Ákos Hadnagy commited on
Commit
4046334
·
1 Parent(s): 4cb4037

WIP version

Browse files
.gitignore ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .DS_Store
2
+ .venv
3
+ __pycache__
4
+ *.pyc
5
+ *.pyo
6
+ *.pyd
7
+ *.pyw
8
+ *.pyz
9
+ *.pywz
10
+ *.pyzw
11
+ *.pyzwz
12
+ *.pyzwzw
benchmark_data_reader.py ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ Benchmark Data Reader for LLM Inference Performance Dashboard
4
+
5
+ This module provides functionality to read benchmark result files and convert them
6
+ into a flattened Polars DataFrame for analysis and visualization.
7
+ """
8
+
9
+ import json
10
+ import polars as pl
11
+ from pathlib import Path
12
+ from typing import List, Dict, Any, Optional
13
+ import logging
14
+
15
+ logger = logging.getLogger(__name__)
16
+
17
+
18
+ class BenchmarkDataReader:
19
+ """Reader for benchmark result JSON files that flattens data into a Polars DataFrame."""
20
+
21
+ def __init__(self, benchmark_dir: str = "benchmark_results"):
22
+ """
23
+ Initialize the benchmark data reader.
24
+
25
+ Args:
26
+ benchmark_dir: Directory containing benchmark result files
27
+ """
28
+ self.benchmark_dir = Path(benchmark_dir)
29
+
30
+ def read_benchmark_files(self) -> pl.DataFrame:
31
+ """
32
+ Read all benchmark files and return a flattened Polars DataFrame.
33
+
34
+ Returns:
35
+ Polars DataFrame where each row represents a benchmark scenario with all metrics
36
+ """
37
+ all_records = []
38
+
39
+ # Find all individual model benchmark files (exclude summary files)
40
+ benchmark_files = list(self.benchmark_dir.rglob("*_benchmark_*.json"))
41
+ benchmark_files = [f for f in benchmark_files if "summary" not in f.name]
42
+
43
+ logger.info(f"Found {len(benchmark_files)} benchmark files")
44
+
45
+ for file_path in benchmark_files:
46
+ try:
47
+ records = self._process_benchmark_file(file_path)
48
+ all_records.extend(records)
49
+ logger.debug(f"Processed {len(records)} scenarios from {file_path}")
50
+ except Exception as e:
51
+ logger.error(f"Error processing {file_path}: {e}")
52
+ continue
53
+
54
+ if not all_records:
55
+ logger.warning("No benchmark data found")
56
+ return pl.DataFrame()
57
+
58
+ # Create DataFrame from all records
59
+ df = pl.DataFrame(all_records)
60
+ logger.info(f"Created DataFrame with {len(df)} rows and {len(df.columns)} columns")
61
+
62
+ return df
63
+
64
+ def _process_benchmark_file(self, file_path: Path) -> List[Dict[str, Any]]:
65
+ """
66
+ Process a single benchmark file and extract all scenarios.
67
+
68
+ Args:
69
+ file_path: Path to the benchmark JSON file
70
+
71
+ Returns:
72
+ List of flattened records, one per benchmark scenario
73
+ """
74
+ with open(file_path, 'r') as f:
75
+ data = json.load(f)
76
+
77
+ records = []
78
+ model_name = data.get("model_name", "unknown")
79
+
80
+ for scenario in data.get("benchmark_scenarios", []):
81
+ record = self._flatten_scenario(scenario, model_name, file_path)
82
+ records.append(record)
83
+
84
+ return records
85
+
86
+ def _flatten_scenario(self, scenario: Dict[str, Any], model_name: str, file_path: Path) -> Dict[str, Any]:
87
+ """
88
+ Flatten a single benchmark scenario into a flat record.
89
+
90
+ Args:
91
+ scenario: Scenario data from benchmark file
92
+ model_name: Name of the model being benchmarked
93
+ file_path: Path to the original file
94
+
95
+ Returns:
96
+ Flattened dictionary with all metrics and metadata
97
+ """
98
+ record = {
99
+ # File metadata
100
+ "file_path": str(file_path),
101
+ "model_name": model_name,
102
+
103
+ # Scenario metadata
104
+ "scenario_name": scenario.get("scenario_name", "unknown"),
105
+ }
106
+
107
+ # Add metadata fields
108
+ metadata = scenario.get("metadata", {})
109
+ record.update({
110
+ "timestamp": metadata.get("timestamp"),
111
+ "commit_id": metadata.get("commit_id"),
112
+ })
113
+
114
+ # Add hardware info
115
+ hw_info = metadata.get("hardware_info", {})
116
+ record.update({
117
+ "gpu_name": hw_info.get("gpu_name"),
118
+ "gpu_memory_total_mb": hw_info.get("gpu_memory_total_mb"),
119
+ "cpu_count": hw_info.get("cpu_count"),
120
+ "memory_total_mb": hw_info.get("memory_total_mb"),
121
+ "python_version": hw_info.get("python_version"),
122
+ "torch_version": hw_info.get("torch_version"),
123
+ "cuda_version": hw_info.get("cuda_version"),
124
+ })
125
+
126
+ # Add config info
127
+ config = metadata.get("config", {})
128
+ record.update({
129
+ "config_name": config.get("name"),
130
+ "model_id": config.get("model_id"),
131
+ "variant": config.get("variant"),
132
+ "warmup_iterations": config.get("warmup_iterations"),
133
+ "measurement_iterations": config.get("measurement_iterations"),
134
+ "num_tokens_to_generate": config.get("num_tokens_to_generate"),
135
+ "device": config.get("device"),
136
+ "torch_dtype": config.get("torch_dtype"),
137
+ "compile_mode": config.get("compile_mode"),
138
+ "use_cache": config.get("use_cache"),
139
+ "batch_size": config.get("batch_size"),
140
+ "sequence_length": config.get("sequence_length"),
141
+ "attn_implementation": config.get("attn_implementation"),
142
+ "sdpa_backend": config.get("sdpa_backend"),
143
+ })
144
+
145
+ # Add measurement statistics for each metric
146
+ measurements = scenario.get("measurements", {})
147
+ for metric_name, metric_data in measurements.items():
148
+ if isinstance(metric_data, dict):
149
+ # Add statistics for this metric
150
+ for stat_name, stat_value in metric_data.items():
151
+ if stat_name != "measurements": # Skip raw measurements array
152
+ record[f"{metric_name}_{stat_name}"] = stat_value
153
+
154
+ # Add GPU metrics
155
+ gpu_metrics = scenario.get("gpu_metrics", {})
156
+ for gpu_metric, value in gpu_metrics.items():
157
+ record[f"gpu_{gpu_metric}"] = value
158
+
159
+ return record
160
+
161
+ def get_summary_statistics(self, df: pl.DataFrame) -> Dict[str, Any]:
162
+ """
163
+ Generate summary statistics from the benchmark DataFrame.
164
+
165
+ Args:
166
+ df: Benchmark DataFrame
167
+
168
+ Returns:
169
+ Dictionary with summary statistics
170
+ """
171
+ if df.is_empty():
172
+ return {}
173
+
174
+ return {
175
+ "total_scenarios": len(df),
176
+ "unique_models": df["model_name"].n_unique(),
177
+ "unique_scenarios": df["scenario_name"].n_unique(),
178
+ "unique_hardware": df["gpu_name"].n_unique(),
179
+ "date_range": {
180
+ "earliest": df["timestamp"].min(),
181
+ "latest": df["timestamp"].max(),
182
+ },
183
+ "performance_metrics": {
184
+ "avg_latency_seconds": df.select(pl.col("latency_seconds_mean").mean()).item(),
185
+ "avg_tokens_per_second": df.select(pl.col("tokens_per_second_mean").mean()).item(),
186
+ "avg_time_to_first_token": df.select(pl.col("time_to_first_token_seconds_mean").mean()).item(),
187
+ } if "latency_seconds_mean" in df.columns else None
188
+ }
189
+
190
+
191
+ def main():
192
+ """Example usage of the BenchmarkDataReader."""
193
+ logging.basicConfig(level=logging.INFO)
194
+
195
+ # Create reader and load data
196
+ reader = BenchmarkDataReader()
197
+ df = reader.read_benchmark_files()
198
+
199
+ if df.is_empty():
200
+ print("No benchmark data found!")
201
+ return
202
+
203
+ # Display basic info
204
+ print(f"\nLoaded benchmark data: {len(df)} scenarios")
205
+ print(f"Columns: {len(df.columns)}")
206
+ print("\nColumn names:")
207
+ for col in sorted(df.columns):
208
+ print(f" - {col}")
209
+
210
+ # Show summary statistics
211
+ summary = reader.get_summary_statistics(df)
212
+ print(f"\nSummary Statistics:")
213
+ for key, value in summary.items():
214
+ print(f" {key}: {value}")
215
+
216
+ # Show sample data
217
+ print(f"\nSample data (first 3 rows):")
218
+ print(df.head(3))
219
+
220
+ return df
221
+
222
+
223
+ if __name__ == "__main__":
224
+ df = main()
benchmark_results/Qwen2-7B/Qwen2-7B_benchmark_20250916_143929.json ADDED
@@ -0,0 +1,1045 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_name": "Qwen2-7B",
3
+ "benchmark_scenarios": [
4
+ {
5
+ "scenario_name": "eager_eager_attn",
6
+ "metadata": {
7
+ "timestamp": "2025-09-16T14:32:57.577651",
8
+ "commit_id": null,
9
+ "hardware_info": {
10
+ "gpu_name": "NVIDIA A100-SXM4-80GB",
11
+ "gpu_memory_total_mb": 81920,
12
+ "cpu_count": 128,
13
+ "memory_total_mb": 515624,
14
+ "python_version": "3.10.12",
15
+ "torch_version": "2.8.0+cu126",
16
+ "cuda_version": "12.6"
17
+ },
18
+ "config": {
19
+ "name": "eager",
20
+ "model_id": "Qwen/Qwen2-7B",
21
+ "variant": "eager",
22
+ "warmup_iterations": 3,
23
+ "measurement_iterations": 5,
24
+ "num_tokens_to_generate": 100,
25
+ "device": "cuda",
26
+ "torch_dtype": "float16",
27
+ "compile_mode": null,
28
+ "compile_options": {},
29
+ "use_cache": true,
30
+ "batch_size": 1,
31
+ "sequence_length": null,
32
+ "attn_implementation": "eager",
33
+ "sdpa_backend": null,
34
+ "custom_params": {}
35
+ }
36
+ },
37
+ "measurements": {
38
+ "latency_seconds": {
39
+ "name": "latency_seconds",
40
+ "measurements": [
41
+ 3.080421630859375,
42
+ 3.11809912109375,
43
+ 3.0738232421875,
44
+ 3.063243896484375,
45
+ 3.067010498046875
46
+ ],
47
+ "mean": 3.080519677734375,
48
+ "median": 3.0738232421875,
49
+ "std": 0.019687645766066797,
50
+ "min": 3.063243896484375,
51
+ "max": 3.11809912109375,
52
+ "p25": 3.067010498046875,
53
+ "p75": 3.080421630859375,
54
+ "p90": 3.103028125,
55
+ "p95": 3.110563623046875,
56
+ "p99": 3.116592021484375,
57
+ "unit": "seconds"
58
+ },
59
+ "time_to_first_token_seconds": {
60
+ "name": "time_to_first_token_seconds",
61
+ "measurements": [
62
+ 0.034482784271240234,
63
+ 0.033048095703125,
64
+ 0.03294166564941406,
65
+ 0.032885345458984375,
66
+ 0.03293324661254883
67
+ ],
68
+ "mean": 0.033258227539062504,
69
+ "median": 0.03294166564941406,
70
+ "std": 0.0006145827295027316,
71
+ "min": 0.032885345458984375,
72
+ "max": 0.034482784271240234,
73
+ "p25": 0.03293324661254883,
74
+ "p75": 0.033048095703125,
75
+ "p90": 0.03390890884399414,
76
+ "p95": 0.03419584655761719,
77
+ "p99": 0.03442539672851563,
78
+ "unit": "seconds"
79
+ },
80
+ "tokens_per_second": {
81
+ "name": "tokens_per_second",
82
+ "measurements": [
83
+ 32.463088493539125,
84
+ 32.070821393555484,
85
+ 32.5327750234703,
86
+ 32.64513155964109,
87
+ 32.60504001002987
88
+ ],
89
+ "mean": 32.46337129604717,
90
+ "median": 32.5327750234703,
91
+ "std": 0.20592192755845912,
92
+ "min": 32.070821393555484,
93
+ "max": 32.64513155964109,
94
+ "p25": 32.463088493539125,
95
+ "p75": 32.60504001002987,
96
+ "p90": 32.6290949397966,
97
+ "p95": 32.637113249718844,
98
+ "p99": 32.64352789765664,
99
+ "unit": "tokens/sec"
100
+ },
101
+ "time_per_output_token_seconds": {
102
+ "name": "time_per_output_token_seconds",
103
+ "measurements": [
104
+ 0.030804216308593747,
105
+ 0.031180991210937502,
106
+ 0.030738232421874997,
107
+ 0.03063243896484375,
108
+ 0.03067010498046875
109
+ ],
110
+ "mean": 0.030805196777343745,
111
+ "median": 0.030738232421874997,
112
+ "std": 0.0001968764576606682,
113
+ "min": 0.03063243896484375,
114
+ "max": 0.031180991210937502,
115
+ "p25": 0.03067010498046875,
116
+ "p75": 0.030804216308593747,
117
+ "p90": 0.03103028125,
118
+ "p95": 0.03110563623046875,
119
+ "p99": 0.03116592021484375,
120
+ "unit": "seconds/token"
121
+ }
122
+ },
123
+ "gpu_metrics": {
124
+ "gpu_utilization_mean": 49,
125
+ "gpu_utilization_max": 50,
126
+ "gpu_utilization_min": 46,
127
+ "gpu_memory_used_mean": 15356,
128
+ "gpu_memory_used_max": 15356,
129
+ "gpu_memory_used_min": 15356,
130
+ "sample_count": 12,
131
+ "gpu_monitoring_status": "success"
132
+ }
133
+ },
134
+ {
135
+ "scenario_name": "compiled_compile_max-autotune_eager_attn",
136
+ "metadata": {
137
+ "timestamp": "2025-09-16T14:33:40.254963",
138
+ "commit_id": null,
139
+ "hardware_info": {
140
+ "gpu_name": "NVIDIA A100-SXM4-80GB",
141
+ "gpu_memory_total_mb": 81920,
142
+ "cpu_count": 128,
143
+ "memory_total_mb": 515624,
144
+ "python_version": "3.10.12",
145
+ "torch_version": "2.8.0+cu126",
146
+ "cuda_version": "12.6"
147
+ },
148
+ "config": {
149
+ "name": "compiled",
150
+ "model_id": "Qwen/Qwen2-7B",
151
+ "variant": "compiled",
152
+ "warmup_iterations": 3,
153
+ "measurement_iterations": 5,
154
+ "num_tokens_to_generate": 100,
155
+ "device": "cuda",
156
+ "torch_dtype": "float16",
157
+ "compile_mode": "max-autotune",
158
+ "compile_options": {},
159
+ "use_cache": true,
160
+ "batch_size": 1,
161
+ "sequence_length": null,
162
+ "attn_implementation": "eager",
163
+ "sdpa_backend": null,
164
+ "custom_params": {}
165
+ }
166
+ },
167
+ "measurements": {
168
+ "latency_seconds": {
169
+ "name": "latency_seconds",
170
+ "measurements": [
171
+ 6.4204189453125,
172
+ 7.5098984375,
173
+ 7.9186865234375,
174
+ 6.87070166015625,
175
+ 8.3134296875
176
+ ],
177
+ "mean": 7.406627050781251,
178
+ "median": 7.5098984375,
179
+ "std": 0.6862919723296647,
180
+ "min": 6.4204189453125,
181
+ "max": 8.3134296875,
182
+ "p25": 6.87070166015625,
183
+ "p75": 7.9186865234375,
184
+ "p90": 8.155532421875,
185
+ "p95": 8.2344810546875,
186
+ "p99": 8.297639960937499,
187
+ "unit": "seconds"
188
+ },
189
+ "time_to_first_token_seconds": {
190
+ "name": "time_to_first_token_seconds",
191
+ "measurements": [
192
+ 0.03493379211425781,
193
+ 0.03398665618896484,
194
+ 0.043259166717529295,
195
+ 0.03372019195556641,
196
+ 0.04352550506591797
197
+ ],
198
+ "mean": 0.037885062408447266,
199
+ "median": 0.03493379211425781,
200
+ "std": 0.0045155133437484955,
201
+ "min": 0.03372019195556641,
202
+ "max": 0.04352550506591797,
203
+ "p25": 0.03398665618896484,
204
+ "p75": 0.043259166717529295,
205
+ "p90": 0.0434189697265625,
206
+ "p95": 0.04347223739624024,
207
+ "p99": 0.043514851531982424,
208
+ "unit": "seconds"
209
+ },
210
+ "tokens_per_second": {
211
+ "name": "tokens_per_second",
212
+ "measurements": [
213
+ 15.575307600917423,
214
+ 13.315759305167035,
215
+ 12.628356950868415,
216
+ 14.55455424296881,
217
+ 12.02872986949768
218
+ ],
219
+ "mean": 13.620541593883871,
220
+ "median": 13.315759305167035,
221
+ "std": 1.2887728229714563,
222
+ "min": 12.02872986949768,
223
+ "max": 15.575307600917423,
224
+ "p25": 12.628356950868415,
225
+ "p75": 14.55455424296881,
226
+ "p90": 15.167006257737977,
227
+ "p95": 15.3711569293277,
228
+ "p99": 15.534477466599478,
229
+ "unit": "tokens/sec"
230
+ },
231
+ "time_per_output_token_seconds": {
232
+ "name": "time_per_output_token_seconds",
233
+ "measurements": [
234
+ 0.064204189453125,
235
+ 0.07509898437500001,
236
+ 0.079186865234375,
237
+ 0.0687070166015625,
238
+ 0.083134296875
239
+ ],
240
+ "mean": 0.0740662705078125,
241
+ "median": 0.07509898437500001,
242
+ "std": 0.006862919723296648,
243
+ "min": 0.064204189453125,
244
+ "max": 0.083134296875,
245
+ "p25": 0.0687070166015625,
246
+ "p75": 0.079186865234375,
247
+ "p90": 0.08155532421875,
248
+ "p95": 0.082344810546875,
249
+ "p99": 0.082976399609375,
250
+ "unit": "seconds/token"
251
+ }
252
+ },
253
+ "gpu_metrics": {
254
+ "gpu_utilization_mean": 66,
255
+ "gpu_utilization_max": 100,
256
+ "gpu_utilization_min": 0,
257
+ "gpu_memory_used_mean": 71715.41176470589,
258
+ "gpu_memory_used_max": 78882,
259
+ "gpu_memory_used_min": 46602,
260
+ "sample_count": 17,
261
+ "gpu_monitoring_status": "success"
262
+ }
263
+ },
264
+ {
265
+ "scenario_name": "eager_sdpa_default",
266
+ "metadata": {
267
+ "timestamp": "2025-09-16T14:35:10.602807",
268
+ "commit_id": null,
269
+ "hardware_info": {
270
+ "gpu_name": "NVIDIA A100-SXM4-80GB",
271
+ "gpu_memory_total_mb": 81920,
272
+ "cpu_count": 128,
273
+ "memory_total_mb": 515624,
274
+ "python_version": "3.10.12",
275
+ "torch_version": "2.8.0+cu126",
276
+ "cuda_version": "12.6"
277
+ },
278
+ "config": {
279
+ "name": "eager",
280
+ "model_id": "Qwen/Qwen2-7B",
281
+ "variant": "eager",
282
+ "warmup_iterations": 3,
283
+ "measurement_iterations": 5,
284
+ "num_tokens_to_generate": 100,
285
+ "device": "cuda",
286
+ "torch_dtype": "float16",
287
+ "compile_mode": null,
288
+ "compile_options": {},
289
+ "use_cache": true,
290
+ "batch_size": 1,
291
+ "sequence_length": null,
292
+ "attn_implementation": "sdpa",
293
+ "sdpa_backend": null,
294
+ "custom_params": {}
295
+ }
296
+ },
297
+ "measurements": {
298
+ "latency_seconds": {
299
+ "name": "latency_seconds",
300
+ "measurements": [
301
+ 2.3900068359375,
302
+ 2.379837158203125,
303
+ 2.39191650390625,
304
+ 2.394760986328125,
305
+ 2.38983203125
306
+ ],
307
+ "mean": 2.3892707031250002,
308
+ "median": 2.3900068359375,
309
+ "std": 0.0050396869347048,
310
+ "min": 2.379837158203125,
311
+ "max": 2.394760986328125,
312
+ "p25": 2.38983203125,
313
+ "p75": 2.39191650390625,
314
+ "p90": 2.393623193359375,
315
+ "p95": 2.39419208984375,
316
+ "p99": 2.3946472070312503,
317
+ "unit": "seconds"
318
+ },
319
+ "time_to_first_token_seconds": {
320
+ "name": "time_to_first_token_seconds",
321
+ "measurements": [
322
+ 0.026343584060668945,
323
+ 0.025955039978027342,
324
+ 0.02592620849609375,
325
+ 0.025973472595214844,
326
+ 0.025634336471557616
327
+ ],
328
+ "mean": 0.025966528320312498,
329
+ "median": 0.025955039978027342,
330
+ "std": 0.0002255341876090389,
331
+ "min": 0.025634336471557616,
332
+ "max": 0.026343584060668945,
333
+ "p25": 0.02592620849609375,
334
+ "p75": 0.025973472595214844,
335
+ "p90": 0.026195539474487304,
336
+ "p95": 0.026269561767578126,
337
+ "p99": 0.02632877960205078,
338
+ "unit": "seconds"
339
+ },
340
+ "tokens_per_second": {
341
+ "name": "tokens_per_second",
342
+ "measurements": [
343
+ 41.8408845097609,
344
+ 42.01968174810083,
345
+ 41.80747941522604,
346
+ 41.757820747418094,
347
+ 41.84394496867425
348
+ ],
349
+ "mean": 41.853962277836025,
350
+ "median": 41.8408845097609,
351
+ "std": 0.08847391447544005,
352
+ "min": 41.757820747418094,
353
+ "max": 42.01968174810083,
354
+ "p25": 41.80747941522604,
355
+ "p75": 41.84394496867425,
356
+ "p90": 41.9493870363302,
357
+ "p95": 41.984534392215515,
358
+ "p99": 42.01265227692377,
359
+ "unit": "tokens/sec"
360
+ },
361
+ "time_per_output_token_seconds": {
362
+ "name": "time_per_output_token_seconds",
363
+ "measurements": [
364
+ 0.023900068359375002,
365
+ 0.023798371582031252,
366
+ 0.023919165039062502,
367
+ 0.02394760986328125,
368
+ 0.023898320312500002
369
+ ],
370
+ "mean": 0.02389270703125,
371
+ "median": 0.023900068359375002,
372
+ "std": 5.0396869347047166e-05,
373
+ "min": 0.023798371582031252,
374
+ "max": 0.02394760986328125,
375
+ "p25": 0.023898320312500002,
376
+ "p75": 0.023919165039062502,
377
+ "p90": 0.02393623193359375,
378
+ "p95": 0.0239419208984375,
379
+ "p99": 0.0239464720703125,
380
+ "unit": "seconds/token"
381
+ }
382
+ },
383
+ "gpu_metrics": {
384
+ "gpu_utilization_mean": 60.25,
385
+ "gpu_utilization_max": 61,
386
+ "gpu_utilization_min": 60,
387
+ "gpu_memory_used_mean": 15466,
388
+ "gpu_memory_used_max": 15466,
389
+ "gpu_memory_used_min": 15466,
390
+ "sample_count": 8,
391
+ "gpu_monitoring_status": "success"
392
+ }
393
+ },
394
+ {
395
+ "scenario_name": "eager_sdpa_math",
396
+ "metadata": {
397
+ "timestamp": "2025-09-16T14:35:47.417716",
398
+ "commit_id": null,
399
+ "hardware_info": {
400
+ "gpu_name": "NVIDIA A100-SXM4-80GB",
401
+ "gpu_memory_total_mb": 81920,
402
+ "cpu_count": 128,
403
+ "memory_total_mb": 515624,
404
+ "python_version": "3.10.12",
405
+ "torch_version": "2.8.0+cu126",
406
+ "cuda_version": "12.6"
407
+ },
408
+ "config": {
409
+ "name": "eager",
410
+ "model_id": "Qwen/Qwen2-7B",
411
+ "variant": "eager",
412
+ "warmup_iterations": 3,
413
+ "measurement_iterations": 5,
414
+ "num_tokens_to_generate": 100,
415
+ "device": "cuda",
416
+ "torch_dtype": "float16",
417
+ "compile_mode": null,
418
+ "compile_options": {},
419
+ "use_cache": true,
420
+ "batch_size": 1,
421
+ "sequence_length": null,
422
+ "attn_implementation": "sdpa",
423
+ "sdpa_backend": "math",
424
+ "custom_params": {}
425
+ }
426
+ },
427
+ "measurements": {
428
+ "latency_seconds": {
429
+ "name": "latency_seconds",
430
+ "measurements": [
431
+ 2.9385849609375,
432
+ 2.911900390625,
433
+ 2.9431630859375,
434
+ 2.923252197265625,
435
+ 2.91033935546875
436
+ ],
437
+ "mean": 2.925447998046875,
438
+ "median": 2.923252197265625,
439
+ "std": 0.013439006075182301,
440
+ "min": 2.91033935546875,
441
+ "max": 2.9431630859375,
442
+ "p25": 2.911900390625,
443
+ "p75": 2.9385849609375,
444
+ "p90": 2.9413318359375,
445
+ "p95": 2.9422474609375,
446
+ "p99": 2.9429799609375,
447
+ "unit": "seconds"
448
+ },
449
+ "time_to_first_token_seconds": {
450
+ "name": "time_to_first_token_seconds",
451
+ "measurements": [
452
+ 0.033364158630371094,
453
+ 0.032983425140380856,
454
+ 0.03354035186767578,
455
+ 0.03323625564575195,
456
+ 0.033615966796875
457
+ ],
458
+ "mean": 0.03334803161621094,
459
+ "median": 0.033364158630371094,
460
+ "std": 0.00022559617485054417,
461
+ "min": 0.032983425140380856,
462
+ "max": 0.033615966796875,
463
+ "p25": 0.03323625564575195,
464
+ "p75": 0.03354035186767578,
465
+ "p90": 0.033585720825195314,
466
+ "p95": 0.033600843811035154,
467
+ "p99": 0.03361294219970703,
468
+ "unit": "seconds"
469
+ },
470
+ "tokens_per_second": {
471
+ "name": "tokens_per_second",
472
+ "measurements": [
473
+ 34.029984271101995,
474
+ 34.34183405516023,
475
+ 33.97705022796809,
476
+ 34.20847509959585,
477
+ 34.36025417863809
478
+ ],
479
+ "mean": 34.18351956649285,
480
+ "median": 34.20847509959585,
481
+ "std": 0.1569229452732795,
482
+ "min": 33.97705022796809,
483
+ "max": 34.36025417863809,
484
+ "p25": 34.029984271101995,
485
+ "p75": 34.34183405516023,
486
+ "p90": 34.35288612924694,
487
+ "p95": 34.35657015394251,
488
+ "p99": 34.35951737369897,
489
+ "unit": "tokens/sec"
490
+ },
491
+ "time_per_output_token_seconds": {
492
+ "name": "time_per_output_token_seconds",
493
+ "measurements": [
494
+ 0.029385849609375,
495
+ 0.02911900390625,
496
+ 0.029431630859375,
497
+ 0.029232521972656248,
498
+ 0.0291033935546875
499
+ ],
500
+ "mean": 0.02925447998046875,
501
+ "median": 0.029232521972656248,
502
+ "std": 0.00013439006075182346,
503
+ "min": 0.0291033935546875,
504
+ "max": 0.029431630859375,
505
+ "p25": 0.02911900390625,
506
+ "p75": 0.029385849609375,
507
+ "p90": 0.029413318359375,
508
+ "p95": 0.029422474609375,
509
+ "p99": 0.029429799609374998,
510
+ "unit": "seconds/token"
511
+ }
512
+ },
513
+ "gpu_metrics": {
514
+ "gpu_utilization_mean": 54.77777777777778,
515
+ "gpu_utilization_max": 55,
516
+ "gpu_utilization_min": 54,
517
+ "gpu_memory_used_mean": 15466,
518
+ "gpu_memory_used_max": 15466,
519
+ "gpu_memory_used_min": 15466,
520
+ "sample_count": 9,
521
+ "gpu_monitoring_status": "success"
522
+ }
523
+ },
524
+ {
525
+ "scenario_name": "eager_sdpa_flash_attention",
526
+ "metadata": {
527
+ "timestamp": "2025-09-16T14:36:28.763857",
528
+ "commit_id": null,
529
+ "hardware_info": {
530
+ "gpu_name": "NVIDIA A100-SXM4-80GB",
531
+ "gpu_memory_total_mb": 81920,
532
+ "cpu_count": 128,
533
+ "memory_total_mb": 515624,
534
+ "python_version": "3.10.12",
535
+ "torch_version": "2.8.0+cu126",
536
+ "cuda_version": "12.6"
537
+ },
538
+ "config": {
539
+ "name": "eager",
540
+ "model_id": "Qwen/Qwen2-7B",
541
+ "variant": "eager",
542
+ "warmup_iterations": 3,
543
+ "measurement_iterations": 5,
544
+ "num_tokens_to_generate": 100,
545
+ "device": "cuda",
546
+ "torch_dtype": "float16",
547
+ "compile_mode": null,
548
+ "compile_options": {},
549
+ "use_cache": true,
550
+ "batch_size": 1,
551
+ "sequence_length": null,
552
+ "attn_implementation": "sdpa",
553
+ "sdpa_backend": "flash_attention",
554
+ "custom_params": {}
555
+ }
556
+ },
557
+ "measurements": {
558
+ "latency_seconds": {
559
+ "name": "latency_seconds",
560
+ "measurements": [
561
+ 2.40218310546875,
562
+ 2.39602734375,
563
+ 2.416225341796875,
564
+ 2.421543701171875,
565
+ 2.434317138671875
566
+ ],
567
+ "mean": 2.414059326171875,
568
+ "median": 2.416225341796875,
569
+ "std": 0.013691482522836295,
570
+ "min": 2.39602734375,
571
+ "max": 2.434317138671875,
572
+ "p25": 2.40218310546875,
573
+ "p75": 2.421543701171875,
574
+ "p90": 2.429207763671875,
575
+ "p95": 2.431762451171875,
576
+ "p99": 2.433806201171875,
577
+ "unit": "seconds"
578
+ },
579
+ "time_to_first_token_seconds": {
580
+ "name": "time_to_first_token_seconds",
581
+ "measurements": [
582
+ 0.02634345626831055,
583
+ 0.025819807052612304,
584
+ 0.02593836784362793,
585
+ 0.025983327865600585,
586
+ 0.02601523208618164
587
+ ],
588
+ "mean": 0.026020038223266602,
589
+ "median": 0.025983327865600585,
590
+ "std": 0.0001747756011493655,
591
+ "min": 0.025819807052612304,
592
+ "max": 0.02634345626831055,
593
+ "p25": 0.02593836784362793,
594
+ "p75": 0.02601523208618164,
595
+ "p90": 0.026212166595458986,
596
+ "p95": 0.026277811431884766,
597
+ "p99": 0.026330327301025393,
598
+ "unit": "seconds"
599
+ },
600
+ "tokens_per_second": {
601
+ "name": "tokens_per_second",
602
+ "measurements": [
603
+ 41.62879997463245,
604
+ 41.73575074627109,
605
+ 41.386868298315655,
606
+ 41.29597163644261,
607
+ 41.07928191088464
608
+ ],
609
+ "mean": 41.42533451330929,
610
+ "median": 41.386868298315655,
611
+ "std": 0.23482897559273794,
612
+ "min": 41.07928191088464,
613
+ "max": 41.73575074627109,
614
+ "p25": 41.29597163644261,
615
+ "p75": 41.62879997463245,
616
+ "p90": 41.692970437615635,
617
+ "p95": 41.71436059194336,
618
+ "p99": 41.731472715405545,
619
+ "unit": "tokens/sec"
620
+ },
621
+ "time_per_output_token_seconds": {
622
+ "name": "time_per_output_token_seconds",
623
+ "measurements": [
624
+ 0.0240218310546875,
625
+ 0.023960273437500002,
626
+ 0.02416225341796875,
627
+ 0.02421543701171875,
628
+ 0.02434317138671875
629
+ ],
630
+ "mean": 0.02414059326171875,
631
+ "median": 0.02416225341796875,
632
+ "std": 0.0001369148252283633,
633
+ "min": 0.023960273437500002,
634
+ "max": 0.02434317138671875,
635
+ "p25": 0.0240218310546875,
636
+ "p75": 0.02421543701171875,
637
+ "p90": 0.02429207763671875,
638
+ "p95": 0.02431762451171875,
639
+ "p99": 0.02433806201171875,
640
+ "unit": "seconds/token"
641
+ }
642
+ },
643
+ "gpu_metrics": {
644
+ "gpu_utilization_mean": 59.625,
645
+ "gpu_utilization_max": 60,
646
+ "gpu_utilization_min": 59,
647
+ "gpu_memory_used_mean": 15571.5,
648
+ "gpu_memory_used_max": 15888,
649
+ "gpu_memory_used_min": 15466,
650
+ "sample_count": 8,
651
+ "gpu_monitoring_status": "success"
652
+ }
653
+ },
654
+ {
655
+ "scenario_name": "compiled_compile_max-autotune_sdpa_default",
656
+ "metadata": {
657
+ "timestamp": "2025-09-16T14:37:19.442972",
658
+ "commit_id": null,
659
+ "hardware_info": {
660
+ "gpu_name": "NVIDIA A100-SXM4-80GB",
661
+ "gpu_memory_total_mb": 81920,
662
+ "cpu_count": 128,
663
+ "memory_total_mb": 515624,
664
+ "python_version": "3.10.12",
665
+ "torch_version": "2.8.0+cu126",
666
+ "cuda_version": "12.6"
667
+ },
668
+ "config": {
669
+ "name": "compiled",
670
+ "model_id": "Qwen/Qwen2-7B",
671
+ "variant": "compiled",
672
+ "warmup_iterations": 3,
673
+ "measurement_iterations": 5,
674
+ "num_tokens_to_generate": 100,
675
+ "device": "cuda",
676
+ "torch_dtype": "float16",
677
+ "compile_mode": "max-autotune",
678
+ "compile_options": {},
679
+ "use_cache": true,
680
+ "batch_size": 1,
681
+ "sequence_length": null,
682
+ "attn_implementation": "sdpa",
683
+ "sdpa_backend": null,
684
+ "custom_params": {}
685
+ }
686
+ },
687
+ "measurements": {
688
+ "latency_seconds": {
689
+ "name": "latency_seconds",
690
+ "measurements": [
691
+ 3.05654345703125,
692
+ 3.02232568359375,
693
+ 3.01347021484375,
694
+ 3.01363623046875,
695
+ 2.980415283203125
696
+ ],
697
+ "mean": 3.0172781738281254,
698
+ "median": 3.01363623046875,
699
+ "std": 0.024305871011531265,
700
+ "min": 2.980415283203125,
701
+ "max": 3.05654345703125,
702
+ "p25": 3.01347021484375,
703
+ "p75": 3.02232568359375,
704
+ "p90": 3.04285634765625,
705
+ "p95": 3.0496999023437503,
706
+ "p99": 3.0551747460937504,
707
+ "unit": "seconds"
708
+ },
709
+ "time_to_first_token_seconds": {
710
+ "name": "time_to_first_token_seconds",
711
+ "measurements": [
712
+ 0.033438655853271486,
713
+ 0.03183209609985352,
714
+ 0.03240959930419922,
715
+ 0.03159875106811524,
716
+ 0.031626720428466794
717
+ ],
718
+ "mean": 0.03218116455078125,
719
+ "median": 0.03183209609985352,
720
+ "std": 0.0006930987441051968,
721
+ "min": 0.03159875106811524,
722
+ "max": 0.033438655853271486,
723
+ "p25": 0.031626720428466794,
724
+ "p75": 0.03240959930419922,
725
+ "p90": 0.03302703323364258,
726
+ "p95": 0.033232844543457034,
727
+ "p99": 0.03339749359130859,
728
+ "unit": "seconds"
729
+ },
730
+ "tokens_per_second": {
731
+ "name": "tokens_per_second",
732
+ "measurements": [
733
+ 32.71669498758826,
734
+ 33.0871026053993,
735
+ 33.18433330033263,
736
+ 33.18250523701917,
737
+ 33.55237122946422
738
+ ],
739
+ "mean": 33.14460147196072,
740
+ "median": 33.18250523701917,
741
+ "std": 0.2667214156192523,
742
+ "min": 32.71669498758826,
743
+ "max": 33.55237122946422,
744
+ "p25": 33.0871026053993,
745
+ "p75": 33.18433330033263,
746
+ "p90": 33.40515605781159,
747
+ "p95": 33.478763643637905,
748
+ "p99": 33.53764971229896,
749
+ "unit": "tokens/sec"
750
+ },
751
+ "time_per_output_token_seconds": {
752
+ "name": "time_per_output_token_seconds",
753
+ "measurements": [
754
+ 0.0305654345703125,
755
+ 0.0302232568359375,
756
+ 0.0301347021484375,
757
+ 0.030136362304687497,
758
+ 0.029804152832031253
759
+ ],
760
+ "mean": 0.03017278173828125,
761
+ "median": 0.030136362304687497,
762
+ "std": 0.0002430587101153121,
763
+ "min": 0.029804152832031253,
764
+ "max": 0.0305654345703125,
765
+ "p25": 0.0301347021484375,
766
+ "p75": 0.0302232568359375,
767
+ "p90": 0.0304285634765625,
768
+ "p95": 0.030496999023437502,
769
+ "p99": 0.0305517474609375,
770
+ "unit": "seconds/token"
771
+ }
772
+ },
773
+ "gpu_metrics": {
774
+ "gpu_utilization_mean": 50.22222222222222,
775
+ "gpu_utilization_max": 51,
776
+ "gpu_utilization_min": 49,
777
+ "gpu_memory_used_mean": 15608.666666666666,
778
+ "gpu_memory_used_max": 15888,
779
+ "gpu_memory_used_min": 15466,
780
+ "sample_count": 9,
781
+ "gpu_monitoring_status": "success"
782
+ }
783
+ },
784
+ {
785
+ "scenario_name": "compiled_compile_max-autotune_sdpa_math",
786
+ "metadata": {
787
+ "timestamp": "2025-09-16T14:38:01.815515",
788
+ "commit_id": null,
789
+ "hardware_info": {
790
+ "gpu_name": "NVIDIA A100-SXM4-80GB",
791
+ "gpu_memory_total_mb": 81920,
792
+ "cpu_count": 128,
793
+ "memory_total_mb": 515624,
794
+ "python_version": "3.10.12",
795
+ "torch_version": "2.8.0+cu126",
796
+ "cuda_version": "12.6"
797
+ },
798
+ "config": {
799
+ "name": "compiled",
800
+ "model_id": "Qwen/Qwen2-7B",
801
+ "variant": "compiled",
802
+ "warmup_iterations": 3,
803
+ "measurement_iterations": 5,
804
+ "num_tokens_to_generate": 100,
805
+ "device": "cuda",
806
+ "torch_dtype": "float16",
807
+ "compile_mode": "max-autotune",
808
+ "compile_options": {},
809
+ "use_cache": true,
810
+ "batch_size": 1,
811
+ "sequence_length": null,
812
+ "attn_implementation": "sdpa",
813
+ "sdpa_backend": "math",
814
+ "custom_params": {}
815
+ }
816
+ },
817
+ "measurements": {
818
+ "latency_seconds": {
819
+ "name": "latency_seconds",
820
+ "measurements": [
821
+ 3.39007763671875,
822
+ 3.416772216796875,
823
+ 3.38962255859375,
824
+ 3.387712890625,
825
+ 3.40566162109375
826
+ ],
827
+ "mean": 3.397969384765625,
828
+ "median": 3.39007763671875,
829
+ "std": 0.011400542606022364,
830
+ "min": 3.387712890625,
831
+ "max": 3.416772216796875,
832
+ "p25": 3.38962255859375,
833
+ "p75": 3.40566162109375,
834
+ "p90": 3.412327978515625,
835
+ "p95": 3.41455009765625,
836
+ "p99": 3.41632779296875,
837
+ "unit": "seconds"
838
+ },
839
+ "time_to_first_token_seconds": {
840
+ "name": "time_to_first_token_seconds",
841
+ "measurements": [
842
+ 0.03628326416015625,
843
+ 0.036549503326416016,
844
+ 0.03622611236572266,
845
+ 0.035679134368896484,
846
+ 0.03579260635375976
847
+ ],
848
+ "mean": 0.036106124114990236,
849
+ "median": 0.03622611236572266,
850
+ "std": 0.0003234113575358685,
851
+ "min": 0.035679134368896484,
852
+ "max": 0.036549503326416016,
853
+ "p25": 0.03579260635375976,
854
+ "p75": 0.03628326416015625,
855
+ "p90": 0.03644300765991211,
856
+ "p95": 0.03649625549316406,
857
+ "p99": 0.03653885375976563,
858
+ "unit": "seconds"
859
+ },
860
+ "tokens_per_second": {
861
+ "name": "tokens_per_second",
862
+ "measurements": [
863
+ 29.497849523230926,
864
+ 29.26738853365739,
865
+ 29.501809794860144,
866
+ 29.518440088808994,
867
+ 29.3628701632091
868
+ ],
869
+ "mean": 29.42967162075331,
870
+ "median": 29.497849523230926,
871
+ "std": 0.09851925553726182,
872
+ "min": 29.26738853365739,
873
+ "max": 29.518440088808994,
874
+ "p25": 29.3628701632091,
875
+ "p75": 29.501809794860144,
876
+ "p90": 29.511787971229452,
877
+ "p95": 29.515114030019223,
878
+ "p99": 29.51777487705104,
879
+ "unit": "tokens/sec"
880
+ },
881
+ "time_per_output_token_seconds": {
882
+ "name": "time_per_output_token_seconds",
883
+ "measurements": [
884
+ 0.033900776367187496,
885
+ 0.03416772216796875,
886
+ 0.0338962255859375,
887
+ 0.03387712890625,
888
+ 0.0340566162109375
889
+ ],
890
+ "mean": 0.03397969384765625,
891
+ "median": 0.033900776367187496,
892
+ "std": 0.00011400542606022352,
893
+ "min": 0.03387712890625,
894
+ "max": 0.03416772216796875,
895
+ "p25": 0.0338962255859375,
896
+ "p75": 0.0340566162109375,
897
+ "p90": 0.03412327978515625,
898
+ "p95": 0.0341455009765625,
899
+ "p99": 0.0341632779296875,
900
+ "unit": "seconds/token"
901
+ }
902
+ },
903
+ "gpu_metrics": {
904
+ "gpu_utilization_mean": 49.36363636363637,
905
+ "gpu_utilization_max": 50,
906
+ "gpu_utilization_min": 49,
907
+ "gpu_memory_used_mean": 15473.454545454546,
908
+ "gpu_memory_used_max": 15548,
909
+ "gpu_memory_used_min": 15466,
910
+ "sample_count": 11,
911
+ "gpu_monitoring_status": "success"
912
+ }
913
+ },
914
+ {
915
+ "scenario_name": "compiled_compile_max-autotune_sdpa_efficient_attention",
916
+ "metadata": {
917
+ "timestamp": "2025-09-16T14:38:59.784157",
918
+ "commit_id": null,
919
+ "hardware_info": {
920
+ "gpu_name": "NVIDIA A100-SXM4-80GB",
921
+ "gpu_memory_total_mb": 81920,
922
+ "cpu_count": 128,
923
+ "memory_total_mb": 515624,
924
+ "python_version": "3.10.12",
925
+ "torch_version": "2.8.0+cu126",
926
+ "cuda_version": "12.6"
927
+ },
928
+ "config": {
929
+ "name": "compiled",
930
+ "model_id": "Qwen/Qwen2-7B",
931
+ "variant": "compiled",
932
+ "warmup_iterations": 3,
933
+ "measurement_iterations": 5,
934
+ "num_tokens_to_generate": 100,
935
+ "device": "cuda",
936
+ "torch_dtype": "float16",
937
+ "compile_mode": "max-autotune",
938
+ "compile_options": {},
939
+ "use_cache": true,
940
+ "batch_size": 1,
941
+ "sequence_length": null,
942
+ "attn_implementation": "sdpa",
943
+ "sdpa_backend": "efficient_attention",
944
+ "custom_params": {}
945
+ }
946
+ },
947
+ "measurements": {
948
+ "latency_seconds": {
949
+ "name": "latency_seconds",
950
+ "measurements": [
951
+ 3.035596923828125,
952
+ 3.00609326171875,
953
+ 3.00232421875,
954
+ 3.015933837890625,
955
+ 2.995167724609375
956
+ ],
957
+ "mean": 3.011023193359375,
958
+ "median": 3.00609326171875,
959
+ "std": 0.013995391622824113,
960
+ "min": 2.995167724609375,
961
+ "max": 3.035596923828125,
962
+ "p25": 3.00232421875,
963
+ "p75": 3.015933837890625,
964
+ "p90": 3.027731689453125,
965
+ "p95": 3.031664306640625,
966
+ "p99": 3.034810400390625,
967
+ "unit": "seconds"
968
+ },
969
+ "time_to_first_token_seconds": {
970
+ "name": "time_to_first_token_seconds",
971
+ "measurements": [
972
+ 0.03213036727905273,
973
+ 0.032091232299804685,
974
+ 0.031181343078613283,
975
+ 0.03160671997070313,
976
+ 0.0317238712310791
977
+ ],
978
+ "mean": 0.03174670677185058,
979
+ "median": 0.0317238712310791,
980
+ "std": 0.00034803651999392436,
981
+ "min": 0.031181343078613283,
982
+ "max": 0.03213036727905273,
983
+ "p25": 0.03160671997070313,
984
+ "p75": 0.032091232299804685,
985
+ "p90": 0.03211471328735351,
986
+ "p95": 0.032122540283203126,
987
+ "p99": 0.03212880187988281,
988
+ "unit": "seconds"
989
+ },
990
+ "tokens_per_second": {
991
+ "name": "tokens_per_second",
992
+ "measurements": [
993
+ 32.94245003842347,
994
+ 33.26576765712999,
995
+ 33.30752867244777,
996
+ 33.1572260450982,
997
+ 33.38711190640979
998
+ ],
999
+ "mean": 33.212016863901844,
1000
+ "median": 33.26576765712999,
1001
+ "std": 0.15384292930056287,
1002
+ "min": 32.94245003842347,
1003
+ "max": 33.38711190640979,
1004
+ "p25": 33.1572260450982,
1005
+ "p75": 33.30752867244777,
1006
+ "p90": 33.35527861282498,
1007
+ "p95": 33.37119525961739,
1008
+ "p99": 33.383928577051314,
1009
+ "unit": "tokens/sec"
1010
+ },
1011
+ "time_per_output_token_seconds": {
1012
+ "name": "time_per_output_token_seconds",
1013
+ "measurements": [
1014
+ 0.030355969238281252,
1015
+ 0.0300609326171875,
1016
+ 0.0300232421875,
1017
+ 0.030159338378906247,
1018
+ 0.029951677246093752
1019
+ ],
1020
+ "mean": 0.030110231933593752,
1021
+ "median": 0.0300609326171875,
1022
+ "std": 0.0001399539162282414,
1023
+ "min": 0.029951677246093752,
1024
+ "max": 0.030355969238281252,
1025
+ "p25": 0.0300232421875,
1026
+ "p75": 0.030159338378906247,
1027
+ "p90": 0.03027731689453125,
1028
+ "p95": 0.030316643066406253,
1029
+ "p99": 0.03034810400390625,
1030
+ "unit": "seconds/token"
1031
+ }
1032
+ },
1033
+ "gpu_metrics": {
1034
+ "gpu_utilization_mean": 50.4,
1035
+ "gpu_utilization_max": 51,
1036
+ "gpu_utilization_min": 50,
1037
+ "gpu_memory_used_mean": 15466,
1038
+ "gpu_memory_used_max": 15466,
1039
+ "gpu_memory_used_min": 15466,
1040
+ "sample_count": 10,
1041
+ "gpu_monitoring_status": "success"
1042
+ }
1043
+ }
1044
+ ]
1045
+ }
benchmark_results/benchmark_summary_20250916_144139.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "run_metadata": {
3
+ "timestamp": "2025-09-16T14:41:39.732037",
4
+ "total_benchmarks": 6,
5
+ "successful_benchmarks": 5,
6
+ "failed_benchmarks": 1
7
+ },
8
+ "benchmark_results": {
9
+ "gpt2": "benchmark_results/gpt2/gpt2_benchmark_20250916_143134.json",
10
+ "qwen2": "benchmark_results/Qwen2-7B/Qwen2-7B_benchmark_20250916_143929.json",
11
+ "llama": "completed",
12
+ "bert": "benchmark_results/bert-base-uncased/bert-base-uncased_benchmark_20250916_144120.json",
13
+ "mistral3": "completed",
14
+ "gemma3": null
15
+ },
16
+ "output_directory": "benchmark_results"
17
+ }
benchmark_results/benchmark_summary_20250916_144602.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "run_metadata": {
3
+ "timestamp": "2025-09-16T14:46:02.029823",
4
+ "total_benchmarks": 1,
5
+ "successful_benchmarks": 1,
6
+ "failed_benchmarks": 0
7
+ },
8
+ "benchmark_results": {
9
+ "gemma3": "completed"
10
+ },
11
+ "output_directory": "benchmark_results"
12
+ }
benchmark_results/bert-base-uncased/bert-base-uncased_benchmark_20250916_144120.json ADDED
@@ -0,0 +1,655 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_name": "bert-base-uncased",
3
+ "benchmark_scenarios": [
4
+ {
5
+ "scenario_name": "eager_eager_attn",
6
+ "metadata": {
7
+ "timestamp": "2025-09-16T14:39:55.683061",
8
+ "commit_id": null,
9
+ "hardware_info": {
10
+ "gpu_name": "NVIDIA A100-SXM4-80GB",
11
+ "gpu_memory_total_mb": 81920,
12
+ "cpu_count": 128,
13
+ "memory_total_mb": 515624,
14
+ "python_version": "3.10.12",
15
+ "torch_version": "2.8.0+cu126",
16
+ "cuda_version": "12.6"
17
+ },
18
+ "config": {
19
+ "name": "eager",
20
+ "model_id": "bert-base-uncased",
21
+ "variant": "eager",
22
+ "warmup_iterations": 3,
23
+ "measurement_iterations": 5,
24
+ "num_tokens_to_generate": 100,
25
+ "device": "cuda",
26
+ "torch_dtype": "float16",
27
+ "compile_mode": null,
28
+ "compile_options": {},
29
+ "use_cache": true,
30
+ "batch_size": 1,
31
+ "sequence_length": null,
32
+ "attn_implementation": "eager",
33
+ "sdpa_backend": null,
34
+ "custom_params": {}
35
+ }
36
+ },
37
+ "measurements": {
38
+ "latency_seconds": {
39
+ "name": "latency_seconds",
40
+ "measurements": [
41
+ 0.7486727905273437,
42
+ 0.7513528442382813,
43
+ 0.7562908935546875,
44
+ 0.7610662841796875,
45
+ 0.7663279418945312
46
+ ],
47
+ "mean": 0.7567421508789062,
48
+ "median": 0.7562908935546875,
49
+ "std": 0.006402317610379491,
50
+ "min": 0.7486727905273437,
51
+ "max": 0.7663279418945312,
52
+ "p25": 0.7513528442382813,
53
+ "p75": 0.7610662841796875,
54
+ "p90": 0.7642232788085938,
55
+ "p95": 0.7652756103515624,
56
+ "p99": 0.7661174755859375,
57
+ "unit": "seconds"
58
+ },
59
+ "time_to_first_token_seconds": {
60
+ "name": "time_to_first_token_seconds",
61
+ "measurements": [
62
+ 0.00977513599395752,
63
+ 0.009344575881958007,
64
+ 0.009353856086730956,
65
+ 0.009663392066955566,
66
+ 0.009657343864440919
67
+ ],
68
+ "mean": 0.009558860778808593,
69
+ "median": 0.009657343864440919,
70
+ "std": 0.00017626435705335133,
71
+ "min": 0.009344575881958007,
72
+ "max": 0.00977513599395752,
73
+ "p25": 0.009353856086730956,
74
+ "p75": 0.009663392066955566,
75
+ "p90": 0.009730438423156738,
76
+ "p95": 0.009752787208557129,
77
+ "p99": 0.009770666236877442,
78
+ "unit": "seconds"
79
+ },
80
+ "tokens_per_second": {
81
+ "name": "tokens_per_second",
82
+ "measurements": [
83
+ 133.56969996139816,
84
+ 133.09326073208604,
85
+ 132.22425504819196,
86
+ 131.39460002197396,
87
+ 130.49243611394098
88
+ ],
89
+ "mean": 132.1548503755182,
90
+ "median": 132.22425504819196,
91
+ "std": 1.1161390714177948,
92
+ "min": 130.49243611394098,
93
+ "max": 133.56969996139816,
94
+ "p25": 131.39460002197396,
95
+ "p75": 133.09326073208604,
96
+ "p90": 133.3791242696733,
97
+ "p95": 133.47441211553573,
98
+ "p99": 133.55064239222568,
99
+ "unit": "tokens/sec"
100
+ },
101
+ "time_per_output_token_seconds": {
102
+ "name": "time_per_output_token_seconds",
103
+ "measurements": [
104
+ 0.007486727905273437,
105
+ 0.007513528442382813,
106
+ 0.0075629089355468745,
107
+ 0.007610662841796875,
108
+ 0.007663279418945313
109
+ ],
110
+ "mean": 0.0075674215087890625,
111
+ "median": 0.0075629089355468745,
112
+ "std": 6.402317610379502e-05,
113
+ "min": 0.007486727905273437,
114
+ "max": 0.007663279418945313,
115
+ "p25": 0.007513528442382813,
116
+ "p75": 0.007610662841796875,
117
+ "p90": 0.007642232788085937,
118
+ "p95": 0.007652756103515625,
119
+ "p99": 0.007661174755859375,
120
+ "unit": "seconds/token"
121
+ }
122
+ },
123
+ "gpu_metrics": {
124
+ "gpu_utilization_mean": 17,
125
+ "gpu_utilization_max": 17,
126
+ "gpu_utilization_min": 17,
127
+ "gpu_memory_used_mean": 994,
128
+ "gpu_memory_used_max": 994,
129
+ "gpu_memory_used_min": 994,
130
+ "sample_count": 3,
131
+ "gpu_monitoring_status": "success"
132
+ }
133
+ },
134
+ {
135
+ "scenario_name": "eager_sdpa_default",
136
+ "metadata": {
137
+ "timestamp": "2025-09-16T14:40:13.059054",
138
+ "commit_id": null,
139
+ "hardware_info": {
140
+ "gpu_name": "NVIDIA A100-SXM4-80GB",
141
+ "gpu_memory_total_mb": 81920,
142
+ "cpu_count": 128,
143
+ "memory_total_mb": 515624,
144
+ "python_version": "3.10.12",
145
+ "torch_version": "2.8.0+cu126",
146
+ "cuda_version": "12.6"
147
+ },
148
+ "config": {
149
+ "name": "eager",
150
+ "model_id": "bert-base-uncased",
151
+ "variant": "eager",
152
+ "warmup_iterations": 3,
153
+ "measurement_iterations": 5,
154
+ "num_tokens_to_generate": 100,
155
+ "device": "cuda",
156
+ "torch_dtype": "float16",
157
+ "compile_mode": null,
158
+ "compile_options": {},
159
+ "use_cache": true,
160
+ "batch_size": 1,
161
+ "sequence_length": null,
162
+ "attn_implementation": "sdpa",
163
+ "sdpa_backend": null,
164
+ "custom_params": {}
165
+ }
166
+ },
167
+ "measurements": {
168
+ "latency_seconds": {
169
+ "name": "latency_seconds",
170
+ "measurements": [
171
+ 0.6406459350585938,
172
+ 0.643911376953125,
173
+ 0.6423768920898437,
174
+ 0.6458036499023437,
175
+ 0.6438418579101562
176
+ ],
177
+ "mean": 0.6433159423828125,
178
+ "median": 0.6438418579101562,
179
+ "std": 0.001722241140854726,
180
+ "min": 0.6406459350585938,
181
+ "max": 0.6458036499023437,
182
+ "p25": 0.6423768920898437,
183
+ "p75": 0.643911376953125,
184
+ "p90": 0.6450467407226562,
185
+ "p95": 0.6454251953125,
186
+ "p99": 0.645727958984375,
187
+ "unit": "seconds"
188
+ },
189
+ "time_to_first_token_seconds": {
190
+ "name": "time_to_first_token_seconds",
191
+ "measurements": [
192
+ 0.008202624320983887,
193
+ 0.007760159969329834,
194
+ 0.007827231884002686,
195
+ 0.007747360229492187,
196
+ 0.0077948799133300785
197
+ ],
198
+ "mean": 0.007866451263427733,
199
+ "median": 0.0077948799133300785,
200
+ "std": 0.00017038395233635333,
201
+ "min": 0.007747360229492187,
202
+ "max": 0.008202624320983887,
203
+ "p25": 0.007760159969329834,
204
+ "p75": 0.007827231884002686,
205
+ "p90": 0.008052467346191406,
206
+ "p95": 0.008127545833587647,
207
+ "p99": 0.00818760862350464,
208
+ "unit": "seconds"
209
+ },
210
+ "tokens_per_second": {
211
+ "name": "tokens_per_second",
212
+ "measurements": [
213
+ 156.09246001202513,
214
+ 155.30087459113142,
215
+ 155.67185126269123,
216
+ 154.84582661482582,
217
+ 155.31764325573613
218
+ ],
219
+ "mean": 155.44573114728195,
220
+ "median": 155.31764325573613,
221
+ "std": 0.4163325375145587,
222
+ "min": 154.84582661482582,
223
+ "max": 156.09246001202513,
224
+ "p25": 155.30087459113142,
225
+ "p75": 155.67185126269123,
226
+ "p90": 155.92421651229157,
227
+ "p95": 156.00833826215836,
228
+ "p99": 156.07563566205178,
229
+ "unit": "tokens/sec"
230
+ },
231
+ "time_per_output_token_seconds": {
232
+ "name": "time_per_output_token_seconds",
233
+ "measurements": [
234
+ 0.006406459350585938,
235
+ 0.006439113769531249,
236
+ 0.006423768920898437,
237
+ 0.0064580364990234375,
238
+ 0.006438418579101562
239
+ ],
240
+ "mean": 0.006433159423828124,
241
+ "median": 0.006438418579101562,
242
+ "std": 1.722241140854737e-05,
243
+ "min": 0.006406459350585938,
244
+ "max": 0.0064580364990234375,
245
+ "p25": 0.006423768920898437,
246
+ "p75": 0.006439113769531249,
247
+ "p90": 0.006450467407226562,
248
+ "p95": 0.006454251953125,
249
+ "p99": 0.00645727958984375,
250
+ "unit": "seconds/token"
251
+ }
252
+ },
253
+ "gpu_metrics": {
254
+ "gpu_utilization_mean": 18,
255
+ "gpu_utilization_max": 18,
256
+ "gpu_utilization_min": 18,
257
+ "gpu_memory_used_mean": 994,
258
+ "gpu_memory_used_max": 994,
259
+ "gpu_memory_used_min": 994,
260
+ "sample_count": 2,
261
+ "gpu_monitoring_status": "success"
262
+ }
263
+ },
264
+ {
265
+ "scenario_name": "eager_sdpa_math",
266
+ "metadata": {
267
+ "timestamp": "2025-09-16T14:40:27.225113",
268
+ "commit_id": null,
269
+ "hardware_info": {
270
+ "gpu_name": "NVIDIA A100-SXM4-80GB",
271
+ "gpu_memory_total_mb": 81920,
272
+ "cpu_count": 128,
273
+ "memory_total_mb": 515624,
274
+ "python_version": "3.10.12",
275
+ "torch_version": "2.8.0+cu126",
276
+ "cuda_version": "12.6"
277
+ },
278
+ "config": {
279
+ "name": "eager",
280
+ "model_id": "bert-base-uncased",
281
+ "variant": "eager",
282
+ "warmup_iterations": 3,
283
+ "measurement_iterations": 5,
284
+ "num_tokens_to_generate": 100,
285
+ "device": "cuda",
286
+ "torch_dtype": "float16",
287
+ "compile_mode": null,
288
+ "compile_options": {},
289
+ "use_cache": true,
290
+ "batch_size": 1,
291
+ "sequence_length": null,
292
+ "attn_implementation": "sdpa",
293
+ "sdpa_backend": "math",
294
+ "custom_params": {}
295
+ }
296
+ },
297
+ "measurements": {
298
+ "latency_seconds": {
299
+ "name": "latency_seconds",
300
+ "measurements": [
301
+ 0.862056884765625,
302
+ 0.836093505859375,
303
+ 0.8566436767578125,
304
+ 0.8781635131835938,
305
+ 0.8709642333984375
306
+ ],
307
+ "mean": 0.8607843627929688,
308
+ "median": 0.862056884765625,
309
+ "std": 0.014381012780551117,
310
+ "min": 0.836093505859375,
311
+ "max": 0.8781635131835938,
312
+ "p25": 0.8566436767578125,
313
+ "p75": 0.8709642333984375,
314
+ "p90": 0.8752838012695313,
315
+ "p95": 0.8767236572265625,
316
+ "p99": 0.8778755419921875,
317
+ "unit": "seconds"
318
+ },
319
+ "time_to_first_token_seconds": {
320
+ "name": "time_to_first_token_seconds",
321
+ "measurements": [
322
+ 0.01033017635345459,
323
+ 0.010489888191223144,
324
+ 0.010407615661621093,
325
+ 0.010832351684570312,
326
+ 0.010516511917114257
327
+ ],
328
+ "mean": 0.010515308761596679,
329
+ "median": 0.010489888191223144,
330
+ "std": 0.00017148508991502497,
331
+ "min": 0.01033017635345459,
332
+ "max": 0.010832351684570312,
333
+ "p25": 0.010407615661621093,
334
+ "p75": 0.010516511917114257,
335
+ "p90": 0.010706015777587891,
336
+ "p95": 0.010769183731079102,
337
+ "p99": 0.01081971809387207,
338
+ "unit": "seconds"
339
+ },
340
+ "tokens_per_second": {
341
+ "name": "tokens_per_second",
342
+ "measurements": [
343
+ 116.00162560871824,
344
+ 119.60384729602156,
345
+ 116.73465025560643,
346
+ 113.87400922348893,
347
+ 114.81527732752865
348
+ ],
349
+ "mean": 116.20588194227278,
350
+ "median": 116.00162560871824,
351
+ "std": 1.9615757286128912,
352
+ "min": 113.87400922348893,
353
+ "max": 119.60384729602156,
354
+ "p25": 114.81527732752865,
355
+ "p75": 116.73465025560643,
356
+ "p90": 118.4561684798555,
357
+ "p95": 119.03000788793852,
358
+ "p99": 119.48907941440496,
359
+ "unit": "tokens/sec"
360
+ },
361
+ "time_per_output_token_seconds": {
362
+ "name": "time_per_output_token_seconds",
363
+ "measurements": [
364
+ 0.008620568847656251,
365
+ 0.00836093505859375,
366
+ 0.008566436767578125,
367
+ 0.008781635131835937,
368
+ 0.008709642333984375
369
+ ],
370
+ "mean": 0.008607843627929688,
371
+ "median": 0.008620568847656251,
372
+ "std": 0.0001438101278055114,
373
+ "min": 0.00836093505859375,
374
+ "max": 0.008781635131835937,
375
+ "p25": 0.008566436767578125,
376
+ "p75": 0.008709642333984375,
377
+ "p90": 0.008752838012695312,
378
+ "p95": 0.008767236572265625,
379
+ "p99": 0.008778755419921874,
380
+ "unit": "seconds/token"
381
+ }
382
+ },
383
+ "gpu_metrics": {
384
+ "gpu_utilization_mean": 19.333333333333332,
385
+ "gpu_utilization_max": 20,
386
+ "gpu_utilization_min": 19,
387
+ "gpu_memory_used_mean": 1140.3333333333333,
388
+ "gpu_memory_used_max": 1416,
389
+ "gpu_memory_used_min": 994,
390
+ "sample_count": 3,
391
+ "gpu_monitoring_status": "success"
392
+ }
393
+ },
394
+ {
395
+ "scenario_name": "eager_sdpa_flash_attention",
396
+ "metadata": {
397
+ "timestamp": "2025-09-16T14:40:42.533371",
398
+ "commit_id": null,
399
+ "hardware_info": {
400
+ "gpu_name": "NVIDIA A100-SXM4-80GB",
401
+ "gpu_memory_total_mb": 81920,
402
+ "cpu_count": 128,
403
+ "memory_total_mb": 515624,
404
+ "python_version": "3.10.12",
405
+ "torch_version": "2.8.0+cu126",
406
+ "cuda_version": "12.6"
407
+ },
408
+ "config": {
409
+ "name": "eager",
410
+ "model_id": "bert-base-uncased",
411
+ "variant": "eager",
412
+ "warmup_iterations": 3,
413
+ "measurement_iterations": 5,
414
+ "num_tokens_to_generate": 100,
415
+ "device": "cuda",
416
+ "torch_dtype": "float16",
417
+ "compile_mode": null,
418
+ "compile_options": {},
419
+ "use_cache": true,
420
+ "batch_size": 1,
421
+ "sequence_length": null,
422
+ "attn_implementation": "sdpa",
423
+ "sdpa_backend": "flash_attention",
424
+ "custom_params": {}
425
+ }
426
+ },
427
+ "measurements": {
428
+ "latency_seconds": {
429
+ "name": "latency_seconds",
430
+ "measurements": [
431
+ 0.6530625,
432
+ 0.6555455932617188,
433
+ 0.6554682006835938,
434
+ 0.653178955078125,
435
+ 0.6511043090820312
436
+ ],
437
+ "mean": 0.6536719116210937,
438
+ "median": 0.653178955078125,
439
+ "std": 0.0016699885485986382,
440
+ "min": 0.6511043090820312,
441
+ "max": 0.6555455932617188,
442
+ "p25": 0.6530625,
443
+ "p75": 0.6554682006835938,
444
+ "p90": 0.6555146362304688,
445
+ "p95": 0.6555301147460938,
446
+ "p99": 0.6555424975585938,
447
+ "unit": "seconds"
448
+ },
449
+ "time_to_first_token_seconds": {
450
+ "name": "time_to_first_token_seconds",
451
+ "measurements": [
452
+ 0.008492608070373536,
453
+ 0.008032447814941406,
454
+ 0.008033151626586915,
455
+ 0.008091520309448243,
456
+ 0.008013664245605468
457
+ ],
458
+ "mean": 0.008132678413391114,
459
+ "median": 0.008033151626586915,
460
+ "std": 0.00018185679739098057,
461
+ "min": 0.008013664245605468,
462
+ "max": 0.008492608070373536,
463
+ "p25": 0.008032447814941406,
464
+ "p75": 0.008091520309448243,
465
+ "p90": 0.008332172966003418,
466
+ "p95": 0.008412390518188477,
467
+ "p99": 0.008476564559936523,
468
+ "unit": "seconds"
469
+ },
470
+ "tokens_per_second": {
471
+ "name": "tokens_per_second",
472
+ "measurements": [
473
+ 153.1247009283185,
474
+ 152.54469106022376,
475
+ 152.5627023488082,
476
+ 153.0974003717546,
477
+ 153.58522222189936
478
+ ],
479
+ "mean": 152.98294338620087,
480
+ "median": 153.0974003717546,
481
+ "std": 0.3910506435112546,
482
+ "min": 152.54469106022376,
483
+ "max": 153.58522222189936,
484
+ "p25": 152.5627023488082,
485
+ "p75": 153.1247009283185,
486
+ "p90": 153.401013704467,
487
+ "p95": 153.49311796318318,
488
+ "p99": 153.56680137015613,
489
+ "unit": "tokens/sec"
490
+ },
491
+ "time_per_output_token_seconds": {
492
+ "name": "time_per_output_token_seconds",
493
+ "measurements": [
494
+ 0.006530625,
495
+ 0.006555455932617188,
496
+ 0.006554682006835938,
497
+ 0.006531789550781249,
498
+ 0.006511043090820312
499
+ ],
500
+ "mean": 0.0065367191162109374,
501
+ "median": 0.006531789550781249,
502
+ "std": 1.6699885485986405e-05,
503
+ "min": 0.006511043090820312,
504
+ "max": 0.006555455932617188,
505
+ "p25": 0.006530625,
506
+ "p75": 0.006554682006835938,
507
+ "p90": 0.006555146362304688,
508
+ "p95": 0.006555301147460938,
509
+ "p99": 0.006555424975585938,
510
+ "unit": "seconds/token"
511
+ }
512
+ },
513
+ "gpu_metrics": {
514
+ "gpu_utilization_mean": 17.5,
515
+ "gpu_utilization_max": 18,
516
+ "gpu_utilization_min": 17,
517
+ "gpu_memory_used_mean": 1416,
518
+ "gpu_memory_used_max": 1416,
519
+ "gpu_memory_used_min": 1416,
520
+ "sample_count": 2,
521
+ "gpu_monitoring_status": "success"
522
+ }
523
+ },
524
+ {
525
+ "scenario_name": "eager_sdpa_efficient_attention",
526
+ "metadata": {
527
+ "timestamp": "2025-09-16T14:40:55.420871",
528
+ "commit_id": null,
529
+ "hardware_info": {
530
+ "gpu_name": "NVIDIA A100-SXM4-80GB",
531
+ "gpu_memory_total_mb": 81920,
532
+ "cpu_count": 128,
533
+ "memory_total_mb": 515624,
534
+ "python_version": "3.10.12",
535
+ "torch_version": "2.8.0+cu126",
536
+ "cuda_version": "12.6"
537
+ },
538
+ "config": {
539
+ "name": "eager",
540
+ "model_id": "bert-base-uncased",
541
+ "variant": "eager",
542
+ "warmup_iterations": 3,
543
+ "measurement_iterations": 5,
544
+ "num_tokens_to_generate": 100,
545
+ "device": "cuda",
546
+ "torch_dtype": "float16",
547
+ "compile_mode": null,
548
+ "compile_options": {},
549
+ "use_cache": true,
550
+ "batch_size": 1,
551
+ "sequence_length": null,
552
+ "attn_implementation": "sdpa",
553
+ "sdpa_backend": "efficient_attention",
554
+ "custom_params": {}
555
+ }
556
+ },
557
+ "measurements": {
558
+ "latency_seconds": {
559
+ "name": "latency_seconds",
560
+ "measurements": [
561
+ 0.6364302978515625,
562
+ 0.6355804443359375,
563
+ 0.6347394409179687,
564
+ 0.6406351928710937,
565
+ 0.636865478515625
566
+ ],
567
+ "mean": 0.6368501708984375,
568
+ "median": 0.6364302978515625,
569
+ "std": 0.0020283148486413094,
570
+ "min": 0.6347394409179687,
571
+ "max": 0.6406351928710937,
572
+ "p25": 0.6355804443359375,
573
+ "p75": 0.636865478515625,
574
+ "p90": 0.6391273071289062,
575
+ "p95": 0.63988125,
576
+ "p99": 0.6404844042968749,
577
+ "unit": "seconds"
578
+ },
579
+ "time_to_first_token_seconds": {
580
+ "name": "time_to_first_token_seconds",
581
+ "measurements": [
582
+ 0.008025568008422851,
583
+ 0.007955679893493653,
584
+ 0.00798521614074707,
585
+ 0.007934783935546875,
586
+ 0.008005632400512695
587
+ ],
588
+ "mean": 0.007981376075744628,
589
+ "median": 0.00798521614074707,
590
+ "std": 3.282427033399499e-05,
591
+ "min": 0.007934783935546875,
592
+ "max": 0.008025568008422851,
593
+ "p25": 0.007955679893493653,
594
+ "p75": 0.008005632400512695,
595
+ "p90": 0.008017593765258789,
596
+ "p95": 0.00802158088684082,
597
+ "p99": 0.008024770584106444,
598
+ "unit": "seconds"
599
+ },
600
+ "tokens_per_second": {
601
+ "name": "tokens_per_second",
602
+ "measurements": [
603
+ 157.1263975608582,
604
+ 157.3364959403074,
605
+ 157.5449602680726,
606
+ 156.09507737443585,
607
+ 157.01903050715688
608
+ ],
609
+ "mean": 157.0243923301662,
610
+ "median": 157.1263975608582,
611
+ "std": 0.49848966782029014,
612
+ "min": 156.09507737443585,
613
+ "max": 157.5449602680726,
614
+ "p25": 157.01903050715688,
615
+ "p75": 157.3364959403074,
616
+ "p90": 157.4615745369665,
617
+ "p95": 157.50326740251955,
618
+ "p99": 157.53662169496198,
619
+ "unit": "tokens/sec"
620
+ },
621
+ "time_per_output_token_seconds": {
622
+ "name": "time_per_output_token_seconds",
623
+ "measurements": [
624
+ 0.006364302978515625,
625
+ 0.006355804443359375,
626
+ 0.006347394409179688,
627
+ 0.006406351928710937,
628
+ 0.00636865478515625
629
+ ],
630
+ "mean": 0.006368501708984375,
631
+ "median": 0.006364302978515625,
632
+ "std": 2.028314848641316e-05,
633
+ "min": 0.006347394409179688,
634
+ "max": 0.006406351928710937,
635
+ "p25": 0.006355804443359375,
636
+ "p75": 0.00636865478515625,
637
+ "p90": 0.006391273071289063,
638
+ "p95": 0.0063988125,
639
+ "p99": 0.00640484404296875,
640
+ "unit": "seconds/token"
641
+ }
642
+ },
643
+ "gpu_metrics": {
644
+ "gpu_utilization_mean": 18.5,
645
+ "gpu_utilization_max": 19,
646
+ "gpu_utilization_min": 18,
647
+ "gpu_memory_used_mean": 994,
648
+ "gpu_memory_used_max": 994,
649
+ "gpu_memory_used_min": 994,
650
+ "sample_count": 2,
651
+ "gpu_monitoring_status": "success"
652
+ }
653
+ }
654
+ ]
655
+ }
benchmark_results/gpt2/gpt2_benchmark_20250916_143134.json ADDED
@@ -0,0 +1,1175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_name": "gpt2",
3
+ "benchmark_scenarios": [
4
+ {
5
+ "scenario_name": "eager_eager_attn",
6
+ "metadata": {
7
+ "timestamp": "2025-09-16T14:29:02.079552",
8
+ "commit_id": null,
9
+ "hardware_info": {
10
+ "gpu_name": "NVIDIA A100-SXM4-80GB",
11
+ "gpu_memory_total_mb": 81920,
12
+ "cpu_count": 128,
13
+ "memory_total_mb": 515624,
14
+ "python_version": "3.10.12",
15
+ "torch_version": "2.8.0+cu126",
16
+ "cuda_version": "12.6"
17
+ },
18
+ "config": {
19
+ "name": "eager",
20
+ "model_id": "gpt2",
21
+ "variant": "eager",
22
+ "warmup_iterations": 3,
23
+ "measurement_iterations": 5,
24
+ "num_tokens_to_generate": 100,
25
+ "device": "cuda",
26
+ "torch_dtype": "float16",
27
+ "compile_mode": null,
28
+ "compile_options": {},
29
+ "use_cache": true,
30
+ "batch_size": 1,
31
+ "sequence_length": null,
32
+ "attn_implementation": "eager",
33
+ "sdpa_backend": null,
34
+ "custom_params": {}
35
+ }
36
+ },
37
+ "measurements": {
38
+ "latency_seconds": {
39
+ "name": "latency_seconds",
40
+ "measurements": [
41
+ 1.0541953125,
42
+ 1.0639735107421875,
43
+ 1.0578663330078124,
44
+ 1.0600103759765624,
45
+ 1.060989990234375
46
+ ],
47
+ "mean": 1.0594071044921873,
48
+ "median": 1.0600103759765624,
49
+ "std": 0.0032636875565412596,
50
+ "min": 1.0541953125,
51
+ "max": 1.0639735107421875,
52
+ "p25": 1.0578663330078124,
53
+ "p75": 1.060989990234375,
54
+ "p90": 1.0627801025390624,
55
+ "p95": 1.063376806640625,
56
+ "p99": 1.063854169921875,
57
+ "unit": "seconds"
58
+ },
59
+ "time_to_first_token_seconds": {
60
+ "name": "time_to_first_token_seconds",
61
+ "measurements": [
62
+ 0.012086463928222655,
63
+ 0.012136608123779298,
64
+ 0.011906720161437989,
65
+ 0.011981280326843261,
66
+ 0.011886783599853516
67
+ ],
68
+ "mean": 0.011999571228027342,
69
+ "median": 0.011981280326843261,
70
+ "std": 9.798609987804252e-05,
71
+ "min": 0.011886783599853516,
72
+ "max": 0.012136608123779298,
73
+ "p25": 0.011906720161437989,
74
+ "p75": 0.012086463928222655,
75
+ "p90": 0.01211655044555664,
76
+ "p95": 0.01212657928466797,
77
+ "p99": 0.012134602355957032,
78
+ "unit": "seconds"
79
+ },
80
+ "tokens_per_second": {
81
+ "name": "tokens_per_second",
82
+ "measurements": [
83
+ 94.85908238659522,
84
+ 93.98730230627997,
85
+ 94.52990125479444,
86
+ 94.33869919232853,
87
+ 94.25159607576485
88
+ ],
89
+ "mean": 94.3933162431526,
90
+ "median": 94.33869919232853,
91
+ "std": 0.29103556854877793,
92
+ "min": 93.98730230627997,
93
+ "max": 94.85908238659522,
94
+ "p25": 94.25159607576485,
95
+ "p75": 94.52990125479444,
96
+ "p90": 94.72740993387491,
97
+ "p95": 94.79324616023506,
98
+ "p99": 94.84591514132319,
99
+ "unit": "tokens/sec"
100
+ },
101
+ "time_per_output_token_seconds": {
102
+ "name": "time_per_output_token_seconds",
103
+ "measurements": [
104
+ 0.010541953125000001,
105
+ 0.010639735107421874,
106
+ 0.010578663330078125,
107
+ 0.010600103759765625,
108
+ 0.010609899902343749
109
+ ],
110
+ "mean": 0.010594071044921875,
111
+ "median": 0.010600103759765625,
112
+ "std": 3.2636875565412244e-05,
113
+ "min": 0.010541953125000001,
114
+ "max": 0.010639735107421874,
115
+ "p25": 0.010578663330078125,
116
+ "p75": 0.010609899902343749,
117
+ "p90": 0.010627801025390625,
118
+ "p95": 0.010633768066406249,
119
+ "p99": 0.010638541699218748,
120
+ "unit": "seconds/token"
121
+ }
122
+ },
123
+ "gpu_metrics": {
124
+ "gpu_utilization_mean": 15.5,
125
+ "gpu_utilization_max": 16,
126
+ "gpu_utilization_min": 15,
127
+ "gpu_memory_used_mean": 32022,
128
+ "gpu_memory_used_max": 32022,
129
+ "gpu_memory_used_min": 32022,
130
+ "sample_count": 4,
131
+ "gpu_monitoring_status": "success"
132
+ }
133
+ },
134
+ {
135
+ "scenario_name": "compiled_compile_max-autotune_eager_attn",
136
+ "metadata": {
137
+ "timestamp": "2025-09-16T14:29:18.852198",
138
+ "commit_id": null,
139
+ "hardware_info": {
140
+ "gpu_name": "NVIDIA A100-SXM4-80GB",
141
+ "gpu_memory_total_mb": 81920,
142
+ "cpu_count": 128,
143
+ "memory_total_mb": 515624,
144
+ "python_version": "3.10.12",
145
+ "torch_version": "2.8.0+cu126",
146
+ "cuda_version": "12.6"
147
+ },
148
+ "config": {
149
+ "name": "compiled",
150
+ "model_id": "gpt2",
151
+ "variant": "compiled",
152
+ "warmup_iterations": 3,
153
+ "measurement_iterations": 5,
154
+ "num_tokens_to_generate": 100,
155
+ "device": "cuda",
156
+ "torch_dtype": "float16",
157
+ "compile_mode": "max-autotune",
158
+ "compile_options": {},
159
+ "use_cache": true,
160
+ "batch_size": 1,
161
+ "sequence_length": null,
162
+ "attn_implementation": "eager",
163
+ "sdpa_backend": null,
164
+ "custom_params": {}
165
+ }
166
+ },
167
+ "measurements": {
168
+ "latency_seconds": {
169
+ "name": "latency_seconds",
170
+ "measurements": [
171
+ 2.321836669921875,
172
+ 2.480459228515625,
173
+ 3.250630126953125,
174
+ 2.559803466796875,
175
+ 3.32717822265625
176
+ ],
177
+ "mean": 2.78798154296875,
178
+ "median": 2.559803466796875,
179
+ "std": 0.41682202980379135,
180
+ "min": 2.321836669921875,
181
+ "max": 3.32717822265625,
182
+ "p25": 2.480459228515625,
183
+ "p75": 3.250630126953125,
184
+ "p90": 3.296558984375,
185
+ "p95": 3.311868603515625,
186
+ "p99": 3.324116298828125,
187
+ "unit": "seconds"
188
+ },
189
+ "time_to_first_token_seconds": {
190
+ "name": "time_to_first_token_seconds",
191
+ "measurements": [
192
+ 0.013586976051330567,
193
+ 0.012644543647766113,
194
+ 0.012610912322998047,
195
+ 0.012712160110473632,
196
+ 0.012882143974304198
197
+ ],
198
+ "mean": 0.012887347221374513,
199
+ "median": 0.012712160110473632,
200
+ "std": 0.00036209609931866615,
201
+ "min": 0.012610912322998047,
202
+ "max": 0.013586976051330567,
203
+ "p25": 0.012644543647766113,
204
+ "p75": 0.012882143974304198,
205
+ "p90": 0.01330504322052002,
206
+ "p95": 0.013446009635925293,
207
+ "p99": 0.013558782768249513,
208
+ "unit": "seconds"
209
+ },
210
+ "tokens_per_second": {
211
+ "name": "tokens_per_second",
212
+ "measurements": [
213
+ 43.06935164537857,
214
+ 40.3151153828248,
215
+ 30.76326622670289,
216
+ 39.06549908893267,
217
+ 30.055498475872174
218
+ ],
219
+ "mean": 36.653746163942216,
220
+ "median": 39.06549908893267,
221
+ "std": 5.265297652854161,
222
+ "min": 30.055498475872174,
223
+ "max": 43.06935164537857,
224
+ "p25": 30.76326622670289,
225
+ "p75": 40.3151153828248,
226
+ "p90": 41.96765714035706,
227
+ "p95": 42.51850439286781,
228
+ "p99": 42.95918219487642,
229
+ "unit": "tokens/sec"
230
+ },
231
+ "time_per_output_token_seconds": {
232
+ "name": "time_per_output_token_seconds",
233
+ "measurements": [
234
+ 0.02321836669921875,
235
+ 0.02480459228515625,
236
+ 0.03250630126953125,
237
+ 0.02559803466796875,
238
+ 0.0332717822265625
239
+ ],
240
+ "mean": 0.0278798154296875,
241
+ "median": 0.02559803466796875,
242
+ "std": 0.004168220298037914,
243
+ "min": 0.02321836669921875,
244
+ "max": 0.0332717822265625,
245
+ "p25": 0.02480459228515625,
246
+ "p75": 0.03250630126953125,
247
+ "p90": 0.03296558984375,
248
+ "p95": 0.03311868603515625,
249
+ "p99": 0.033241162988281246,
250
+ "unit": "seconds/token"
251
+ }
252
+ },
253
+ "gpu_metrics": {
254
+ "gpu_utilization_mean": 4,
255
+ "gpu_utilization_max": 25,
256
+ "gpu_utilization_min": 0,
257
+ "gpu_memory_used_mean": 32112.5,
258
+ "gpu_memory_used_max": 32126,
259
+ "gpu_memory_used_min": 32096,
260
+ "sample_count": 8,
261
+ "gpu_monitoring_status": "success"
262
+ }
263
+ },
264
+ {
265
+ "scenario_name": "eager_sdpa_default",
266
+ "metadata": {
267
+ "timestamp": "2025-09-16T14:29:57.578821",
268
+ "commit_id": null,
269
+ "hardware_info": {
270
+ "gpu_name": "NVIDIA A100-SXM4-80GB",
271
+ "gpu_memory_total_mb": 81920,
272
+ "cpu_count": 128,
273
+ "memory_total_mb": 515624,
274
+ "python_version": "3.10.12",
275
+ "torch_version": "2.8.0+cu126",
276
+ "cuda_version": "12.6"
277
+ },
278
+ "config": {
279
+ "name": "eager",
280
+ "model_id": "gpt2",
281
+ "variant": "eager",
282
+ "warmup_iterations": 3,
283
+ "measurement_iterations": 5,
284
+ "num_tokens_to_generate": 100,
285
+ "device": "cuda",
286
+ "torch_dtype": "float16",
287
+ "compile_mode": null,
288
+ "compile_options": {},
289
+ "use_cache": true,
290
+ "batch_size": 1,
291
+ "sequence_length": null,
292
+ "attn_implementation": "sdpa",
293
+ "sdpa_backend": null,
294
+ "custom_params": {}
295
+ }
296
+ },
297
+ "measurements": {
298
+ "latency_seconds": {
299
+ "name": "latency_seconds",
300
+ "measurements": [
301
+ 0.6811693725585938,
302
+ 0.6940160522460938,
303
+ 0.6914998168945312,
304
+ 0.6926322021484375,
305
+ 0.6934620971679688
306
+ ],
307
+ "mean": 0.690555908203125,
308
+ "median": 0.6926322021484375,
309
+ "std": 0.004769225150243603,
310
+ "min": 0.6811693725585938,
311
+ "max": 0.6940160522460938,
312
+ "p25": 0.6914998168945312,
313
+ "p75": 0.6934620971679688,
314
+ "p90": 0.6937944702148438,
315
+ "p95": 0.6939052612304688,
316
+ "p99": 0.6939938940429687,
317
+ "unit": "seconds"
318
+ },
319
+ "time_to_first_token_seconds": {
320
+ "name": "time_to_first_token_seconds",
321
+ "measurements": [
322
+ 0.008297727584838868,
323
+ 0.008120736122131348,
324
+ 0.008297151565551757,
325
+ 0.00855510425567627,
326
+ 0.008345760345458985
327
+ ],
328
+ "mean": 0.008323295974731446,
329
+ "median": 0.008297727584838868,
330
+ "std": 0.00013900179397777972,
331
+ "min": 0.008120736122131348,
332
+ "max": 0.00855510425567627,
333
+ "p25": 0.008297151565551757,
334
+ "p75": 0.008345760345458985,
335
+ "p90": 0.008471366691589356,
336
+ "p95": 0.008513235473632813,
337
+ "p99": 0.008546730499267578,
338
+ "unit": "seconds"
339
+ },
340
+ "tokens_per_second": {
341
+ "name": "tokens_per_second",
342
+ "measurements": [
343
+ 146.80636568315182,
344
+ 144.0888862388166,
345
+ 144.6131980903361,
346
+ 144.3767697918398,
347
+ 144.20398808873648
348
+ ],
349
+ "mean": 144.81784157857618,
350
+ "median": 144.3767697918398,
351
+ "std": 1.009835965606756,
352
+ "min": 144.0888862388166,
353
+ "max": 146.80636568315182,
354
+ "p25": 144.20398808873648,
355
+ "p75": 144.6131980903361,
356
+ "p90": 145.92909864602555,
357
+ "p95": 146.3677321645887,
358
+ "p99": 146.7186389794392,
359
+ "unit": "tokens/sec"
360
+ },
361
+ "time_per_output_token_seconds": {
362
+ "name": "time_per_output_token_seconds",
363
+ "measurements": [
364
+ 0.006811693725585937,
365
+ 0.006940160522460937,
366
+ 0.006914998168945312,
367
+ 0.0069263220214843746,
368
+ 0.006934620971679688
369
+ ],
370
+ "mean": 0.00690555908203125,
371
+ "median": 0.0069263220214843746,
372
+ "std": 4.7692251502436116e-05,
373
+ "min": 0.006811693725585937,
374
+ "max": 0.006940160522460937,
375
+ "p25": 0.006914998168945312,
376
+ "p75": 0.006934620971679688,
377
+ "p90": 0.006937944702148437,
378
+ "p95": 0.006939052612304687,
379
+ "p99": 0.006939938940429687,
380
+ "unit": "seconds/token"
381
+ }
382
+ },
383
+ "gpu_metrics": {
384
+ "gpu_utilization_mean": 20,
385
+ "gpu_utilization_max": 20,
386
+ "gpu_utilization_min": 20,
387
+ "gpu_memory_used_mean": 32154,
388
+ "gpu_memory_used_max": 32154,
389
+ "gpu_memory_used_min": 32154,
390
+ "sample_count": 3,
391
+ "gpu_monitoring_status": "success"
392
+ }
393
+ },
394
+ {
395
+ "scenario_name": "eager_sdpa_math",
396
+ "metadata": {
397
+ "timestamp": "2025-09-16T14:30:10.004302",
398
+ "commit_id": null,
399
+ "hardware_info": {
400
+ "gpu_name": "NVIDIA A100-SXM4-80GB",
401
+ "gpu_memory_total_mb": 81920,
402
+ "cpu_count": 128,
403
+ "memory_total_mb": 515624,
404
+ "python_version": "3.10.12",
405
+ "torch_version": "2.8.0+cu126",
406
+ "cuda_version": "12.6"
407
+ },
408
+ "config": {
409
+ "name": "eager",
410
+ "model_id": "gpt2",
411
+ "variant": "eager",
412
+ "warmup_iterations": 3,
413
+ "measurement_iterations": 5,
414
+ "num_tokens_to_generate": 100,
415
+ "device": "cuda",
416
+ "torch_dtype": "float16",
417
+ "compile_mode": null,
418
+ "compile_options": {},
419
+ "use_cache": true,
420
+ "batch_size": 1,
421
+ "sequence_length": null,
422
+ "attn_implementation": "sdpa",
423
+ "sdpa_backend": "math",
424
+ "custom_params": {}
425
+ }
426
+ },
427
+ "measurements": {
428
+ "latency_seconds": {
429
+ "name": "latency_seconds",
430
+ "measurements": [
431
+ 0.8700221557617187,
432
+ 0.8757317504882812,
433
+ 0.8745044555664062,
434
+ 0.8775747680664062,
435
+ 0.8737710571289062
436
+ ],
437
+ "mean": 0.8743208374023437,
438
+ "median": 0.8745044555664062,
439
+ "std": 0.0025057285698685374,
440
+ "min": 0.8700221557617187,
441
+ "max": 0.8775747680664062,
442
+ "p25": 0.8737710571289062,
443
+ "p75": 0.8757317504882812,
444
+ "p90": 0.8768375610351562,
445
+ "p95": 0.8772061645507813,
446
+ "p99": 0.8775010473632813,
447
+ "unit": "seconds"
448
+ },
449
+ "time_to_first_token_seconds": {
450
+ "name": "time_to_first_token_seconds",
451
+ "measurements": [
452
+ 0.011120479583740234,
453
+ 0.011192288398742676,
454
+ 0.011178720474243163,
455
+ 0.011525568008422851,
456
+ 0.011380319595336913
457
+ ],
458
+ "mean": 0.011279475212097167,
459
+ "median": 0.011192288398742676,
460
+ "std": 0.00015084026086821458,
461
+ "min": 0.011120479583740234,
462
+ "max": 0.011525568008422851,
463
+ "p25": 0.011178720474243163,
464
+ "p75": 0.011380319595336913,
465
+ "p90": 0.011467468643188476,
466
+ "p95": 0.011496518325805663,
467
+ "p99": 0.011519758071899413,
468
+ "unit": "seconds"
469
+ },
470
+ "tokens_per_second": {
471
+ "name": "tokens_per_second",
472
+ "measurements": [
473
+ 114.93960163859086,
474
+ 114.1902185734879,
475
+ 114.350475133064,
476
+ 113.95040472771772,
477
+ 114.4464550343273
478
+ ],
479
+ "mean": 114.37543102143755,
480
+ "median": 114.350475133064,
481
+ "std": 0.3283006832948525,
482
+ "min": 113.95040472771772,
483
+ "max": 114.93960163859086,
484
+ "p25": 114.1902185734879,
485
+ "p75": 114.4464550343273,
486
+ "p90": 114.74234299688544,
487
+ "p95": 114.84097231773815,
488
+ "p99": 114.91987577442032,
489
+ "unit": "tokens/sec"
490
+ },
491
+ "time_per_output_token_seconds": {
492
+ "name": "time_per_output_token_seconds",
493
+ "measurements": [
494
+ 0.008700221557617188,
495
+ 0.008757317504882811,
496
+ 0.008745044555664062,
497
+ 0.008775747680664062,
498
+ 0.008737710571289062
499
+ ],
500
+ "mean": 0.008743208374023436,
501
+ "median": 0.008745044555664062,
502
+ "std": 2.5057285698684983e-05,
503
+ "min": 0.008700221557617188,
504
+ "max": 0.008775747680664062,
505
+ "p25": 0.008737710571289062,
506
+ "p75": 0.008757317504882811,
507
+ "p90": 0.008768375610351561,
508
+ "p95": 0.008772061645507812,
509
+ "p99": 0.008775010473632812,
510
+ "unit": "seconds/token"
511
+ }
512
+ },
513
+ "gpu_metrics": {
514
+ "gpu_utilization_mean": 21.333333333333332,
515
+ "gpu_utilization_max": 22,
516
+ "gpu_utilization_min": 21,
517
+ "gpu_memory_used_mean": 32132,
518
+ "gpu_memory_used_max": 32132,
519
+ "gpu_memory_used_min": 32132,
520
+ "sample_count": 3,
521
+ "gpu_monitoring_status": "success"
522
+ }
523
+ },
524
+ {
525
+ "scenario_name": "eager_sdpa_flash_attention",
526
+ "metadata": {
527
+ "timestamp": "2025-09-16T14:30:23.342107",
528
+ "commit_id": null,
529
+ "hardware_info": {
530
+ "gpu_name": "NVIDIA A100-SXM4-80GB",
531
+ "gpu_memory_total_mb": 81920,
532
+ "cpu_count": 128,
533
+ "memory_total_mb": 515624,
534
+ "python_version": "3.10.12",
535
+ "torch_version": "2.8.0+cu126",
536
+ "cuda_version": "12.6"
537
+ },
538
+ "config": {
539
+ "name": "eager",
540
+ "model_id": "gpt2",
541
+ "variant": "eager",
542
+ "warmup_iterations": 3,
543
+ "measurement_iterations": 5,
544
+ "num_tokens_to_generate": 100,
545
+ "device": "cuda",
546
+ "torch_dtype": "float16",
547
+ "compile_mode": null,
548
+ "compile_options": {},
549
+ "use_cache": true,
550
+ "batch_size": 1,
551
+ "sequence_length": null,
552
+ "attn_implementation": "sdpa",
553
+ "sdpa_backend": "flash_attention",
554
+ "custom_params": {}
555
+ }
556
+ },
557
+ "measurements": {
558
+ "latency_seconds": {
559
+ "name": "latency_seconds",
560
+ "measurements": [
561
+ 0.7245529174804688,
562
+ 0.7257909545898438,
563
+ 0.7065213012695313,
564
+ 0.6885786743164063,
565
+ 0.6876067504882812
566
+ ],
567
+ "mean": 0.7066101196289063,
568
+ "median": 0.7065213012695313,
569
+ "std": 0.01658986059009694,
570
+ "min": 0.6876067504882812,
571
+ "max": 0.7257909545898438,
572
+ "p25": 0.6885786743164063,
573
+ "p75": 0.7245529174804688,
574
+ "p90": 0.7252957397460937,
575
+ "p95": 0.7255433471679688,
576
+ "p99": 0.7257414331054688,
577
+ "unit": "seconds"
578
+ },
579
+ "time_to_first_token_seconds": {
580
+ "name": "time_to_first_token_seconds",
581
+ "measurements": [
582
+ 0.008233535766601562,
583
+ 0.008958335876464843,
584
+ 0.009003999710083008,
585
+ 0.00853872013092041,
586
+ 0.008412192344665528
587
+ ],
588
+ "mean": 0.008629356765747071,
589
+ "median": 0.00853872013092041,
590
+ "std": 0.0003035240483883572,
591
+ "min": 0.008233535766601562,
592
+ "max": 0.009003999710083008,
593
+ "p25": 0.008412192344665528,
594
+ "p75": 0.008958335876464843,
595
+ "p90": 0.008985734176635743,
596
+ "p95": 0.008994866943359376,
597
+ "p99": 0.009002173156738283,
598
+ "unit": "seconds"
599
+ },
600
+ "tokens_per_second": {
601
+ "name": "tokens_per_second",
602
+ "measurements": [
603
+ 138.01614428347895,
604
+ 137.78071959647338,
605
+ 141.5385492557866,
606
+ 145.22668756664015,
607
+ 145.43196373361417
608
+ ],
609
+ "mean": 141.59881288719868,
610
+ "median": 141.5385492557866,
611
+ "std": 3.3248008213166687,
612
+ "min": 137.78071959647338,
613
+ "max": 145.43196373361417,
614
+ "p25": 138.01614428347895,
615
+ "p75": 145.22668756664015,
616
+ "p90": 145.34985326682457,
617
+ "p95": 145.39090850021935,
618
+ "p99": 145.42375268693522,
619
+ "unit": "tokens/sec"
620
+ },
621
+ "time_per_output_token_seconds": {
622
+ "name": "time_per_output_token_seconds",
623
+ "measurements": [
624
+ 0.007245529174804688,
625
+ 0.0072579095458984375,
626
+ 0.0070652130126953126,
627
+ 0.006885786743164063,
628
+ 0.006876067504882812
629
+ ],
630
+ "mean": 0.007066101196289062,
631
+ "median": 0.0070652130126953126,
632
+ "std": 0.00016589860590096936,
633
+ "min": 0.006876067504882812,
634
+ "max": 0.0072579095458984375,
635
+ "p25": 0.006885786743164063,
636
+ "p75": 0.007245529174804688,
637
+ "p90": 0.007252957397460937,
638
+ "p95": 0.007255433471679688,
639
+ "p99": 0.007257414331054687,
640
+ "unit": "seconds/token"
641
+ }
642
+ },
643
+ "gpu_metrics": {
644
+ "gpu_utilization_mean": 20,
645
+ "gpu_utilization_max": 20,
646
+ "gpu_utilization_min": 20,
647
+ "gpu_memory_used_mean": 922,
648
+ "gpu_memory_used_max": 922,
649
+ "gpu_memory_used_min": 922,
650
+ "sample_count": 2,
651
+ "gpu_monitoring_status": "success"
652
+ }
653
+ },
654
+ {
655
+ "scenario_name": "eager_sdpa_efficient_attention",
656
+ "metadata": {
657
+ "timestamp": "2025-09-16T14:30:35.101570",
658
+ "commit_id": null,
659
+ "hardware_info": {
660
+ "gpu_name": "NVIDIA A100-SXM4-80GB",
661
+ "gpu_memory_total_mb": 81920,
662
+ "cpu_count": 128,
663
+ "memory_total_mb": 515624,
664
+ "python_version": "3.10.12",
665
+ "torch_version": "2.8.0+cu126",
666
+ "cuda_version": "12.6"
667
+ },
668
+ "config": {
669
+ "name": "eager",
670
+ "model_id": "gpt2",
671
+ "variant": "eager",
672
+ "warmup_iterations": 3,
673
+ "measurement_iterations": 5,
674
+ "num_tokens_to_generate": 100,
675
+ "device": "cuda",
676
+ "torch_dtype": "float16",
677
+ "compile_mode": null,
678
+ "compile_options": {},
679
+ "use_cache": true,
680
+ "batch_size": 1,
681
+ "sequence_length": null,
682
+ "attn_implementation": "sdpa",
683
+ "sdpa_backend": "efficient_attention",
684
+ "custom_params": {}
685
+ }
686
+ },
687
+ "measurements": {
688
+ "latency_seconds": {
689
+ "name": "latency_seconds",
690
+ "measurements": [
691
+ 0.688720458984375,
692
+ 0.6877328491210938,
693
+ 0.688767822265625,
694
+ 0.6873019409179687,
695
+ 0.6927123413085937
696
+ ],
697
+ "mean": 0.6890470825195312,
698
+ "median": 0.688720458984375,
699
+ "std": 0.0019178904999505159,
700
+ "min": 0.6873019409179687,
701
+ "max": 0.6927123413085937,
702
+ "p25": 0.6877328491210938,
703
+ "p75": 0.688767822265625,
704
+ "p90": 0.6911345336914062,
705
+ "p95": 0.6919234375,
706
+ "p99": 0.6925545605468749,
707
+ "unit": "seconds"
708
+ },
709
+ "time_to_first_token_seconds": {
710
+ "name": "time_to_first_token_seconds",
711
+ "measurements": [
712
+ 0.008227007865905762,
713
+ 0.008864255905151367,
714
+ 0.008487392425537109,
715
+ 0.008654623985290528,
716
+ 0.008882783889770507
717
+ ],
718
+ "mean": 0.008623212814331056,
719
+ "median": 0.008654623985290528,
720
+ "std": 0.0002457198061479278,
721
+ "min": 0.008227007865905762,
722
+ "max": 0.008882783889770507,
723
+ "p25": 0.008487392425537109,
724
+ "p75": 0.008864255905151367,
725
+ "p90": 0.008875372695922852,
726
+ "p95": 0.00887907829284668,
727
+ "p99": 0.008882042770385741,
728
+ "unit": "seconds"
729
+ },
730
+ "tokens_per_second": {
731
+ "name": "tokens_per_second",
732
+ "measurements": [
733
+ 145.19679021509756,
734
+ 145.40529818780306,
735
+ 145.18680572367788,
736
+ 145.49646093889797,
737
+ 144.360066995618
738
+ ],
739
+ "mean": 145.1290844122189,
740
+ "median": 145.19679021509756,
741
+ "std": 0.4026321335295338,
742
+ "min": 144.360066995618,
743
+ "max": 145.49646093889797,
744
+ "p25": 145.18680572367788,
745
+ "p75": 145.40529818780306,
746
+ "p90": 145.45999583846,
747
+ "p95": 145.47822838867899,
748
+ "p99": 145.49281442885416,
749
+ "unit": "tokens/sec"
750
+ },
751
+ "time_per_output_token_seconds": {
752
+ "name": "time_per_output_token_seconds",
753
+ "measurements": [
754
+ 0.006887204589843749,
755
+ 0.006877328491210938,
756
+ 0.006887678222656251,
757
+ 0.006873019409179687,
758
+ 0.006927123413085937
759
+ ],
760
+ "mean": 0.006890470825195312,
761
+ "median": 0.006887204589843749,
762
+ "std": 1.917890499950527e-05,
763
+ "min": 0.006873019409179687,
764
+ "max": 0.006927123413085937,
765
+ "p25": 0.006877328491210938,
766
+ "p75": 0.006887678222656251,
767
+ "p90": 0.006911345336914063,
768
+ "p95": 0.006919234375,
769
+ "p99": 0.00692554560546875,
770
+ "unit": "seconds/token"
771
+ }
772
+ },
773
+ "gpu_metrics": {
774
+ "gpu_utilization_mean": 20,
775
+ "gpu_utilization_max": 20,
776
+ "gpu_utilization_min": 20,
777
+ "gpu_memory_used_mean": 922,
778
+ "gpu_memory_used_max": 922,
779
+ "gpu_memory_used_min": 922,
780
+ "sample_count": 3,
781
+ "gpu_monitoring_status": "success"
782
+ }
783
+ },
784
+ {
785
+ "scenario_name": "compiled_compile_max-autotune_sdpa_default",
786
+ "metadata": {
787
+ "timestamp": "2025-09-16T14:30:49.306518",
788
+ "commit_id": null,
789
+ "hardware_info": {
790
+ "gpu_name": "NVIDIA A100-SXM4-80GB",
791
+ "gpu_memory_total_mb": 81920,
792
+ "cpu_count": 128,
793
+ "memory_total_mb": 515624,
794
+ "python_version": "3.10.12",
795
+ "torch_version": "2.8.0+cu126",
796
+ "cuda_version": "12.6"
797
+ },
798
+ "config": {
799
+ "name": "compiled",
800
+ "model_id": "gpt2",
801
+ "variant": "compiled",
802
+ "warmup_iterations": 3,
803
+ "measurement_iterations": 5,
804
+ "num_tokens_to_generate": 100,
805
+ "device": "cuda",
806
+ "torch_dtype": "float16",
807
+ "compile_mode": "max-autotune",
808
+ "compile_options": {},
809
+ "use_cache": true,
810
+ "batch_size": 1,
811
+ "sequence_length": null,
812
+ "attn_implementation": "sdpa",
813
+ "sdpa_backend": null,
814
+ "custom_params": {}
815
+ }
816
+ },
817
+ "measurements": {
818
+ "latency_seconds": {
819
+ "name": "latency_seconds",
820
+ "measurements": [
821
+ 0.9974157104492187,
822
+ 1.0014816284179688,
823
+ 1.0079267578125,
824
+ 1.012246337890625,
825
+ 1.056821044921875
826
+ ],
827
+ "mean": 1.0151782958984374,
828
+ "median": 1.0079267578125,
829
+ "std": 0.021440185962401076,
830
+ "min": 0.9974157104492187,
831
+ "max": 1.056821044921875,
832
+ "p25": 1.0014816284179688,
833
+ "p75": 1.012246337890625,
834
+ "p90": 1.038991162109375,
835
+ "p95": 1.047906103515625,
836
+ "p99": 1.055038056640625,
837
+ "unit": "seconds"
838
+ },
839
+ "time_to_first_token_seconds": {
840
+ "name": "time_to_first_token_seconds",
841
+ "measurements": [
842
+ 0.011328672409057617,
843
+ 0.01172815990447998,
844
+ 0.011475808143615722,
845
+ 0.012047455787658692,
846
+ 0.011731488227844238
847
+ ],
848
+ "mean": 0.01166231689453125,
849
+ "median": 0.01172815990447998,
850
+ "std": 0.0002463964687920149,
851
+ "min": 0.011328672409057617,
852
+ "max": 0.012047455787658692,
853
+ "p25": 0.011475808143615722,
854
+ "p75": 0.011731488227844238,
855
+ "p90": 0.01192106876373291,
856
+ "p95": 0.011984262275695802,
857
+ "p99": 0.012034817085266113,
858
+ "unit": "seconds"
859
+ },
860
+ "tokens_per_second": {
861
+ "name": "tokens_per_second",
862
+ "measurements": [
863
+ 100.25909854072955,
864
+ 99.85205635571076,
865
+ 99.21355815280633,
866
+ 98.79018205033523,
867
+ 94.62339956278261
868
+ ],
869
+ "mean": 98.5476589324729,
870
+ "median": 99.21355815280633,
871
+ "std": 2.0264515294178453,
872
+ "min": 94.62339956278261,
873
+ "max": 100.25909854072955,
874
+ "p25": 98.79018205033523,
875
+ "p75": 99.85205635571076,
876
+ "p90": 100.09628166672204,
877
+ "p95": 100.1776901037258,
878
+ "p99": 100.2428168533288,
879
+ "unit": "tokens/sec"
880
+ },
881
+ "time_per_output_token_seconds": {
882
+ "name": "time_per_output_token_seconds",
883
+ "measurements": [
884
+ 0.009974157104492187,
885
+ 0.010014816284179688,
886
+ 0.010079267578125,
887
+ 0.01012246337890625,
888
+ 0.010568210449218749
889
+ ],
890
+ "mean": 0.010151782958984374,
891
+ "median": 0.010079267578125,
892
+ "std": 0.00021440185962401083,
893
+ "min": 0.009974157104492187,
894
+ "max": 0.010568210449218749,
895
+ "p25": 0.010014816284179688,
896
+ "p75": 0.01012246337890625,
897
+ "p90": 0.01038991162109375,
898
+ "p95": 0.010479061035156249,
899
+ "p99": 0.010550380566406248,
900
+ "unit": "seconds/token"
901
+ }
902
+ },
903
+ "gpu_metrics": {
904
+ "gpu_utilization_mean": 16,
905
+ "gpu_utilization_max": 16,
906
+ "gpu_utilization_min": 16,
907
+ "gpu_memory_used_mean": 922,
908
+ "gpu_memory_used_max": 922,
909
+ "gpu_memory_used_min": 922,
910
+ "sample_count": 4,
911
+ "gpu_monitoring_status": "success"
912
+ }
913
+ },
914
+ {
915
+ "scenario_name": "compiled_compile_max-autotune_sdpa_math",
916
+ "metadata": {
917
+ "timestamp": "2025-09-16T14:31:03.520152",
918
+ "commit_id": null,
919
+ "hardware_info": {
920
+ "gpu_name": "NVIDIA A100-SXM4-80GB",
921
+ "gpu_memory_total_mb": 81920,
922
+ "cpu_count": 128,
923
+ "memory_total_mb": 515624,
924
+ "python_version": "3.10.12",
925
+ "torch_version": "2.8.0+cu126",
926
+ "cuda_version": "12.6"
927
+ },
928
+ "config": {
929
+ "name": "compiled",
930
+ "model_id": "gpt2",
931
+ "variant": "compiled",
932
+ "warmup_iterations": 3,
933
+ "measurement_iterations": 5,
934
+ "num_tokens_to_generate": 100,
935
+ "device": "cuda",
936
+ "torch_dtype": "float16",
937
+ "compile_mode": "max-autotune",
938
+ "compile_options": {},
939
+ "use_cache": true,
940
+ "batch_size": 1,
941
+ "sequence_length": null,
942
+ "attn_implementation": "sdpa",
943
+ "sdpa_backend": "math",
944
+ "custom_params": {}
945
+ }
946
+ },
947
+ "measurements": {
948
+ "latency_seconds": {
949
+ "name": "latency_seconds",
950
+ "measurements": [
951
+ 1.1809921875,
952
+ 1.17560693359375,
953
+ 1.179835693359375,
954
+ 1.1900877685546876,
955
+ 1.196610107421875
956
+ ],
957
+ "mean": 1.1846265380859375,
958
+ "median": 1.1809921875,
959
+ "std": 0.007628170617298067,
960
+ "min": 1.17560693359375,
961
+ "max": 1.196610107421875,
962
+ "p25": 1.179835693359375,
963
+ "p75": 1.1900877685546876,
964
+ "p90": 1.1940011718749999,
965
+ "p95": 1.1953056396484374,
966
+ "p99": 1.1963492138671874,
967
+ "unit": "seconds"
968
+ },
969
+ "time_to_first_token_seconds": {
970
+ "name": "time_to_first_token_seconds",
971
+ "measurements": [
972
+ 0.015000831604003907,
973
+ 0.013680319786071777,
974
+ 0.013097855567932129,
975
+ 0.013719264030456544,
976
+ 0.014447936058044434
977
+ ],
978
+ "mean": 0.013989241409301759,
979
+ "median": 0.013719264030456544,
980
+ "std": 0.0006628128808923555,
981
+ "min": 0.013097855567932129,
982
+ "max": 0.015000831604003907,
983
+ "p25": 0.013680319786071777,
984
+ "p75": 0.014447936058044434,
985
+ "p90": 0.014779673385620118,
986
+ "p95": 0.014890252494812012,
987
+ "p99": 0.014978715782165529,
988
+ "unit": "seconds"
989
+ },
990
+ "tokens_per_second": {
991
+ "name": "tokens_per_second",
992
+ "measurements": [
993
+ 84.67456521595322,
994
+ 85.06244488904709,
995
+ 84.75756460229437,
996
+ 84.02741599591926,
997
+ 83.56940943399884
998
+ ],
999
+ "mean": 84.41828002744255,
1000
+ "median": 84.67456521595322,
1001
+ "std": 0.542051743851163,
1002
+ "min": 83.56940943399884,
1003
+ "max": 85.06244488904709,
1004
+ "p25": 84.02741599591926,
1005
+ "p75": 84.75756460229437,
1006
+ "p90": 84.940492774346,
1007
+ "p95": 85.00146883169654,
1008
+ "p99": 85.05024967757697,
1009
+ "unit": "tokens/sec"
1010
+ },
1011
+ "time_per_output_token_seconds": {
1012
+ "name": "time_per_output_token_seconds",
1013
+ "measurements": [
1014
+ 0.011809921875,
1015
+ 0.011756069335937501,
1016
+ 0.01179835693359375,
1017
+ 0.011900877685546875,
1018
+ 0.011966101074218749
1019
+ ],
1020
+ "mean": 0.011846265380859375,
1021
+ "median": 0.011809921875,
1022
+ "std": 7.62817061729803e-05,
1023
+ "min": 0.011756069335937501,
1024
+ "max": 0.011966101074218749,
1025
+ "p25": 0.01179835693359375,
1026
+ "p75": 0.011900877685546875,
1027
+ "p90": 0.011940011718749999,
1028
+ "p95": 0.011953056396484375,
1029
+ "p99": 0.011963492138671874,
1030
+ "unit": "seconds/token"
1031
+ }
1032
+ },
1033
+ "gpu_metrics": {
1034
+ "gpu_utilization_mean": 18,
1035
+ "gpu_utilization_max": 18,
1036
+ "gpu_utilization_min": 18,
1037
+ "gpu_memory_used_mean": 922,
1038
+ "gpu_memory_used_max": 922,
1039
+ "gpu_memory_used_min": 922,
1040
+ "sample_count": 4,
1041
+ "gpu_monitoring_status": "success"
1042
+ }
1043
+ },
1044
+ {
1045
+ "scenario_name": "compiled_compile_max-autotune_sdpa_efficient_attention",
1046
+ "metadata": {
1047
+ "timestamp": "2025-09-16T14:31:21.084642",
1048
+ "commit_id": null,
1049
+ "hardware_info": {
1050
+ "gpu_name": "NVIDIA A100-SXM4-80GB",
1051
+ "gpu_memory_total_mb": 81920,
1052
+ "cpu_count": 128,
1053
+ "memory_total_mb": 515624,
1054
+ "python_version": "3.10.12",
1055
+ "torch_version": "2.8.0+cu126",
1056
+ "cuda_version": "12.6"
1057
+ },
1058
+ "config": {
1059
+ "name": "compiled",
1060
+ "model_id": "gpt2",
1061
+ "variant": "compiled",
1062
+ "warmup_iterations": 3,
1063
+ "measurement_iterations": 5,
1064
+ "num_tokens_to_generate": 100,
1065
+ "device": "cuda",
1066
+ "torch_dtype": "float16",
1067
+ "compile_mode": "max-autotune",
1068
+ "compile_options": {},
1069
+ "use_cache": true,
1070
+ "batch_size": 1,
1071
+ "sequence_length": null,
1072
+ "attn_implementation": "sdpa",
1073
+ "sdpa_backend": "efficient_attention",
1074
+ "custom_params": {}
1075
+ }
1076
+ },
1077
+ "measurements": {
1078
+ "latency_seconds": {
1079
+ "name": "latency_seconds",
1080
+ "measurements": [
1081
+ 0.9932705688476563,
1082
+ 0.988389404296875,
1083
+ 0.9866908569335937,
1084
+ 1.03518359375,
1085
+ 0.9851827392578125
1086
+ ],
1087
+ "mean": 0.9977434326171875,
1088
+ "median": 0.988389404296875,
1089
+ "std": 0.01891666180211917,
1090
+ "min": 0.9851827392578125,
1091
+ "max": 1.03518359375,
1092
+ "p25": 0.9866908569335937,
1093
+ "p75": 0.9932705688476563,
1094
+ "p90": 1.0184183837890626,
1095
+ "p95": 1.0268009887695313,
1096
+ "p99": 1.0335070727539062,
1097
+ "unit": "seconds"
1098
+ },
1099
+ "time_to_first_token_seconds": {
1100
+ "name": "time_to_first_token_seconds",
1101
+ "measurements": [
1102
+ 0.011541312217712402,
1103
+ 0.011281023979187012,
1104
+ 0.011197983741760254,
1105
+ 0.010969951629638671,
1106
+ 0.011184351921081543
1107
+ ],
1108
+ "mean": 0.011234924697875976,
1109
+ "median": 0.011197983741760254,
1110
+ "std": 0.00018446214946782157,
1111
+ "min": 0.010969951629638671,
1112
+ "max": 0.011541312217712402,
1113
+ "p25": 0.011184351921081543,
1114
+ "p75": 0.011281023979187012,
1115
+ "p90": 0.011437196922302245,
1116
+ "p95": 0.011489254570007323,
1117
+ "p99": 0.011530900688171386,
1118
+ "unit": "seconds"
1119
+ },
1120
+ "tokens_per_second": {
1121
+ "name": "tokens_per_second",
1122
+ "measurements": [
1123
+ 100.67750232045543,
1124
+ 101.17469851990012,
1125
+ 101.34886656472808,
1126
+ 96.60122185451705,
1127
+ 101.50401140334128
1128
+ ],
1129
+ "mean": 100.26126013258839,
1130
+ "median": 101.17469851990012,
1131
+ "std": 1.8509903249618553,
1132
+ "min": 96.60122185451705,
1133
+ "max": 101.50401140334128,
1134
+ "p25": 100.67750232045543,
1135
+ "p75": 101.34886656472808,
1136
+ "p90": 101.441953467896,
1137
+ "p95": 101.47298243561865,
1138
+ "p99": 101.49780560979676,
1139
+ "unit": "tokens/sec"
1140
+ },
1141
+ "time_per_output_token_seconds": {
1142
+ "name": "time_per_output_token_seconds",
1143
+ "measurements": [
1144
+ 0.009932705688476562,
1145
+ 0.00988389404296875,
1146
+ 0.009866908569335937,
1147
+ 0.0103518359375,
1148
+ 0.009851827392578125
1149
+ ],
1150
+ "mean": 0.009977434326171875,
1151
+ "median": 0.00988389404296875,
1152
+ "std": 0.00018916661802119162,
1153
+ "min": 0.009851827392578125,
1154
+ "max": 0.0103518359375,
1155
+ "p25": 0.009866908569335937,
1156
+ "p75": 0.009932705688476562,
1157
+ "p90": 0.010184183837890624,
1158
+ "p95": 0.010268009887695313,
1159
+ "p99": 0.010335070727539062,
1160
+ "unit": "seconds/token"
1161
+ }
1162
+ },
1163
+ "gpu_metrics": {
1164
+ "gpu_utilization_mean": 15.333333333333334,
1165
+ "gpu_utilization_max": 16,
1166
+ "gpu_utilization_min": 14,
1167
+ "gpu_memory_used_mean": 922,
1168
+ "gpu_memory_used_max": 922,
1169
+ "gpu_memory_used_min": 922,
1170
+ "sample_count": 3,
1171
+ "gpu_monitoring_status": "success"
1172
+ }
1173
+ }
1174
+ ]
1175
+ }
dashboard.py ADDED
@@ -0,0 +1,541 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ LLM Inference Performance Dashboard
4
+
5
+ A Gradio-based dashboard for visualizing and analyzing LLM inference benchmark results.
6
+ Provides filtering, comparison, and historical analysis capabilities.
7
+ """
8
+
9
+ import gradio as gr
10
+ import plotly.graph_objects as go
11
+ import plotly.express as px
12
+ from plotly.subplots import make_subplots
13
+ import pandas as pd
14
+ import polars as pl
15
+ from datetime import datetime
16
+ from typing import List, Dict, Any, Optional, Tuple
17
+ import logging
18
+
19
+ from benchmark_data_reader import BenchmarkDataReader
20
+
21
+ logging.basicConfig(level=logging.INFO)
22
+ logger = logging.getLogger(__name__)
23
+
24
+
25
+ class BenchmarkDashboard:
26
+ """Main dashboard class for LLM inference performance visualization."""
27
+
28
+ def __init__(self):
29
+ """Initialize the dashboard and load data."""
30
+ self.reader = BenchmarkDataReader()
31
+ self.df = None
32
+ self.load_data()
33
+
34
+ def load_data(self) -> None:
35
+ """Load benchmark data from files."""
36
+ try:
37
+ self.df = self.reader.read_benchmark_files()
38
+ if not self.df.is_empty():
39
+ # Convert to pandas for easier plotting with plotly
40
+ self.df_pandas = self.df.to_pandas()
41
+ # Convert timestamp to datetime
42
+ self.df_pandas['timestamp'] = pd.to_datetime(self.df_pandas['timestamp'])
43
+ logger.info(f"Loaded {len(self.df_pandas)} benchmark scenarios")
44
+ else:
45
+ logger.warning("No benchmark data loaded")
46
+ self.df_pandas = pd.DataFrame()
47
+ except Exception as e:
48
+ logger.error(f"Error loading data: {e}")
49
+ self.df_pandas = pd.DataFrame()
50
+
51
+ def get_filter_options(self) -> Tuple[List[str], List[str], List[str], List[str], str, str]:
52
+ """Get unique values for filter dropdowns and date range."""
53
+ if self.df_pandas.empty:
54
+ return [], [], [], [], "", ""
55
+
56
+ models = sorted(self.df_pandas['model_name'].dropna().unique().tolist())
57
+ scenarios = sorted(self.df_pandas['scenario_name'].dropna().unique().tolist())
58
+ gpus = sorted(self.df_pandas['gpu_name'].dropna().unique().tolist())
59
+
60
+ # Get benchmark runs grouped by date (or commit_id if available)
61
+ benchmark_runs = []
62
+
63
+ # Group by commit_id if available, otherwise group by date
64
+ if self.df_pandas['commit_id'].notna().any():
65
+ # Group by commit_id
66
+ for commit_id in self.df_pandas['commit_id'].dropna().unique():
67
+ commit_data = self.df_pandas[self.df_pandas['commit_id'] == commit_id]
68
+ date_str = commit_data['timestamp'].min().strftime('%Y-%m-%d')
69
+ models_count = len(commit_data['model_name'].unique())
70
+ scenarios_count = len(commit_data['scenario_name'].unique())
71
+ run_id = f"Commit {commit_id[:8]} ({date_str}) - {models_count} models, {scenarios_count} scenarios"
72
+ benchmark_runs.append(run_id)
73
+ else:
74
+ # Group by date since commit_id is not available
75
+ self.df_pandas['date'] = self.df_pandas['timestamp'].dt.date
76
+ for date in sorted(self.df_pandas['date'].unique()):
77
+ date_data = self.df_pandas[self.df_pandas['date'] == date]
78
+ models_count = len(date_data['model_name'].unique())
79
+ scenarios_count = len(date_data['scenario_name'].unique())
80
+
81
+ # Check if any commit_id exists for this date (even if null)
82
+ unique_commits = date_data['commit_id'].dropna().unique()
83
+ if len(unique_commits) > 0:
84
+ commit_display = f"Commit {unique_commits[0][:8]}"
85
+ else:
86
+ commit_display = "No commit ID"
87
+
88
+ run_id = f"{date} - {commit_display} - {models_count} models, {scenarios_count} scenarios"
89
+ benchmark_runs.append(run_id)
90
+
91
+ benchmark_runs = sorted(benchmark_runs)
92
+
93
+ # Get date range
94
+ min_date = self.df_pandas['timestamp'].min().strftime('%Y-%m-%d')
95
+ max_date = self.df_pandas['timestamp'].max().strftime('%Y-%m-%d')
96
+
97
+ return models, scenarios, gpus, benchmark_runs, min_date, max_date
98
+
99
+ def filter_data(self, selected_models: List[str], selected_scenarios: List[str],
100
+ selected_gpus: List[str], selected_run: str = None,
101
+ start_date: str = None, end_date: str = None) -> pd.DataFrame:
102
+ """Filter data based on user selections."""
103
+ if self.df_pandas.empty:
104
+ return pd.DataFrame()
105
+
106
+ filtered_df = self.df_pandas.copy()
107
+
108
+ if selected_models:
109
+ filtered_df = filtered_df[filtered_df['model_name'].isin(selected_models)]
110
+ if selected_scenarios:
111
+ filtered_df = filtered_df[filtered_df['scenario_name'].isin(selected_scenarios)]
112
+ if selected_gpus:
113
+ filtered_df = filtered_df[filtered_df['gpu_name'].isin(selected_gpus)]
114
+
115
+ # Filter by date range
116
+ if start_date and end_date:
117
+ start_datetime = pd.to_datetime(start_date)
118
+ end_datetime = pd.to_datetime(end_date) + pd.Timedelta(days=1) # Include end date
119
+ filtered_df = filtered_df[
120
+ (filtered_df['timestamp'] >= start_datetime) &
121
+ (filtered_df['timestamp'] < end_datetime)
122
+ ]
123
+
124
+ # Filter by specific benchmark run (commit or date-based grouping)
125
+ if selected_run:
126
+ if selected_run.startswith("Commit "):
127
+ # Extract commit_id from the run_id format: "Commit 12345678 (2025-09-16) - models"
128
+ try:
129
+ commit_id_part = selected_run.split('Commit ')[1].split(' ')[0] # Get commit hash
130
+ # Find all data with this commit_id
131
+ filtered_df = filtered_df[filtered_df['commit_id'] == commit_id_part]
132
+ except (IndexError, ValueError):
133
+ # Fallback if parsing fails
134
+ logger.warning(f"Failed to parse commit from: {selected_run}")
135
+ else:
136
+ # Date-based grouping format: "2025-09-16 - X models, Y scenarios"
137
+ try:
138
+ date_str = selected_run.split(' - ')[0]
139
+ selected_date = pd.to_datetime(date_str).date()
140
+
141
+ # Add date column if not exists
142
+ if 'date' not in filtered_df.columns:
143
+ filtered_df = filtered_df.copy()
144
+ filtered_df['date'] = filtered_df['timestamp'].dt.date
145
+
146
+ # Filter by date
147
+ filtered_df = filtered_df[filtered_df['date'] == selected_date]
148
+ except (IndexError, ValueError) as e:
149
+ logger.warning(f"Failed to parse date from: {selected_run}, error: {e}")
150
+ # Return empty dataframe if parsing fails
151
+ filtered_df = filtered_df.iloc[0:0]
152
+
153
+ return filtered_df
154
+
155
+ def create_performance_comparison_chart(self, filtered_df: pd.DataFrame,
156
+ metric: str = "tokens_per_second_mean") -> go.Figure:
157
+ """Create performance comparison chart."""
158
+ if filtered_df.empty:
159
+ fig = go.Figure()
160
+ fig.add_annotation(text="No data available for selected filters",
161
+ xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False)
162
+ return fig
163
+
164
+ # Create bar chart comparing performance across models and scenarios
165
+ fig = px.bar(
166
+ filtered_df,
167
+ x='scenario_name',
168
+ y=metric,
169
+ color='model_name',
170
+ title=f'Performance Comparison: {metric.replace("_", " ").title()}',
171
+ labels={
172
+ metric: metric.replace("_", " ").title(),
173
+ 'scenario_name': 'Benchmark Scenario',
174
+ 'model_name': 'Model'
175
+ },
176
+ hover_data=['gpu_name', 'timestamp']
177
+ )
178
+
179
+ fig.update_layout(
180
+ xaxis_tickangle=-45,
181
+ height=500,
182
+ showlegend=True,
183
+ plot_bgcolor='rgba(235, 242, 250, 1.0)',
184
+ paper_bgcolor='rgba(245, 248, 252, 0.7)'
185
+ )
186
+
187
+ return fig
188
+
189
+ def create_historical_trend_chart(self, filtered_df: pd.DataFrame,
190
+ metric: str = "tokens_per_second_mean") -> go.Figure:
191
+ """Create historical trend chart showing performance across different benchmark runs for the same scenarios."""
192
+ if filtered_df.empty:
193
+ fig = go.Figure()
194
+ fig.add_annotation(text="No data available for selected filters",
195
+ xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False)
196
+ return fig
197
+
198
+ fig = go.Figure()
199
+
200
+ # Group by model and scenario combination to show trends across benchmark runs
201
+ for model in filtered_df['model_name'].unique():
202
+ model_data = filtered_df[filtered_df['model_name'] == model]
203
+
204
+ for scenario in model_data['scenario_name'].unique():
205
+ scenario_data = model_data[model_data['scenario_name'] == scenario]
206
+
207
+ # Sort by timestamp to show chronological progression
208
+ scenario_data = scenario_data.sort_values('timestamp')
209
+
210
+ # Only show trends if we have multiple data points for this model-scenario combination
211
+ if len(scenario_data) > 1:
212
+ fig.add_trace(go.Scatter(
213
+ x=scenario_data['timestamp'],
214
+ y=scenario_data[metric],
215
+ mode='lines+markers',
216
+ name=f'{model} - {scenario}',
217
+ line=dict(width=2),
218
+ marker=dict(size=6),
219
+ hovertemplate=f'<b>{model}</b><br>' +
220
+ f'Scenario: {scenario}<br>' +
221
+ 'Time: %{x}<br>' +
222
+ f'{metric.replace("_", " ").title()}: %{{y}}<br>' +
223
+ '<extra></extra>'
224
+ ))
225
+
226
+ # If no trends found (all scenarios have only single runs), show a message
227
+ if len(fig.data) == 0:
228
+ fig.add_annotation(
229
+ text="No historical trends available.<br>Each scenario only has one benchmark run.<br>Historical trends require multiple runs of the same scenario over time.",
230
+ xref="paper", yref="paper", x=0.5, y=0.5,
231
+ showarrow=False,
232
+ font=dict(size=14)
233
+ )
234
+
235
+ fig.update_layout(
236
+ title=f'Historical Trends Across Benchmark Runs: {metric.replace("_", " ").title()}',
237
+ xaxis_title='Timestamp',
238
+ yaxis_title=metric.replace("_", " ").title(),
239
+ height=500,
240
+ hovermode='closest',
241
+ showlegend=True,
242
+ plot_bgcolor='rgba(235, 242, 250, 1.0)',
243
+ paper_bgcolor='rgba(245, 248, 252, 0.7)'
244
+ )
245
+
246
+ return fig
247
+
248
+ def create_gpu_comparison_chart(self, filtered_df: pd.DataFrame) -> go.Figure:
249
+ """Create GPU utilization and memory usage comparison."""
250
+ if filtered_df.empty:
251
+ fig = go.Figure()
252
+ fig.add_annotation(text="No data available for selected filters",
253
+ xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False)
254
+ return fig
255
+
256
+ # Create subplots for GPU metrics
257
+ fig = make_subplots(
258
+ rows=2, cols=2,
259
+ subplot_titles=('GPU Utilization Mean (%)', 'GPU Memory Used (MB)',
260
+ 'GPU Utilization vs Performance', 'Memory Usage vs Performance'),
261
+ specs=[[{"secondary_y": False}, {"secondary_y": False}],
262
+ [{"secondary_y": False}, {"secondary_y": False}]]
263
+ )
264
+
265
+ # GPU Utilization bar chart
266
+ gpu_util_data = filtered_df.groupby(['model_name', 'gpu_name'])['gpu_gpu_utilization_mean'].mean().reset_index()
267
+ for model in gpu_util_data['model_name'].unique():
268
+ model_data = gpu_util_data[gpu_util_data['model_name'] == model]
269
+ fig.add_trace(
270
+ go.Bar(x=model_data['gpu_name'], y=model_data['gpu_gpu_utilization_mean'],
271
+ name=f'{model} - Utilization', showlegend=True),
272
+ row=1, col=1
273
+ )
274
+
275
+ # GPU Memory Usage bar chart
276
+ gpu_mem_data = filtered_df.groupby(['model_name', 'gpu_name'])['gpu_gpu_memory_used_mean'].mean().reset_index()
277
+ for model in gpu_mem_data['model_name'].unique():
278
+ model_data = gpu_mem_data[gpu_mem_data['model_name'] == model]
279
+ fig.add_trace(
280
+ go.Bar(x=model_data['gpu_name'], y=model_data['gpu_gpu_memory_used_mean'],
281
+ name=f'{model} - Memory', showlegend=True),
282
+ row=1, col=2
283
+ )
284
+
285
+ # GPU Utilization vs Performance scatter
286
+ fig.add_trace(
287
+ go.Scatter(x=filtered_df['gpu_gpu_utilization_mean'],
288
+ y=filtered_df['tokens_per_second_mean'],
289
+ mode='markers',
290
+ text=filtered_df['model_name'],
291
+ name='Util vs Performance',
292
+ showlegend=True),
293
+ row=2, col=1
294
+ )
295
+
296
+ # Memory Usage vs Performance scatter
297
+ fig.add_trace(
298
+ go.Scatter(x=filtered_df['gpu_gpu_memory_used_mean'],
299
+ y=filtered_df['tokens_per_second_mean'],
300
+ mode='markers',
301
+ text=filtered_df['model_name'],
302
+ name='Memory vs Performance',
303
+ showlegend=True),
304
+ row=2, col=2
305
+ )
306
+
307
+ fig.update_layout(
308
+ height=800,
309
+ title_text="GPU Performance Analysis",
310
+ plot_bgcolor='rgba(235, 242, 250, 1.0)',
311
+ paper_bgcolor='rgba(245, 248, 252, 0.7)'
312
+ )
313
+ return fig
314
+
315
+ def create_metrics_summary_table(self, filtered_df: pd.DataFrame) -> pd.DataFrame:
316
+ """Create summary statistics table."""
317
+ if filtered_df.empty:
318
+ return pd.DataFrame({'Message': ['No data available for selected filters']})
319
+
320
+ # Key performance metrics
321
+ metrics_cols = [
322
+ 'tokens_per_second_mean', 'latency_seconds_mean',
323
+ 'time_to_first_token_seconds_mean', 'time_per_output_token_seconds_mean'
324
+ ]
325
+
326
+ summary_data = []
327
+ for model in filtered_df['model_name'].unique():
328
+ model_data = filtered_df[filtered_df['model_name'] == model]
329
+
330
+ row = {'Model': model, 'Scenarios': len(model_data)}
331
+ for metric in metrics_cols:
332
+ if metric in model_data.columns:
333
+ row[f'{metric.replace("_", " ").title()} (Avg)'] = f"{model_data[metric].mean():.2f}"
334
+ row[f'{metric.replace("_", " ").title()} (Best)'] = f"{model_data[metric].min() if 'latency' in metric or 'time' in metric else model_data[metric].max():.2f}"
335
+
336
+ summary_data.append(row)
337
+
338
+ return pd.DataFrame(summary_data)
339
+
340
+ def update_dashboard(self, selected_models: List[str], selected_scenarios: List[str],
341
+ selected_gpus: List[str], selected_run: str, metric: str):
342
+ """Update all dashboard components based on current filters."""
343
+ filtered_df = self.filter_data(
344
+ selected_models, selected_scenarios, selected_gpus, selected_run
345
+ )
346
+
347
+ # Create charts
348
+ perf_chart = self.create_performance_comparison_chart(filtered_df, metric)
349
+ gpu_chart = self.create_gpu_comparison_chart(filtered_df)
350
+ summary_table = self.create_metrics_summary_table(filtered_df)
351
+
352
+ # Summary stats
353
+ if not filtered_df.empty:
354
+ summary_text = f"""
355
+ **Data Summary:**
356
+ - Total Scenarios: {len(filtered_df)}
357
+ - Models: {', '.join(filtered_df['model_name'].unique())}
358
+ - Date Range: {filtered_df['timestamp'].min().strftime('%Y-%m-%d')} to {filtered_df['timestamp'].max().strftime('%Y-%m-%d')}
359
+ - Benchmark Runs: {len(filtered_df.groupby(['timestamp', 'file_path']))}
360
+ """
361
+ else:
362
+ summary_text = "No data available for current selection."
363
+
364
+ return perf_chart, gpu_chart, summary_table, summary_text
365
+
366
+ def update_historical_trends(self, selected_models: List[str], selected_scenarios: List[str],
367
+ selected_gpus: List[str], start_date: str, end_date: str, metric: str):
368
+ """Update historical trends chart with date filtering."""
369
+ filtered_df = self.filter_data(
370
+ selected_models, selected_scenarios, selected_gpus,
371
+ start_date=start_date, end_date=end_date
372
+ )
373
+ trend_chart = self.create_historical_trend_chart(filtered_df, metric)
374
+ return trend_chart
375
+
376
+
377
+ def create_gradio_interface() -> gr.Interface:
378
+ """Create the Gradio interface."""
379
+ dashboard = BenchmarkDashboard()
380
+ models, scenarios, gpus, benchmark_runs, min_date, max_date = dashboard.get_filter_options()
381
+
382
+ # Performance metrics options
383
+ metric_options = [
384
+ "tokens_per_second_mean",
385
+ "latency_seconds_mean",
386
+ "time_to_first_token_seconds_mean",
387
+ "time_per_output_token_seconds_mean"
388
+ ]
389
+
390
+ with gr.Blocks(title="LLM Inference Performance Dashboard", theme=gr.themes.Soft()) as demo:
391
+ gr.Markdown("# 🚀 LLM Inference Performance Dashboard")
392
+ gr.Markdown("Analyze and compare LLM inference performance across models, scenarios, and hardware configurations.")
393
+
394
+ with gr.Row():
395
+ with gr.Column(scale=1):
396
+ gr.Markdown("## Filters")
397
+
398
+ model_filter = gr.CheckboxGroup(
399
+ choices=models,
400
+ value=models,
401
+ label="Select Models",
402
+ interactive=True
403
+ )
404
+ scenario_filter = gr.CheckboxGroup(
405
+ choices=scenarios,
406
+ value=scenarios[:5] if len(scenarios) > 5 else scenarios, # Limit initial selection
407
+ label="Select Scenarios",
408
+ interactive=True
409
+ )
410
+ gpu_filter = gr.CheckboxGroup(
411
+ choices=gpus,
412
+ value=gpus,
413
+ label="Select GPUs",
414
+ interactive=True
415
+ )
416
+ metric_selector = gr.Dropdown(
417
+ choices=metric_options,
418
+ value="tokens_per_second_mean",
419
+ label="Primary Metric",
420
+ interactive=True
421
+ )
422
+
423
+ gr.Markdown("### Benchmark Run Selection")
424
+
425
+ # Search field for filtering benchmark runs
426
+ run_search = gr.Textbox(
427
+ value="",
428
+ label="Search Benchmark Runs",
429
+ placeholder="Search by date, commit ID, etc.",
430
+ interactive=True
431
+ )
432
+
433
+ # Filtered benchmark run selector
434
+ benchmark_run_selector = gr.Dropdown(
435
+ choices=benchmark_runs,
436
+ value=benchmark_runs[0] if benchmark_runs else None,
437
+ label="Select Benchmark Run",
438
+ info="Choose specific daily run (all models from same commit/date)",
439
+ interactive=True,
440
+ allow_custom_value=False
441
+ )
442
+
443
+ with gr.Column(scale=3):
444
+ with gr.Tabs():
445
+ with gr.TabItem("Performance Comparison"):
446
+ perf_plot = gr.Plot(label="Performance Comparison")
447
+
448
+ with gr.TabItem("Historical Trends"):
449
+ with gr.Row():
450
+ with gr.Column(scale=1):
451
+ gr.Markdown("### Date Range for Historical Analysis")
452
+ start_date = gr.Textbox(
453
+ value=min_date,
454
+ label="Start Date (YYYY-MM-DD)",
455
+ placeholder="2025-01-01",
456
+ interactive=True
457
+ )
458
+ end_date = gr.Textbox(
459
+ value=max_date,
460
+ label="End Date (YYYY-MM-DD)",
461
+ placeholder="2025-12-31",
462
+ interactive=True
463
+ )
464
+ with gr.Column(scale=3):
465
+ trend_plot = gr.Plot(label="Historical Trends")
466
+
467
+ with gr.TabItem("GPU Analysis"):
468
+ gpu_plot = gr.Plot(label="GPU Performance Analysis")
469
+
470
+ with gr.TabItem("Summary Statistics"):
471
+ summary_table = gr.Dataframe(label="Performance Summary")
472
+
473
+ with gr.Row():
474
+ summary_text = gr.Markdown("", label="Summary")
475
+
476
+ # Function to filter benchmark runs based on search
477
+ def filter_benchmark_runs(search_text):
478
+ if not search_text:
479
+ return gr.Dropdown(choices=benchmark_runs, value=benchmark_runs[0] if benchmark_runs else None)
480
+
481
+ # Filter runs that contain the search text (case insensitive)
482
+ filtered_runs = [run for run in benchmark_runs if search_text.lower() in run.lower()]
483
+ return gr.Dropdown(choices=filtered_runs, value=filtered_runs[0] if filtered_runs else None)
484
+
485
+ # Update function for main dashboard (excluding historical trends)
486
+ def update_main(models_selected, scenarios_selected, gpus_selected, run_selected, metric):
487
+ return dashboard.update_dashboard(
488
+ models_selected, scenarios_selected, gpus_selected, run_selected, metric
489
+ )
490
+
491
+ # Update function for historical trends
492
+ def update_trends(models_selected, scenarios_selected, gpus_selected, start_dt, end_dt, metric):
493
+ return dashboard.update_historical_trends(
494
+ models_selected, scenarios_selected, gpus_selected, start_dt, end_dt, metric
495
+ )
496
+
497
+ # Set up interactivity for main dashboard
498
+ main_inputs = [model_filter, scenario_filter, gpu_filter, benchmark_run_selector, metric_selector]
499
+ main_outputs = [perf_plot, gpu_plot, summary_table, summary_text]
500
+
501
+ # Set up interactivity for historical trends
502
+ trends_inputs = [model_filter, scenario_filter, gpu_filter, start_date, end_date, metric_selector]
503
+ trends_outputs = [trend_plot]
504
+
505
+ # Update main dashboard on filter changes
506
+ for input_component in main_inputs:
507
+ input_component.change(fn=update_main, inputs=main_inputs, outputs=main_outputs)
508
+
509
+ # Update historical trends on filter changes
510
+ for input_component in trends_inputs:
511
+ input_component.change(fn=update_trends, inputs=trends_inputs, outputs=trends_outputs)
512
+
513
+ # Connect search field to filter benchmark runs
514
+ run_search.change(fn=filter_benchmark_runs, inputs=[run_search], outputs=[benchmark_run_selector])
515
+
516
+ # Initial load
517
+ demo.load(fn=update_main, inputs=main_inputs, outputs=main_outputs)
518
+ demo.load(fn=update_trends, inputs=trends_inputs, outputs=trends_outputs)
519
+
520
+ return demo
521
+
522
+
523
+ def main():
524
+ """Launch the dashboard."""
525
+ logger.info("Starting LLM Inference Performance Dashboard")
526
+
527
+ try:
528
+ demo = create_gradio_interface()
529
+ demo.launch(
530
+ server_name="0.0.0.0",
531
+ server_port=7860,
532
+ share=False,
533
+ show_error=True
534
+ )
535
+ except Exception as e:
536
+ logger.error(f"Error launching dashboard: {e}")
537
+ raise
538
+
539
+
540
+ if __name__ == "__main__":
541
+ main()
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ polars>=1.33.0
2
+ gradio>=4.0.0
3
+ plotly>=5.17.0
4
+ pandas>=2.0.0
5
+ pyarrow>=21.0.0