         | 
| 300 | 
            +
                                  mode='markers',
         | 
| 301 | 
            +
                                  text=filtered_df['model_name'],
         | 
| 302 | 
            +
                                  name='Memory vs Performance',
         | 
| 303 | 
            +
                                  showlegend=True),
         | 
| 304 | 
            +
                        row=2, col=2
         | 
| 305 | 
            +
                    )
         | 
| 306 | 
            +
             | 
| 307 | 
            +
                    fig.update_layout(
         | 
| 308 | 
            +
                        height=800,
         | 
| 309 | 
            +
                        title_text="GPU Performance Analysis",
         | 
| 310 | 
            +
                        plot_bgcolor='rgba(235, 242, 250, 1.0)',
         | 
| 311 | 
            +
                        paper_bgcolor='rgba(245, 248, 252, 0.7)'
         | 
| 312 | 
            +
                    )
         | 
| 313 | 
            +
                    return fig
         | 
| 314 | 
            +
             | 
| 315 | 
            +
                def create_metrics_summary_table(self, filtered_df: pd.DataFrame) -> pd.DataFrame:
         | 
| 316 | 
            +
                    """Create summary statistics table."""
         | 
| 317 | 
            +
                    if filtered_df.empty:
         | 
| 318 | 
            +
                        return pd.DataFrame({'Message': ['No data available for selected filters']})
         | 
| 319 | 
            +
             | 
| 320 | 
            +
                    # Key performance metrics
         | 
| 321 | 
            +
                    metrics_cols = [
         | 
| 322 | 
            +
                        'tokens_per_second_mean', 'latency_seconds_mean',
         | 
| 323 | 
            +
                        'time_to_first_token_seconds_mean', 'time_per_output_token_seconds_mean'
         | 
| 324 | 
            +
                    ]
         | 
| 325 | 
            +
             | 
| 326 | 
            +
                    summary_data = []
         | 
| 327 | 
            +
                    for model in filtered_df['model_name'].unique():
         | 
| 328 | 
            +
                        model_data = filtered_df[filtered_df['model_name'] == model]
         | 
| 329 | 
            +
             | 
| 330 | 
            +
                        row = {'Model': model, 'Scenarios': len(model_data)}
         | 
| 331 | 
            +
                        for metric in metrics_cols:
         | 
| 332 | 
            +
                            if metric in model_data.columns:
         | 
| 333 | 
            +
                                row[f'{metric.replace("_", " ").title()} (Avg)'] = f"{model_data[metric].mean():.2f}"
         | 
| 334 | 
            +
                                row[f'{metric.replace("_", " ").title()} (Best)'] = f"{model_data[metric].min() if 'latency' in metric or 'time' in metric else model_data[metric].max():.2f}"
         | 
| 335 | 
            +
             | 
| 336 | 
            +
                        summary_data.append(row)
         | 
| 337 | 
            +
             | 
| 338 | 
            +
                    return pd.DataFrame(summary_data)
         | 
| 339 | 
            +
             | 
| 340 | 
            +
                def update_dashboard(self, selected_models: List[str], selected_scenarios: List[str],
         | 
| 341 | 
            +
                                    selected_gpus: List[str], selected_run: str, metric: str):
         | 
| 342 | 
            +
                    """Update all dashboard components based on current filters."""
         | 
| 343 | 
            +
                    filtered_df = self.filter_data(
         | 
| 344 | 
            +
                        selected_models, selected_scenarios, selected_gpus, selected_run
         | 
| 345 | 
            +
                    )
         | 
| 346 | 
            +
             | 
| 347 | 
            +
                    # Create charts
         | 
| 348 | 
            +
                    perf_chart = self.create_performance_comparison_chart(filtered_df, metric)
         | 
| 349 | 
            +
                    gpu_chart = self.create_gpu_comparison_chart(filtered_df)
         | 
| 350 | 
            +
                    summary_table = self.create_metrics_summary_table(filtered_df)
         | 
| 351 | 
            +
             | 
| 352 | 
            +
                    # Summary stats
         | 
| 353 | 
            +
                    if not filtered_df.empty:
         | 
| 354 | 
            +
                        summary_text = f"""
         | 
| 355 | 
            +
                        **Data Summary:**
         | 
| 356 | 
            +
                        - Total Scenarios: {len(filtered_df)}
         | 
| 357 | 
            +
                        - Models: {', '.join(filtered_df['model_name'].unique())}
         | 
| 358 | 
            +
                        - Date Range: {filtered_df['timestamp'].min().strftime('%Y-%m-%d')} to {filtered_df['timestamp'].max().strftime('%Y-%m-%d')}
         | 
| 359 | 
            +
                        - Benchmark Runs: {len(filtered_df.groupby(['timestamp', 'file_path']))}
         | 
| 360 | 
            +
                        """
         | 
| 361 | 
            +
                    else:
         | 
| 362 | 
            +
                        summary_text = "No data available for current selection."
         | 
| 363 | 
            +
             | 
| 364 | 
            +
                    return perf_chart, gpu_chart, summary_table, summary_text
         | 
| 365 | 
            +
             | 
| 366 | 
            +
                def update_historical_trends(self, selected_models: List[str], selected_scenarios: List[str],
         | 
| 367 | 
            +
                                            selected_gpus: List[str], start_date: str, end_date: str, metric: str):
         | 
| 368 | 
            +
                    """Update historical trends chart with date filtering."""
         | 
| 369 | 
            +
                    filtered_df = self.filter_data(
         | 
| 370 | 
            +
                        selected_models, selected_scenarios, selected_gpus,
         | 
| 371 | 
            +
                        start_date=start_date, end_date=end_date
         | 
| 372 | 
            +
                    )
         | 
| 373 | 
            +
                    trend_chart = self.create_historical_trend_chart(filtered_df, metric)
         | 
| 374 | 
            +
                    return trend_chart
         | 
| 375 | 
            +
             | 
| 376 | 
            +
             | 
| 377 | 
            +
            def create_gradio_interface() -> gr.Interface:
         | 
| 378 | 
            +
                """Create the Gradio interface."""
         | 
| 379 | 
            +
                dashboard = BenchmarkDashboard()
         | 
| 380 | 
            +
                models, scenarios, gpus, benchmark_runs, min_date, max_date = dashboard.get_filter_options()
         | 
| 381 | 
            +
             | 
| 382 | 
            +
                # Performance metrics options
         | 
| 383 | 
            +
                metric_options = [
         | 
| 384 | 
            +
                    "tokens_per_second_mean",
         | 
| 385 | 
            +
                    "latency_seconds_mean",
         | 
| 386 | 
            +
                    "time_to_first_token_seconds_mean",
         | 
| 387 | 
            +
                    "time_per_output_token_seconds_mean"
         | 
| 388 | 
            +
                ]
         | 
| 389 | 
            +
             | 
| 390 | 
            +
                with gr.Blocks(title="LLM Inference Performance Dashboard", theme=gr.themes.Soft()) as demo:
         | 
| 391 | 
            +
                    gr.Markdown("# 🚀 LLM Inference Performance Dashboard")
         | 
| 392 | 
            +
                    gr.Markdown("Analyze and compare LLM inference performance across models, scenarios, and hardware configurations.")
         | 
| 393 | 
            +
             | 
| 394 | 
            +
                    with gr.Row():
         | 
| 395 | 
            +
                        with gr.Column(scale=1):
         | 
| 396 | 
            +
                            gr.Markdown("## Filters")
         | 
| 397 | 
            +
             | 
| 398 | 
            +
                            model_filter = gr.CheckboxGroup(
         | 
| 399 | 
            +
                                choices=models,
         | 
| 400 | 
            +
                                value=models,
         | 
| 401 | 
            +
                                label="Select Models",
         | 
| 402 | 
            +
                                interactive=True
         | 
| 403 | 
            +
                            )
         | 
| 404 | 
            +
                            scenario_filter = gr.CheckboxGroup(
         | 
| 405 | 
            +
                                choices=scenarios,
         | 
| 406 | 
            +
                                value=scenarios[:5] if len(scenarios) > 5 else scenarios,  # Limit initial selection
         | 
| 407 | 
            +
                                label="Select Scenarios",
         | 
| 408 | 
            +
                                interactive=True
         | 
| 409 | 
            +
                            )
         | 
| 410 | 
            +
                            gpu_filter = gr.CheckboxGroup(
         | 
| 411 | 
            +
                                choices=gpus,
         | 
| 412 | 
            +
                                value=gpus,
         | 
| 413 | 
            +
                                label="Select GPUs",
         | 
| 414 | 
            +
                                interactive=True
         | 
| 415 | 
            +
                            )
         | 
| 416 | 
            +
                            metric_selector = gr.Dropdown(
         | 
| 417 | 
            +
                                choices=metric_options,
         | 
| 418 | 
            +
                                value="tokens_per_second_mean",
         | 
| 419 | 
            +
                                label="Primary Metric",
         | 
| 420 | 
            +
                                interactive=True
         | 
| 421 | 
            +
                            )
         | 
| 422 | 
            +
             | 
| 423 | 
            +
                            gr.Markdown("### Benchmark Run Selection")
         | 
| 424 | 
            +
             | 
| 425 | 
            +
                            # Search field for filtering benchmark runs
         | 
| 426 | 
            +
                            run_search = gr.Textbox(
         | 
| 427 | 
            +
                                value="",
         | 
| 428 | 
            +
                                label="Search Benchmark Runs",
         | 
| 429 | 
            +
                                placeholder="Search by date, commit ID, etc.",
         | 
| 430 | 
            +
                                interactive=True
         | 
| 431 | 
            +
                            )
         | 
| 432 | 
            +
             | 
| 433 | 
            +
                            # Filtered benchmark run selector
         | 
| 434 | 
            +
                            benchmark_run_selector = gr.Dropdown(
         | 
| 435 | 
            +
                                choices=benchmark_runs,
         | 
| 436 | 
            +
                                value=benchmark_runs[0] if benchmark_runs else None,
         | 
| 437 | 
            +
                                label="Select Benchmark Run",
         | 
| 438 | 
            +
                                info="Choose specific daily run (all models from same commit/date)",
         | 
| 439 | 
            +
                                interactive=True,
         | 
| 440 | 
            +
                                allow_custom_value=False
         | 
| 441 | 
            +
                            )
         | 
| 442 | 
            +
             | 
| 443 | 
            +
                        with gr.Column(scale=3):
         | 
| 444 | 
            +
                            with gr.Tabs():
         | 
| 445 | 
            +
                                with gr.TabItem("Performance Comparison"):
         | 
| 446 | 
            +
                                    perf_plot = gr.Plot(label="Performance Comparison")
         | 
| 447 | 
            +
             | 
| 448 | 
            +
                                with gr.TabItem("Historical Trends"):
         | 
| 449 | 
            +
                                    with gr.Row():
         | 
| 450 | 
            +
                                        with gr.Column(scale=1):
         | 
| 451 | 
            +
                                            gr.Markdown("### Date Range for Historical Analysis")
         | 
| 452 | 
            +
                                            start_date = gr.Textbox(
         | 
| 453 | 
            +
                                                value=min_date,
         | 
| 454 | 
            +
                                                label="Start Date (YYYY-MM-DD)",
         | 
| 455 | 
            +
                                                placeholder="2025-01-01",
         | 
| 456 | 
            +
                                                interactive=True
         | 
| 457 | 
            +
                                            )
         | 
| 458 | 
            +
                                            end_date = gr.Textbox(
         | 
| 459 | 
            +
                                                value=max_date,
         | 
| 460 | 
            +
                                                label="End Date (YYYY-MM-DD)",
         | 
| 461 | 
            +
                                                placeholder="2025-12-31",
         | 
| 462 | 
            +
                                                interactive=True
         | 
| 463 | 
            +
                                            )
         | 
| 464 | 
            +
                                        with gr.Column(scale=3):
         | 
| 465 | 
            +
                                            trend_plot = gr.Plot(label="Historical Trends")
         | 
| 466 | 
            +
             | 
| 467 | 
            +
                                with gr.TabItem("GPU Analysis"):
         | 
| 468 | 
            +
                                    gpu_plot = gr.Plot(label="GPU Performance Analysis")
         | 
| 469 | 
            +
             | 
| 470 | 
            +
                                with gr.TabItem("Summary Statistics"):
         | 
| 471 | 
            +
                                    summary_table = gr.Dataframe(label="Performance Summary")
         | 
| 472 | 
            +
             | 
| 473 | 
            +
                    with gr.Row():
         | 
| 474 | 
            +
                        summary_text = gr.Markdown("", label="Summary")
         | 
| 475 | 
            +
             | 
| 476 | 
            +
                    # Function to filter benchmark runs based on search
         | 
| 477 | 
            +
                    def filter_benchmark_runs(search_text):
         | 
| 478 | 
            +
                        if not search_text:
         | 
| 479 | 
            +
                            return gr.Dropdown(choices=benchmark_runs, value=benchmark_runs[0] if benchmark_runs else None)
         | 
| 480 | 
            +
             | 
| 481 | 
            +
                        # Filter runs that contain the search text (case insensitive)
         | 
| 482 | 
            +
                        filtered_runs = [run for run in benchmark_runs if search_text.lower() in run.lower()]
         | 
| 483 | 
            +
                        return gr.Dropdown(choices=filtered_runs, value=filtered_runs[0] if filtered_runs else None)
         | 
| 484 | 
            +
             | 
| 485 | 
            +
                    # Update function for main dashboard (excluding historical trends)
         | 
| 486 | 
            +
                    def update_main(models_selected, scenarios_selected, gpus_selected, run_selected, metric):
         | 
| 487 | 
            +
                        return dashboard.update_dashboard(
         | 
| 488 | 
            +
                            models_selected, scenarios_selected, gpus_selected, run_selected, metric
         | 
| 489 | 
            +
                        )
         | 
| 490 | 
            +
             | 
| 491 | 
            +
                    # Update function for historical trends
         | 
| 492 | 
            +
                    def update_trends(models_selected, scenarios_selected, gpus_selected, start_dt, end_dt, metric):
         | 
| 493 | 
            +
                        return dashboard.update_historical_trends(
         | 
| 494 | 
            +
                            models_selected, scenarios_selected, gpus_selected, start_dt, end_dt, metric
         | 
| 495 | 
            +
                        )
         | 
| 496 | 
            +
             | 
| 497 | 
            +
                    # Set up interactivity for main dashboard
         | 
| 498 | 
            +
                    main_inputs = [model_filter, scenario_filter, gpu_filter, benchmark_run_selector, metric_selector]
         | 
| 499 | 
            +
                    main_outputs = [perf_plot, gpu_plot, summary_table, summary_text]
         | 
| 500 | 
            +
             | 
| 501 | 
            +
                    # Set up interactivity for historical trends
         | 
| 502 | 
            +
                    trends_inputs = [model_filter, scenario_filter, gpu_filter, start_date, end_date, metric_selector]
         | 
| 503 | 
            +
                    trends_outputs = [trend_plot]
         | 
| 504 | 
            +
             | 
| 505 | 
            +
                    # Update main dashboard on filter changes
         | 
| 506 | 
            +
                    for input_component in main_inputs:
         | 
| 507 | 
            +
                        input_component.change(fn=update_main, inputs=main_inputs, outputs=main_outputs)
         | 
| 508 | 
            +
             | 
| 509 | 
            +
                    # Update historical trends on filter changes
         | 
| 510 | 
            +
                    for input_component in trends_inputs:
         | 
| 511 | 
            +
                        input_component.change(fn=update_trends, inputs=trends_inputs, outputs=trends_outputs)
         | 
| 512 | 
            +
             | 
| 513 | 
            +
                    # Connect search field to filter benchmark runs
         | 
| 514 | 
            +
                    run_search.change(fn=filter_benchmark_runs, inputs=[run_search], outputs=[benchmark_run_selector])
         | 
| 515 | 
            +
             | 
| 516 | 
            +
                    # Initial load
         | 
| 517 | 
            +
                    demo.load(fn=update_main, inputs=main_inputs, outputs=main_outputs)
         | 
| 518 | 
            +
                    demo.load(fn=update_trends, inputs=trends_inputs, outputs=trends_outputs)
         | 
| 519 | 
            +
             | 
| 520 | 
            +
                return demo
         | 
| 521 | 
            +
             | 
| 522 | 
            +
             | 
| 523 | 
            +
            def main():
         | 
| 524 | 
            +
                """Launch the dashboard."""
         | 
| 525 | 
            +
                logger.info("Starting LLM Inference Performance Dashboard")
         | 
| 526 | 
            +
             | 
| 527 | 
            +
                try:
         | 
| 528 | 
            +
                    demo = create_gradio_interface()
         | 
| 529 | 
            +
                    demo.launch(
         | 
| 530 | 
            +
                        server_name="0.0.0.0",
         | 
| 531 | 
            +
                        server_port=7860,
         | 
| 532 | 
            +
                        share=False,
         | 
| 533 | 
            +
                        show_error=True
         | 
| 534 | 
            +
                    )
         | 
| 535 | 
            +
                except Exception as e:
         | 
| 536 | 
            +
                    logger.error(f"Error launching dashboard: {e}")
         | 
| 537 | 
            +
                    raise
         | 
| 538 | 
            +
             | 
| 539 | 
            +
             | 
| 540 | 
            +
            if __name__ == "__main__":
         | 
| 541 | 
            +
                main()
         | 
    	
        requirements.txt
    ADDED
    
    | @@ -0,0 +1,5 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            polars>=1.33.0
         | 
| 2 | 
            +
            gradio>=4.0.0
         | 
| 3 | 
            +
            plotly>=5.17.0
         | 
| 4 | 
            +
            pandas>=2.0.0
         | 
| 5 | 
            +
            pyarrow>=21.0.0
         | 
