Upload 2 files
Browse files- app.py +44 -0
- g_project.py +813 -0
app.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""app.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1CbDOX8PDJB6ZyLZiLMXbPyr6k7dvrs20
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import gradio as gr
|
| 11 |
+
import torch
|
| 12 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 13 |
+
|
| 14 |
+
# Load the model and tokenizer
|
| 15 |
+
model_name = "qarib/bert-base-qarib"
|
| 16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 17 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2)
|
| 18 |
+
|
| 19 |
+
# Preprocessing function
|
| 20 |
+
def light_preprocess(text):
|
| 21 |
+
text = text.replace("@USER", "").replace("RT", "").strip()
|
| 22 |
+
return text
|
| 23 |
+
|
| 24 |
+
# Prediction function
|
| 25 |
+
def predict_offensive(text):
|
| 26 |
+
preprocessed_text = light_preprocess(text)
|
| 27 |
+
inputs = tokenizer(preprocessed_text, return_tensors="pt", truncation=True, padding=True)
|
| 28 |
+
with torch.no_grad():
|
| 29 |
+
outputs = model(**inputs)
|
| 30 |
+
logits = outputs.logits
|
| 31 |
+
predicted_class = torch.argmax(logits, dim=1).item()
|
| 32 |
+
return "Offensive" if predicted_class == 1 else "Not Offensive"
|
| 33 |
+
|
| 34 |
+
# Create the Gradio interface
|
| 35 |
+
iface = gr.Interface(
|
| 36 |
+
fn=predict_offensive,
|
| 37 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter text here..."),
|
| 38 |
+
outputs="text",
|
| 39 |
+
title="Offensive Language Detection",
|
| 40 |
+
description="Enter a text to check if it's offensive or not.",
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
# Launch the interface
|
| 44 |
+
iface.launch(share=True)
|
g_project.py
ADDED
|
@@ -0,0 +1,813 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""G project.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/13NvZhwwfiJloW8ZsdQ6HLf-jfSRc-tfv
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
!wget "https://alt.qcri.org/resources/OSACT2022/OSACT2022-sharedTask-train.txt"
|
| 11 |
+
!wget "https://alt.qcri.org/resources/OSACT2022/OSACT2022-sharedTask-dev.txt"
|
| 12 |
+
!wget "https://alt.qcri.org/resources/OSACT2022/OSACT2022-sharedTask-test-tweets.txt"
|
| 13 |
+
!wget "https://alt.qcri.org/resources1/OSACT2022/OSACT2022-sharedTask-test-taskA-gold-labels.txt"
|
| 14 |
+
|
| 15 |
+
import pandas as pd
|
| 16 |
+
import csv
|
| 17 |
+
train_data = pd.read_csv("OSACT2022-sharedTask-train.txt", sep="\t", quoting=csv.QUOTE_NONE)
|
| 18 |
+
dev_data = pd.read_csv("OSACT2022-sharedTask-dev.txt", sep="\t", quoting=csv.QUOTE_NONE)
|
| 19 |
+
test_data = pd.read_csv("OSACT2022-sharedTask-test-tweets.txt", sep="\t", quoting=csv.QUOTE_NONE)
|
| 20 |
+
train_data
|
| 21 |
+
|
| 22 |
+
train_data = train_data.drop(columns=['1', 'NOT_HS', 'NOT_VLG' , 'NOT_VIO'])
|
| 23 |
+
train_data
|
| 24 |
+
|
| 25 |
+
train_data = train_data.rename(columns={"@USER ردينا ع التطنز 😏👊🏻": "Text"})
|
| 26 |
+
train_data = train_data.rename(columns={"OFF": "label"})
|
| 27 |
+
train_data
|
| 28 |
+
|
| 29 |
+
dev_data
|
| 30 |
+
|
| 31 |
+
dev_data = dev_data.drop(columns=['8888', 'NOT_HS', 'NOT_VLG' , 'NOT_VIO'])
|
| 32 |
+
|
| 33 |
+
dev_data = dev_data.rename(columns={"@USER افطرت عليك بعقاء واثنين من فروخها الجن 🔪😂": "Text"})
|
| 34 |
+
dev_data = dev_data.rename(columns={"NOT_OFF": "label"})
|
| 35 |
+
dev_data
|
| 36 |
+
|
| 37 |
+
test_data
|
| 38 |
+
|
| 39 |
+
test_data = test_data.drop(columns=['10158'])
|
| 40 |
+
|
| 41 |
+
test_data = test_data.rename(columns={"@USER هتهزر معايا ولا ايه 😡😡😡😡": "Text"})
|
| 42 |
+
test_data
|
| 43 |
+
|
| 44 |
+
test_labels = pd.read_csv("OSACT2022-sharedTask-test-taskA-gold-labels.txt", sep="\t", quoting=csv.QUOTE_NONE)
|
| 45 |
+
test_labels = test_labels.rename(columns={"NOT_OFF": "label"})
|
| 46 |
+
test_data = test_data.join(test_labels)
|
| 47 |
+
test_data
|
| 48 |
+
|
| 49 |
+
"""# **DOWNLOADING A LIST OF ARABIC STOPWORDS**"""
|
| 50 |
+
|
| 51 |
+
# Alharbi, Alaa, and Mark Lee. "Kawarith: an Arabic Twitter Corpus for Crisis Events."
|
| 52 |
+
# Proceedings of the Sixth Arabic Natural Language Processing Workshop. 2021
|
| 53 |
+
|
| 54 |
+
!wget https://raw.githubusercontent.com/alaa-a-a/multi-dialect-arabic-stop-words/main/Stop-words/stop_list_1177.txt
|
| 55 |
+
arabic_stop_words = []
|
| 56 |
+
with open ('./stop_list_1177.txt',encoding='utf-8') as f :
|
| 57 |
+
for word in f.readlines() :
|
| 58 |
+
arabic_stop_words.append(word.split("\n")[0])
|
| 59 |
+
|
| 60 |
+
import nltk
|
| 61 |
+
from nltk.corpus import stopwords
|
| 62 |
+
from nltk.tokenize import WordPunctTokenizer
|
| 63 |
+
from nltk.stem.isri import ISRIStemmer
|
| 64 |
+
import string
|
| 65 |
+
import re
|
| 66 |
+
from bs4 import BeautifulSoup
|
| 67 |
+
nltk.download('stopwords')
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
tok = WordPunctTokenizer()
|
| 71 |
+
|
| 72 |
+
def normalize_arabic(text):
|
| 73 |
+
text = re.sub("[إأآا]", "ا", text)
|
| 74 |
+
text = re.sub("ى", "ي", text)
|
| 75 |
+
text = re.sub("ؤ", "ء", text)
|
| 76 |
+
text = re.sub("ئ", "ء", text)
|
| 77 |
+
text = re.sub("ة", "ه", text)
|
| 78 |
+
text = re.sub("گ", "ك", text)
|
| 79 |
+
return text
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def remove_diacritics(text):
|
| 83 |
+
arabic_diacritics = re.compile("""
|
| 84 |
+
ّ | # Tashdid
|
| 85 |
+
َ | # Fatha
|
| 86 |
+
ً | # Tanwin Fath
|
| 87 |
+
ُ | # Damma
|
| 88 |
+
ٌ | # Tanwin Damm
|
| 89 |
+
ِ | # Kasra
|
| 90 |
+
ٍ | # Tanwin Kasr
|
| 91 |
+
ْ | # Sukun
|
| 92 |
+
ـ # Tatwil/Kashida
|
| 93 |
+
""", re.VERBOSE)
|
| 94 |
+
return re.sub(arabic_diacritics, '', text)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def remove_punctuations(text):
|
| 98 |
+
arabic_punctuations = '''`÷×؛<>_()*&^%][ـ،/:"؟.,'{}~¦+|!”…“–ـ'''
|
| 99 |
+
english_punctuations = string.punctuation
|
| 100 |
+
punctuations_list = arabic_punctuations + english_punctuations
|
| 101 |
+
translator = str.maketrans('', '', punctuations_list)
|
| 102 |
+
return text.translate(translator)
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def remove_repeating_char(text):
|
| 106 |
+
# return re.sub(r'(.)\1+', r'\1', text) # keep only 1 repeat
|
| 107 |
+
return re.sub(r'(.)\1+', r'\1\1', text) # keep 2 repeat
|
| 108 |
+
|
| 109 |
+
def remove_stop_words(text):
|
| 110 |
+
word_list = nltk.tokenize.wordpunct_tokenize(text.lower())
|
| 111 |
+
word_list = [ w for w in word_list if not w in arabic_stop_words]
|
| 112 |
+
return (" ".join(word_list)).strip()
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def remove_non_arabic_letters(text):
|
| 117 |
+
text = re.sub(r'([@A-Za-z0-9_]+)|#|http\S+', ' ', text) # removes non arabic letters
|
| 118 |
+
text = re.sub(r'ـــــــــــــ', '', text) # removes non arabic letters
|
| 119 |
+
return text
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def clean_str(text):
|
| 125 |
+
text = remove_non_arabic_letters(text)
|
| 126 |
+
text = remove_punctuations(text)
|
| 127 |
+
text = remove_diacritics(text)
|
| 128 |
+
text = remove_repeating_char(text)
|
| 129 |
+
# text = remove_stop_words(text)
|
| 130 |
+
|
| 131 |
+
# Extract text from HTML tags, especially when dealing with data from 𝕏 (Twitter)
|
| 132 |
+
soup = BeautifulSoup(text, 'lxml')
|
| 133 |
+
souped = soup.get_text()
|
| 134 |
+
pat1 = r'@[A-Za-z0-9]+'
|
| 135 |
+
pat2 = r'https?://[A-Za-z0-9./]+'
|
| 136 |
+
combined_pat = r'|'.join((pat1, pat2))
|
| 137 |
+
stripped = re.sub(combined_pat, '', souped)
|
| 138 |
+
try:
|
| 139 |
+
clean = stripped.decode("utf-8-sig").replace(u"\ufffd", "?")
|
| 140 |
+
except:
|
| 141 |
+
clean = stripped
|
| 142 |
+
|
| 143 |
+
words = tok.tokenize(clean)
|
| 144 |
+
return (" ".join(words)).strip()
|
| 145 |
+
|
| 146 |
+
"""## **applying preprocessing on our dataset**"""
|
| 147 |
+
|
| 148 |
+
print("Cleaning and parsing the training dataset...\n")
|
| 149 |
+
|
| 150 |
+
train_data["Text"] = train_data["Text"].apply(lambda x: clean_str(x))
|
| 151 |
+
|
| 152 |
+
train_data.head()
|
| 153 |
+
|
| 154 |
+
print("Cleaning and parsing the development dataset...\n")
|
| 155 |
+
|
| 156 |
+
dev_data["Text"] = dev_data["Text"].apply(lambda x: clean_str(x))
|
| 157 |
+
|
| 158 |
+
dev_data.head()
|
| 159 |
+
|
| 160 |
+
print("Cleaning and parsing the test dataset...\n")
|
| 161 |
+
|
| 162 |
+
test_data["Text"] = test_data["Text"].apply(lambda x: clean_str(x))
|
| 163 |
+
|
| 164 |
+
test_data.head()
|
| 165 |
+
|
| 166 |
+
label2id = {"NOT_OFF": 0,"OFF": 1}
|
| 167 |
+
id2label = {0: "NOT_OFF", 1: "OFF"}
|
| 168 |
+
|
| 169 |
+
train_data['label'] = train_data['label'].apply(lambda x: label2id[x])
|
| 170 |
+
train_data=train_data[["Text", "label"]]
|
| 171 |
+
train_data.head()
|
| 172 |
+
|
| 173 |
+
dev_data['label'] = dev_data['label'].apply(lambda x: label2id[x])
|
| 174 |
+
dev_data=dev_data[["Text", "label"]]
|
| 175 |
+
dev_data.head()
|
| 176 |
+
|
| 177 |
+
test_data['label'] = test_data['label'].apply(lambda x: label2id[x])
|
| 178 |
+
test_data=test_data[["Text", "label"]]
|
| 179 |
+
test_data
|
| 180 |
+
|
| 181 |
+
import pandas as pd
|
| 182 |
+
from imblearn.over_sampling import RandomOverSampler
|
| 183 |
+
from collections import Counter
|
| 184 |
+
|
| 185 |
+
X = train_data[['Text']]
|
| 186 |
+
y = train_data['label']
|
| 187 |
+
|
| 188 |
+
print('Original class distribution:', Counter(y))
|
| 189 |
+
|
| 190 |
+
ros = RandomOverSampler(random_state=42)
|
| 191 |
+
|
| 192 |
+
X_resampled, y_resampled = ros.fit_resample(X, y)
|
| 193 |
+
|
| 194 |
+
train_data_resampled = pd.DataFrame(X_resampled, columns=['Text'])
|
| 195 |
+
train_data_resampled['label'] = y_resampled
|
| 196 |
+
|
| 197 |
+
print('Resampled class distribution:', Counter(y_resampled))
|
| 198 |
+
|
| 199 |
+
y_resampled.value_counts()
|
| 200 |
+
|
| 201 |
+
train_data_resampled.head()
|
| 202 |
+
|
| 203 |
+
from sklearn.model_selection import train_test_split
|
| 204 |
+
|
| 205 |
+
X_train = train_data_resampled['Text'].values
|
| 206 |
+
y_train = train_data_resampled['label'].values
|
| 207 |
+
|
| 208 |
+
X_val = dev_data['Text'].values
|
| 209 |
+
y_val = dev_data['label'].values
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
print("Training data shape:", X_train.shape, y_train.shape)
|
| 214 |
+
print("Validation data shape:", X_val.shape, y_val.shape)
|
| 215 |
+
|
| 216 |
+
train_text_lengths = [len(text.split()) for text in X_train]
|
| 217 |
+
max_length = max(train_text_lengths)
|
| 218 |
+
|
| 219 |
+
print("Maximum length of text:", max_length)
|
| 220 |
+
|
| 221 |
+
"""### APPLYING QARIB MODEL"""
|
| 222 |
+
|
| 223 |
+
! pip install transformers[torch]
|
| 224 |
+
|
| 225 |
+
import numpy as np
|
| 226 |
+
|
| 227 |
+
# to prepare dataset and calculate metrics
|
| 228 |
+
from sklearn.metrics import classification_report, accuracy_score, f1_score, confusion_matrix, precision_score , recall_score
|
| 229 |
+
|
| 230 |
+
from transformers import AutoConfig, BertForSequenceClassification, AutoTokenizer
|
| 231 |
+
from transformers.data.processors import SingleSentenceClassificationProcessor, InputFeatures
|
| 232 |
+
from transformers import Trainer , TrainingArguments
|
| 233 |
+
|
| 234 |
+
train_df = pd.DataFrame({
|
| 235 |
+
'label':y_train,
|
| 236 |
+
'text': X_train
|
| 237 |
+
})
|
| 238 |
+
|
| 239 |
+
dev_df = pd.DataFrame({
|
| 240 |
+
'label':y_val,
|
| 241 |
+
'text': X_val
|
| 242 |
+
})
|
| 243 |
+
|
| 244 |
+
test_df = pd.DataFrame({
|
| 245 |
+
'label':test_data['label'],
|
| 246 |
+
'text': test_data['Text']
|
| 247 |
+
})
|
| 248 |
+
|
| 249 |
+
PREFIX_LIST = [
|
| 250 |
+
"ال",
|
| 251 |
+
"و",
|
| 252 |
+
"ف",
|
| 253 |
+
"ب",
|
| 254 |
+
"ك",
|
| 255 |
+
"ل",
|
| 256 |
+
"لل",
|
| 257 |
+
"\u0627\u0644",
|
| 258 |
+
"\u0648",
|
| 259 |
+
"\u0641",
|
| 260 |
+
"\u0628",
|
| 261 |
+
"\u0643",
|
| 262 |
+
"\u0644",
|
| 263 |
+
"\u0644\u0644",
|
| 264 |
+
"س",
|
| 265 |
+
]
|
| 266 |
+
SUFFIX_LIST = [
|
| 267 |
+
"ه",
|
| 268 |
+
"ها",
|
| 269 |
+
"ك",
|
| 270 |
+
"ي",
|
| 271 |
+
"هما",
|
| 272 |
+
"كما",
|
| 273 |
+
"نا",
|
| 274 |
+
"كم",
|
| 275 |
+
"هم",
|
| 276 |
+
"هن",
|
| 277 |
+
"كن",
|
| 278 |
+
"ا",
|
| 279 |
+
"ان",
|
| 280 |
+
"ين",
|
| 281 |
+
"ون",
|
| 282 |
+
"وا",
|
| 283 |
+
"ات",
|
| 284 |
+
"ت",
|
| 285 |
+
"ن",
|
| 286 |
+
"ة",
|
| 287 |
+
"\u0647",
|
| 288 |
+
"\u0647\u0627",
|
| 289 |
+
"\u0643",
|
| 290 |
+
"\u064a",
|
| 291 |
+
"\u0647\u0645\u0627",
|
| 292 |
+
"\u0643\u0645\u0627",
|
| 293 |
+
"\u0646\u0627",
|
| 294 |
+
"\u0643\u0645",
|
| 295 |
+
"\u0647\u0645",
|
| 296 |
+
"\u0647\u0646",
|
| 297 |
+
"\u0643\u0646",
|
| 298 |
+
"\u0627",
|
| 299 |
+
"\u0627\u0646",
|
| 300 |
+
"\u064a\u0646",
|
| 301 |
+
"\u0648\u0646",
|
| 302 |
+
"\u0648\u0627",
|
| 303 |
+
"\u0627\u062a",
|
| 304 |
+
"\u062a",
|
| 305 |
+
"\u0646",
|
| 306 |
+
"\u0629",
|
| 307 |
+
]
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
# the never_split list is used with the transformers library
|
| 311 |
+
_PREFIX_SYMBOLS = [x + "+" for x in PREFIX_LIST]
|
| 312 |
+
_SUFFIX_SYMBOLS = ["+" + x for x in SUFFIX_LIST]
|
| 313 |
+
NEVER_SPLIT_TOKENS = list(set(_PREFIX_SYMBOLS + _SUFFIX_SYMBOLS))
|
| 314 |
+
|
| 315 |
+
model_name = "qarib/bert-base-qarib"
|
| 316 |
+
num_labels = 2
|
| 317 |
+
config = AutoConfig.from_pretrained(model_name,num_labels=num_labels, output_attentions=True)
|
| 318 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
| 319 |
+
do_lower_case=False,
|
| 320 |
+
do_basic_tokenize=True,
|
| 321 |
+
never_split=NEVER_SPLIT_TOKENS)
|
| 322 |
+
tokenizer.max_len = 64
|
| 323 |
+
model = BertForSequenceClassification.from_pretrained(model_name, config=config)
|
| 324 |
+
|
| 325 |
+
train_dataset = SingleSentenceClassificationProcessor(mode='classification')
|
| 326 |
+
dev_dataset = SingleSentenceClassificationProcessor(mode='classification')
|
| 327 |
+
|
| 328 |
+
train_dataset.add_examples(texts_or_text_and_labels=train_df['text'],labels=train_df['label'],overwrite_examples = True)
|
| 329 |
+
dev_dataset.add_examples(texts_or_text_and_labels=dev_df['text'],labels=dev_df['label'],overwrite_examples = True)
|
| 330 |
+
print(train_dataset.examples[0])
|
| 331 |
+
|
| 332 |
+
train_features = train_dataset.get_features(tokenizer = tokenizer, max_length =64)
|
| 333 |
+
dev_features = dev_dataset.get_features(tokenizer = tokenizer, max_length =64)
|
| 334 |
+
# print(config)
|
| 335 |
+
|
| 336 |
+
print(len(train_features))
|
| 337 |
+
print(len(dev_features))
|
| 338 |
+
|
| 339 |
+
def compute_metrics(p): #p should be of type EvalPrediction
|
| 340 |
+
print(np.shape(p.predictions[0]))
|
| 341 |
+
print(np.shape(p.predictions[1]))
|
| 342 |
+
print(len(p.label_ids))
|
| 343 |
+
preds = np.argmax(p.predictions[0], axis=1)
|
| 344 |
+
assert len(preds) == len(p.label_ids)
|
| 345 |
+
print(classification_report(p.label_ids,preds))
|
| 346 |
+
print(confusion_matrix(p.label_ids,preds))
|
| 347 |
+
|
| 348 |
+
macro_f1 = f1_score(p.label_ids,preds,average='macro')
|
| 349 |
+
macro_precision = precision_score(p.label_ids,preds,average='macro')
|
| 350 |
+
macro_recall = recall_score(p.label_ids,preds,average='macro')
|
| 351 |
+
acc = accuracy_score(p.label_ids,preds)
|
| 352 |
+
return {
|
| 353 |
+
'macro_f1' : macro_f1,
|
| 354 |
+
'macro_precision': macro_precision,
|
| 355 |
+
'macro_recall': macro_recall,
|
| 356 |
+
'accuracy': acc
|
| 357 |
+
}
|
| 358 |
+
|
| 359 |
+
! mkdir train
|
| 360 |
+
training_args = TrainingArguments("./train")
|
| 361 |
+
training_args.do_train = True
|
| 362 |
+
training_args.evaluate_during_training = True
|
| 363 |
+
training_args.adam_epsilon = 1e-8
|
| 364 |
+
training_args.learning_rate = 2e-5
|
| 365 |
+
training_args.warmup_steps = 0
|
| 366 |
+
training_args.per_device_train_batch_size = 64 #Increase batch size
|
| 367 |
+
training_args.per_device_eval_batch_size = 64 #Increase batch size
|
| 368 |
+
training_args.num_train_epochs = 2 #reduce number of epoch
|
| 369 |
+
training_args.logging_steps = 300 #Increase logging steps
|
| 370 |
+
training_args.save_steps = 2000 #Increase save steps
|
| 371 |
+
training_args.seed = 42
|
| 372 |
+
print(training_args.logging_steps)
|
| 373 |
+
|
| 374 |
+
# instantiate trainer
|
| 375 |
+
trainer = Trainer(model=model,
|
| 376 |
+
args = training_args,
|
| 377 |
+
train_dataset = train_features,
|
| 378 |
+
eval_dataset = dev_features,
|
| 379 |
+
compute_metrics = compute_metrics)
|
| 380 |
+
# start training
|
| 381 |
+
trainer.train()
|
| 382 |
+
|
| 383 |
+
trainer.evaluate()
|
| 384 |
+
|
| 385 |
+
!pip install fasttext
|
| 386 |
+
import fasttext
|
| 387 |
+
import fasttext.util
|
| 388 |
+
from huggingface_hub import hf_hub_download
|
| 389 |
+
|
| 390 |
+
model_path = hf_hub_download(repo_id="facebook/fasttext-ar-vectors", filename="model.bin")
|
| 391 |
+
# model_path = "./fasttext-ar-vectors-150.bin"
|
| 392 |
+
model_fasttext = fasttext.load_model(model_path)
|
| 393 |
+
# model_fasttext = fasttext.util.reduce_model(model_fasttext, 150) # reduce embeddings dimension to 150 from 300; requires a huge memory notebook
|
| 394 |
+
# model_fasttext.save_model("/content/drive/MyDrive/Colab Notebooks/text-aml/hate-speech-ds/fasttext-ar-vectors-150.bin")
|
| 395 |
+
print(len(model_fasttext.words))
|
| 396 |
+
model_fasttext['bread'].shape
|
| 397 |
+
|
| 398 |
+
import nltk
|
| 399 |
+
from nltk.corpus import stopwords
|
| 400 |
+
from nltk.tokenize import WordPunctTokenizer
|
| 401 |
+
from nltk.stem.isri import ISRIStemmer
|
| 402 |
+
import string
|
| 403 |
+
import re
|
| 404 |
+
from bs4 import BeautifulSoup
|
| 405 |
+
nltk.download('stopwords')
|
| 406 |
+
|
| 407 |
+
|
| 408 |
+
tok = WordPunctTokenizer()
|
| 409 |
+
|
| 410 |
+
def normalize_arabic(text):
|
| 411 |
+
text = re.sub("[إأآا]", "ا", text)
|
| 412 |
+
text = re.sub("ى", "ي", text)
|
| 413 |
+
text = re.sub("ؤ", "ء", text)
|
| 414 |
+
text = re.sub("ئ", "ء", text)
|
| 415 |
+
text = re.sub("ة", "ه", text)
|
| 416 |
+
text = re.sub("گ", "ك", text)
|
| 417 |
+
return text
|
| 418 |
+
|
| 419 |
+
|
| 420 |
+
def remove_diacritics(text):
|
| 421 |
+
arabic_diacritics = re.compile("""
|
| 422 |
+
ّ | # Tashdid
|
| 423 |
+
َ | # Fatha
|
| 424 |
+
ً | # Tanwin Fath
|
| 425 |
+
ُ | # Damma
|
| 426 |
+
ٌ | # Tanwin Damm
|
| 427 |
+
ِ | # Kasra
|
| 428 |
+
ٍ | # Tanwin Kasr
|
| 429 |
+
ْ | # Sukun
|
| 430 |
+
ـ # Tatwil/Kashida
|
| 431 |
+
""", re.VERBOSE)
|
| 432 |
+
return re.sub(arabic_diacritics, '', text)
|
| 433 |
+
|
| 434 |
+
|
| 435 |
+
def remove_punctuations(text):
|
| 436 |
+
arabic_punctuations = '''`÷×؛<>_()*&^%][ـ،/:"؟.,'{}~¦+|!”…“–ـ'''
|
| 437 |
+
english_punctuations = string.punctuation
|
| 438 |
+
punctuations_list = arabic_punctuations + english_punctuations
|
| 439 |
+
translator = str.maketrans('', '', punctuations_list)
|
| 440 |
+
return text.translate(translator)
|
| 441 |
+
|
| 442 |
+
|
| 443 |
+
def remove_repeating_char(text):
|
| 444 |
+
# return re.sub(r'(.)\1+', r'\1', text) # keep only 1 repeat
|
| 445 |
+
return re.sub(r'(.)\1+', r'\1\1', text) # keep 2 repeat
|
| 446 |
+
|
| 447 |
+
def remove_stop_words(text):
|
| 448 |
+
#nltk.download('stopwords')
|
| 449 |
+
englishStopWords = stopwords.words('english')
|
| 450 |
+
|
| 451 |
+
all_stopwords = set(englishStopWords + arabic_stop_words)
|
| 452 |
+
|
| 453 |
+
word_list = nltk.tokenize.wordpunct_tokenize(text.lower())
|
| 454 |
+
word_list = [ w for w in word_list if not w in all_stopwords ]
|
| 455 |
+
return (" ".join(word_list)).strip()
|
| 456 |
+
|
| 457 |
+
def get_root(text):
|
| 458 |
+
word_list = nltk.tokenize.wordpunct_tokenize(text.lower())
|
| 459 |
+
result = []
|
| 460 |
+
arstemmer = ISRIStemmer()
|
| 461 |
+
for word in word_list: result.append(arstemmer.stem(word))
|
| 462 |
+
return (' '.join(result)).strip()
|
| 463 |
+
|
| 464 |
+
def clean_tweet(text):
|
| 465 |
+
text = re.sub(r'([@A-Za-z0-9_]+)|#|http\S+', ' ', text) # removes non arabic letters
|
| 466 |
+
text = re.sub(r'ـــــــــــــ', '', text) # removes non arabic letters
|
| 467 |
+
return text
|
| 468 |
+
|
| 469 |
+
|
| 470 |
+
|
| 471 |
+
|
| 472 |
+
def clean_str(text):
|
| 473 |
+
text = clean_tweet(text)
|
| 474 |
+
# text = normalize_arabic(text)
|
| 475 |
+
text = remove_punctuations(text) ###
|
| 476 |
+
text = remove_diacritics(text)
|
| 477 |
+
text = remove_repeating_char(text) ###
|
| 478 |
+
# text = remove_stop_words(text) ###
|
| 479 |
+
|
| 480 |
+
|
| 481 |
+
text = text.replace('وو', 'و') ###
|
| 482 |
+
text = text.replace('يي', 'ي') ###
|
| 483 |
+
text = text.replace('اا', 'ا') ###
|
| 484 |
+
|
| 485 |
+
# text = get_root(text) ###
|
| 486 |
+
|
| 487 |
+
soup = BeautifulSoup(text, 'lxml')
|
| 488 |
+
souped = soup.get_text()
|
| 489 |
+
pat1 = r'@[A-Za-z0-9]+'
|
| 490 |
+
pat2 = r'https?://[A-Za-z0-9./]+'
|
| 491 |
+
combined_pat = r'|'.join((pat1, pat2))
|
| 492 |
+
stripped = re.sub(combined_pat, '', souped)
|
| 493 |
+
try:
|
| 494 |
+
clean = stripped.decode("utf-8-sig").replace(u"\ufffd", "?")
|
| 495 |
+
except:
|
| 496 |
+
clean = stripped
|
| 497 |
+
|
| 498 |
+
words = tok.tokenize(clean)
|
| 499 |
+
return (" ".join(words)).strip()
|
| 500 |
+
|
| 501 |
+
!gdown "165kzfZDsRTZAAfZKedeZiUlKzMcHNgPd" # arabic stop words
|
| 502 |
+
!gdown "1WdgbvqDYIa-g5ijjsz5zb-3lVvUXUtmS&confirm=t" # qarib pretrained model
|
| 503 |
+
!gdown "1foNTGFjhWAxS-_SfF7rga80UmFT7BDJ0&confirm=t" # fasttext-ar-vectors-150.bin
|
| 504 |
+
|
| 505 |
+
!pip install pyarabic
|
| 506 |
+
!pip install farasapy
|
| 507 |
+
!pip install transformers[torch]
|
| 508 |
+
!pip install Keras-Preprocessing
|
| 509 |
+
|
| 510 |
+
! git clone https://github.com/facebookresearch/fastText.git
|
| 511 |
+
! cd fastText && sudo pip install .
|
| 512 |
+
|
| 513 |
+
from transformers import pipeline
|
| 514 |
+
unmasker_MARBERT = pipeline('fill-mask', model='UBC-NLP/MARBERT', top_k=50)
|
| 515 |
+
|
| 516 |
+
def light_preprocess(text):
|
| 517 |
+
text = clean_tweet(text)
|
| 518 |
+
# text = normalize_arabic(text)
|
| 519 |
+
text = remove_punctuations(text) ###
|
| 520 |
+
text = remove_diacritics(text)
|
| 521 |
+
text = remove_repeating_char(text) ###
|
| 522 |
+
text = text.replace('وو', 'و') ###
|
| 523 |
+
text = text.replace('يي', 'ي') ###
|
| 524 |
+
text = text.replace('اا', 'ا') ###
|
| 525 |
+
return text
|
| 526 |
+
|
| 527 |
+
nltk.download('stopwords')
|
| 528 |
+
englishStopWords = stopwords.words('english')
|
| 529 |
+
arabic_punctuations = '''`÷×؛<>_()*&^%][ـ،/:"؟.,'{}~¦+|!”…“–ـ'''
|
| 530 |
+
english_punctuations = string.punctuation
|
| 531 |
+
punctuations_list = arabic_punctuations + english_punctuations
|
| 532 |
+
|
| 533 |
+
all_stopwords = set(englishStopWords + arabic_stop_words)
|
| 534 |
+
|
| 535 |
+
!pip install torch # Install the PyTorch library if you haven't already
|
| 536 |
+
|
| 537 |
+
import torch
|
| 538 |
+
# Determine if a GPU is available and set the device accordingly
|
| 539 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 540 |
+
def classsify_tweets(tweet):
|
| 541 |
+
df = pd.DataFrame({"tweet": tweet})
|
| 542 |
+
df['clean_tweet'] = df['tweet'].apply(lambda x: clean_str(x))
|
| 543 |
+
|
| 544 |
+
dev_df = pd.DataFrame({
|
| 545 |
+
'id':range(len(df)),
|
| 546 |
+
'text': df["clean_tweet"]
|
| 547 |
+
})
|
| 548 |
+
|
| 549 |
+
test_example = SingleSentenceClassificationProcessor(mode='classification')
|
| 550 |
+
test_example.add_examples(texts_or_text_and_labels=dev_df['text'], overwrite_examples = True)
|
| 551 |
+
|
| 552 |
+
test_features = test_example.get_features(tokenizer = tokenizer, max_length =64)
|
| 553 |
+
|
| 554 |
+
input_ids = [i.input_ids for i in test_features]
|
| 555 |
+
attention_masks = [i.attention_mask for i in test_features]
|
| 556 |
+
|
| 557 |
+
inputs = torch.tensor(input_ids)
|
| 558 |
+
masks = torch.tensor(attention_masks)
|
| 559 |
+
|
| 560 |
+
# Put the model in an evaluation state
|
| 561 |
+
model.eval()
|
| 562 |
+
|
| 563 |
+
# Transfer model to GPU
|
| 564 |
+
model.to(device)
|
| 565 |
+
|
| 566 |
+
torch.cuda.empty_cache() # empty the gpu memory
|
| 567 |
+
# Transfer the batch to gpu
|
| 568 |
+
inputs = inputs.to(device)
|
| 569 |
+
masks = masks.to(device)
|
| 570 |
+
|
| 571 |
+
# Run inference on the example
|
| 572 |
+
output = model(inputs, attention_mask=masks)["logits"]
|
| 573 |
+
# Transfer the output to CPU again and convert to numpy
|
| 574 |
+
output = output.cpu().detach().numpy()
|
| 575 |
+
|
| 576 |
+
return output
|
| 577 |
+
|
| 578 |
+
size = len(test_data)
|
| 579 |
+
print("size of test set:", size)
|
| 580 |
+
correct_class_tweets = []
|
| 581 |
+
correct_class = []
|
| 582 |
+
for i in range(0, size):
|
| 583 |
+
txt = test_data['Text'].astype('U')[i]
|
| 584 |
+
cls = test_data['label'][i]
|
| 585 |
+
label = id2label[np.argmax(classsify_tweets([txt]), axis=1)[0]]
|
| 586 |
+
if label == cls and label == 1:
|
| 587 |
+
correct_class_tweets.append(txt)
|
| 588 |
+
correct_class.append(cls)
|
| 589 |
+
|
| 590 |
+
from scipy.spatial import distance
|
| 591 |
+
from farasa.stemmer import FarasaStemmer
|
| 592 |
+
frasa_stemmer = FarasaStemmer(interactive=True)
|
| 593 |
+
|
| 594 |
+
!pip install emoji
|
| 595 |
+
|
| 596 |
+
import emoji
|
| 597 |
+
|
| 598 |
+
def select_best_replacement(pos, x_cur, verbose=False):
|
| 599 |
+
""" Select the most effective replacement to word at pos (pos) in (x_cur)"""
|
| 600 |
+
|
| 601 |
+
if bool(emoji.emoji_count(x_cur.split()[pos])):
|
| 602 |
+
return None
|
| 603 |
+
|
| 604 |
+
embedding_masked_word = model_fasttext[x_cur.split()[pos]]
|
| 605 |
+
|
| 606 |
+
x_masked = (" ".join(x_cur.split()[:pos]) + " [MASK] " + " ".join(x_cur.split()[pos + 1:])).strip()
|
| 607 |
+
unmasked_seq = unmasker_MARBERT(x_masked)[:20]
|
| 608 |
+
|
| 609 |
+
max_sim = -1
|
| 610 |
+
best_perturb_dict = {}
|
| 611 |
+
for seq in unmasked_seq:
|
| 612 |
+
if frasa_stemmer.stem(seq['token_str']) in frasa_stemmer.stem(x_cur.split()[pos]):
|
| 613 |
+
continue
|
| 614 |
+
if seq['token_str'] in punctuations_list or pos >= len(seq["sequence"].split()):
|
| 615 |
+
continue
|
| 616 |
+
embedding_masked_word_new = model_fasttext[seq['token_str']]
|
| 617 |
+
if np.sum(embedding_masked_word) == 0 or np.sum(embedding_masked_word_new) == 0:
|
| 618 |
+
continue
|
| 619 |
+
if verbose: print("New word: ", seq['token_str'])
|
| 620 |
+
sim = 1 - distance.cosine(embedding_masked_word, embedding_masked_word_new)
|
| 621 |
+
if sim > max_sim:
|
| 622 |
+
max_sim = sim
|
| 623 |
+
best_perturb_dict["sim"] = sim
|
| 624 |
+
best_perturb_dict["Masked word"] = x_cur.split()[pos]
|
| 625 |
+
best_perturb_dict["New word"] = seq['token_str']
|
| 626 |
+
best_perturb_dict["New seq"] = x_cur.replace(x_cur.split()[pos], seq['token_str'])
|
| 627 |
+
|
| 628 |
+
return best_perturb_dict.get("New seq", None)
|
| 629 |
+
|
| 630 |
+
# Process tweets and perturb
|
| 631 |
+
perturb_counter = 0
|
| 632 |
+
for tweet_ix, tweet in enumerate(correct_class_tweets):
|
| 633 |
+
print("Tweet index: ", tweet_ix)
|
| 634 |
+
|
| 635 |
+
x_adv = light_preprocess(tweet)
|
| 636 |
+
x_len = len(x_adv.split())
|
| 637 |
+
orig_class = np.argmax(classsify_tweets([x_adv]), axis=1)[0]
|
| 638 |
+
orig_label = id2label[orig_class]
|
| 639 |
+
print(f"Original tweet: {x_adv} : Original label: {orig_label}.")
|
| 640 |
+
splits = len(x_adv.split())
|
| 641 |
+
perturbed_flag = False
|
| 642 |
+
for split_ix in range(splits):
|
| 643 |
+
perturbed = select_best_replacement(split_ix, x_adv)
|
| 644 |
+
if perturbed:
|
| 645 |
+
new_class = np.argmax(classsify_tweets([perturbed]), axis=1)[0]
|
| 646 |
+
if orig_class != new_class:
|
| 647 |
+
print(f"Perturbed tweet: {perturbed} : New label: {id2label[new_class]}.")
|
| 648 |
+
print(10 * "==")
|
| 649 |
+
if not perturbed_flag:
|
| 650 |
+
perturb_counter += 1
|
| 651 |
+
perturbed_flag = True
|
| 652 |
+
if not perturbed_flag:
|
| 653 |
+
print(10 * "==")
|
| 654 |
+
print(f"Successful perturbation {perturb_counter} out of {len(correct_class_tweets)}.")
|
| 655 |
+
|
| 656 |
+
off_tweets_count = sum(test_data['label'] == 1 )
|
| 657 |
+
print(f"Number of offensive tweets in the dataset: {off_tweets_count}")
|
| 658 |
+
|
| 659 |
+
size = len(test_data)
|
| 660 |
+
print("size of test set:", size)
|
| 661 |
+
correct_class_tweets = []
|
| 662 |
+
correct_class = []
|
| 663 |
+
for i in range(0, size):
|
| 664 |
+
txt = test_data['Text'].astype('U')[i]
|
| 665 |
+
cls = test_data['label'][i]
|
| 666 |
+
label = id2label[np.argmax(classsify_tweets([txt]), axis=1)[0]]
|
| 667 |
+
print(f"Tweet: {txt} | Actual: {cls} | Predicted: {label}")
|
| 668 |
+
if label == cls and label == "OFF":
|
| 669 |
+
correct_class_tweets.append(txt)
|
| 670 |
+
correct_class.append(cls)
|
| 671 |
+
print(f"Correctly classified as OFF: {txt}")
|
| 672 |
+
|
| 673 |
+
!pip install gradio
|
| 674 |
+
|
| 675 |
+
import gradio as gr
|
| 676 |
+
import torch
|
| 677 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 678 |
+
|
| 679 |
+
# Load the model and tokenizer
|
| 680 |
+
model_name = "qarib/bert-base-qarib"
|
| 681 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 682 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2)
|
| 683 |
+
|
| 684 |
+
# Preprocessing function
|
| 685 |
+
def light_preprocess(text):
|
| 686 |
+
text = text.replace("@USER", "").replace("RT", "").strip()
|
| 687 |
+
return text
|
| 688 |
+
|
| 689 |
+
# Prediction function
|
| 690 |
+
def predict_offensive(text):
|
| 691 |
+
preprocessed_text = light_preprocess(text)
|
| 692 |
+
inputs = tokenizer(preprocessed_text, return_tensors="pt", truncation=True, padding=True)
|
| 693 |
+
with torch.no_grad():
|
| 694 |
+
outputs = model(**inputs)
|
| 695 |
+
logits = outputs.logits
|
| 696 |
+
predicted_class = torch.argmax(logits, dim=1).item()
|
| 697 |
+
return "Offensive" if predicted_class == 1 else "Not Offensive"
|
| 698 |
+
|
| 699 |
+
# Create the Gradio interface
|
| 700 |
+
iface = gr.Interface(
|
| 701 |
+
fn=predict_offensive,
|
| 702 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter text here..."),
|
| 703 |
+
outputs="text",
|
| 704 |
+
title="Offensive Language Detection",
|
| 705 |
+
description="Enter a text to check if it's offensive or not.",
|
| 706 |
+
)
|
| 707 |
+
|
| 708 |
+
# Launch the interface
|
| 709 |
+
iface.launch()
|
| 710 |
+
|
| 711 |
+
import gradio as gr
|
| 712 |
+
import torch
|
| 713 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 714 |
+
|
| 715 |
+
# Load the models and tokenizers
|
| 716 |
+
model_name_1 = "qarib/bert-base-qarib"
|
| 717 |
+
model_name_2 = "bert-base-multilingual-cased"
|
| 718 |
+
tokenizer_1 = AutoTokenizer.from_pretrained(model_name_1)
|
| 719 |
+
model_1 = AutoModelForSequenceClassification.from_pretrained(model_name_1, num_labels=2)
|
| 720 |
+
|
| 721 |
+
tokenizer_2 = AutoTokenizer.from_pretrained(model_name_2)
|
| 722 |
+
model_2 = AutoModelForSequenceClassification.from_pretrained(model_name_2, num_labels=2)
|
| 723 |
+
|
| 724 |
+
# Preprocessing function
|
| 725 |
+
def light_preprocess(text):
|
| 726 |
+
text = text.replace("@USER", "").replace("RT", "").strip()
|
| 727 |
+
return text
|
| 728 |
+
|
| 729 |
+
# Prediction function
|
| 730 |
+
def predict_offensive(text, model_choice):
|
| 731 |
+
if model_choice == "Model 1":
|
| 732 |
+
tokenizer = tokenizer_1
|
| 733 |
+
model = model_1
|
| 734 |
+
else:
|
| 735 |
+
tokenizer = tokenizer_2
|
| 736 |
+
model = model_2
|
| 737 |
+
|
| 738 |
+
preprocessed_text = light_preprocess(text)
|
| 739 |
+
inputs = tokenizer(preprocessed_text, return_tensors="pt", truncation=True, padding=True)
|
| 740 |
+
with torch.no_grad():
|
| 741 |
+
outputs = model(**inputs)
|
| 742 |
+
logits = outputs.logits
|
| 743 |
+
predicted_class = torch.argmax(logits, dim=1).item()
|
| 744 |
+
return "Offensive" if predicted_class == 1 else "Not Offensive"
|
| 745 |
+
|
| 746 |
+
# Create the Gradio interface with a modern theme
|
| 747 |
+
iface = gr.Interface(
|
| 748 |
+
fn=predict_offensive,
|
| 749 |
+
inputs=[
|
| 750 |
+
gr.Textbox(lines=2, placeholder="Enter text here...", label="Input Text"),
|
| 751 |
+
gr.Dropdown(choices=["Model 1", "Model 2"], label="Select Model")
|
| 752 |
+
],
|
| 753 |
+
outputs=gr.Textbox(label="Prediction"),
|
| 754 |
+
title="Offensive Language Detection",
|
| 755 |
+
description="Enter a text to check if it's offensive or not using the selected model.",
|
| 756 |
+
theme="default", # Use "dark" for dark mode
|
| 757 |
+
css=".gradio-container { background-color: #f0f0f0; } .output-textbox { font-size: 20px; color: #007BFF; }"
|
| 758 |
+
)
|
| 759 |
+
|
| 760 |
+
# Launch the interface
|
| 761 |
+
iface.launch()
|
| 762 |
+
|
| 763 |
+
!pip install gradio
|
| 764 |
+
import gradio as gr
|
| 765 |
+
import torch
|
| 766 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 767 |
+
|
| 768 |
+
# Load the models and tokenizers
|
| 769 |
+
model_name_1 = "qarib/bert-base-qarib"
|
| 770 |
+
model_name_2 = "bert-base-multilingual-cased"
|
| 771 |
+
tokenizer_1 = AutoTokenizer.from_pretrained(model_name_1)
|
| 772 |
+
model_1 = AutoModelForSequenceClassification.from_pretrained(model_name_1, num_labels=2)
|
| 773 |
+
|
| 774 |
+
tokenizer_2 = AutoTokenizer.from_pretrained(model_name_2)
|
| 775 |
+
model_2 = AutoModelForSequenceClassification.from_pretrained(model_name_2, num_labels=2)
|
| 776 |
+
|
| 777 |
+
# Preprocessing function
|
| 778 |
+
def light_preprocess(text):
|
| 779 |
+
text = text.replace("@USER", "").replace("RT", "").strip()
|
| 780 |
+
return text
|
| 781 |
+
|
| 782 |
+
# Prediction function
|
| 783 |
+
def predict_offensive(text, model_choice):
|
| 784 |
+
if model_choice == "Model 1":
|
| 785 |
+
tokenizer = tokenizer_1
|
| 786 |
+
model = model_1
|
| 787 |
+
else:
|
| 788 |
+
tokenizer = tokenizer_2
|
| 789 |
+
model = model_2
|
| 790 |
+
|
| 791 |
+
preprocessed_text = light_preprocess(text)
|
| 792 |
+
inputs = tokenizer(preprocessed_text, return_tensors="pt", truncation=True, padding=True)
|
| 793 |
+
with torch.no_grad():
|
| 794 |
+
outputs = model(**inputs)
|
| 795 |
+
logits = outputs.logits
|
| 796 |
+
predicted_class = torch.argmax(logits, dim=1).item()
|
| 797 |
+
return "Offensive" if predicted_class == 1 else "Not Offensive"
|
| 798 |
+
|
| 799 |
+
# Create the Gradio interface using Text Classification template
|
| 800 |
+
iface = gr.Interface(
|
| 801 |
+
fn=predict_offensive,
|
| 802 |
+
inputs=[
|
| 803 |
+
gr.Textbox(lines=2, placeholder="Enter text here...", label="Input Text"),
|
| 804 |
+
gr.Dropdown(choices=["Model 1", "Model 2"], label="Select Model")
|
| 805 |
+
],
|
| 806 |
+
outputs=gr.Textbox(label="Prediction"),
|
| 807 |
+
title="Offensive Language Detection",
|
| 808 |
+
description="Enter a text to check if it's offensive or not using the selected model.",
|
| 809 |
+
theme="default", # Change to "dark" for dark mode
|
| 810 |
+
)
|
| 811 |
+
|
| 812 |
+
# Launch the interface
|
| 813 |
+
iface.launch()
|