Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import spaces
|
| 3 |
+
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import torch
|
| 6 |
+
from colpali_engine.models.paligemma_colbert_architecture import ColPali
|
| 7 |
+
from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator
|
| 8 |
+
from colpali_engine.utils.colpali_processing_utils import (
|
| 9 |
+
process_images,
|
| 10 |
+
process_queries,
|
| 11 |
+
)
|
| 12 |
+
from pdf2image import convert_from_path
|
| 13 |
+
from PIL import Image
|
| 14 |
+
from torch.utils.data import DataLoader
|
| 15 |
+
from tqdm import tqdm
|
| 16 |
+
from transformers import AutoProcessor
|
| 17 |
+
|
| 18 |
+
# Load model
|
| 19 |
+
model_name = "vidore/colpali-v1.2"
|
| 20 |
+
token = os.environ.get("HF_TOKEN")
|
| 21 |
+
model = ColPali.from_pretrained(
|
| 22 |
+
"vidore/colpaligemma-3b-pt-448-base", torch_dtype=torch.bfloat16, device_map="cuda", token = token).eval()
|
| 23 |
+
|
| 24 |
+
model.load_adapter(model_name)
|
| 25 |
+
model = model.eval()
|
| 26 |
+
processor = AutoProcessor.from_pretrained(model_name, token = token)
|
| 27 |
+
|
| 28 |
+
mock_image = Image.new("RGB", (448, 448), (255, 255, 255))
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
@spaces.GPU
|
| 32 |
+
def search(query: str, ds, images, k):
|
| 33 |
+
|
| 34 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 35 |
+
if device != model.device:
|
| 36 |
+
model.to(device)
|
| 37 |
+
|
| 38 |
+
qs = []
|
| 39 |
+
with torch.no_grad():
|
| 40 |
+
batch_query = process_queries(processor, [query], mock_image)
|
| 41 |
+
batch_query = {k: v.to(device) for k, v in batch_query.items()}
|
| 42 |
+
embeddings_query = model(**batch_query)
|
| 43 |
+
qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
|
| 44 |
+
|
| 45 |
+
retriever_evaluator = CustomEvaluator(is_multi_vector=True)
|
| 46 |
+
scores = retriever_evaluator.evaluate(qs, ds)
|
| 47 |
+
|
| 48 |
+
top_k_indices = scores.argsort(axis=1)[0][-k:][::-1]
|
| 49 |
+
|
| 50 |
+
results = []
|
| 51 |
+
for idx in top_k_indices:
|
| 52 |
+
results.append((images[idx], f"Page {idx}"))
|
| 53 |
+
|
| 54 |
+
return results
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def index(files, ds):
|
| 58 |
+
print("Converting files")
|
| 59 |
+
images = convert_files(files)
|
| 60 |
+
print(f"Files converted with {len(images)} images.")
|
| 61 |
+
return index_gpu(images, ds)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def convert_files(files):
|
| 66 |
+
images = []
|
| 67 |
+
for f in files:
|
| 68 |
+
images.extend(convert_from_path(f, thread_count=4))
|
| 69 |
+
|
| 70 |
+
if len(images) >= 150:
|
| 71 |
+
raise gr.Error("The number of images in the dataset should be less than 150.")
|
| 72 |
+
return images
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
@spaces.GPU
|
| 76 |
+
def index_gpu(images, ds):
|
| 77 |
+
"""Example script to run inference with ColPali"""
|
| 78 |
+
|
| 79 |
+
# run inference - docs
|
| 80 |
+
dataloader = DataLoader(
|
| 81 |
+
images,
|
| 82 |
+
batch_size=4,
|
| 83 |
+
shuffle=False,
|
| 84 |
+
collate_fn=lambda x: process_images(processor, x),
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 89 |
+
if device != model.device:
|
| 90 |
+
model.to(device)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
for batch_doc in tqdm(dataloader):
|
| 94 |
+
with torch.no_grad():
|
| 95 |
+
batch_doc = {k: v.to(device) for k, v in batch_doc.items()}
|
| 96 |
+
embeddings_doc = model(**batch_doc)
|
| 97 |
+
ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
|
| 98 |
+
return f"Uploaded and converted {len(images)} pages", ds, images
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def get_example():
|
| 102 |
+
return [[["climate_youth_magazine.pdf"], "How much tropical forest is cut annually ?"]]
|
| 103 |
+
|
| 104 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 105 |
+
gr.Markdown("# ColPali: Efficient Document Retrieval with Vision Language Models 📚")
|
| 106 |
+
gr.Markdown("""Demo to test ColPali on PDF documents. The inference code is based on the [ViDoRe benchmark](https://github.com/illuin-tech/vidore-benchmark).
|
| 107 |
+
|
| 108 |
+
ColPali is model implemented from the [ColPali paper](https://arxiv.org/abs/2407.01449).
|
| 109 |
+
|
| 110 |
+
This demo allows you to upload PDF files and search for the most relevant pages based on your query.
|
| 111 |
+
Refresh the page if you change documents !
|
| 112 |
+
|
| 113 |
+
⚠️ This demo uses a model trained exclusively on A4 PDFs in portrait mode, containing english text. Performance is expected to drop for other page formats and languages.
|
| 114 |
+
Other models will be released with better robustness towards different languages and document formats !
|
| 115 |
+
""")
|
| 116 |
+
with gr.Row():
|
| 117 |
+
with gr.Column(scale=2):
|
| 118 |
+
gr.Markdown("## 1️⃣ Upload PDFs")
|
| 119 |
+
file = gr.File(file_types=["pdf"], file_count="multiple", label="Upload PDFs")
|
| 120 |
+
|
| 121 |
+
convert_button = gr.Button("🔄 Index documents")
|
| 122 |
+
message = gr.Textbox("Files not yet uploaded", label="Status")
|
| 123 |
+
embeds = gr.State(value=[])
|
| 124 |
+
imgs = gr.State(value=[])
|
| 125 |
+
|
| 126 |
+
with gr.Column(scale=3):
|
| 127 |
+
gr.Markdown("## 2️⃣ Search")
|
| 128 |
+
query = gr.Textbox(placeholder="Enter your query here", label="Query")
|
| 129 |
+
k = gr.Slider(minimum=1, maximum=10, step=1, label="Number of results", value=5)
|
| 130 |
+
|
| 131 |
+
# with gr.Row():
|
| 132 |
+
# gr.Examples(
|
| 133 |
+
# examples=get_example(),
|
| 134 |
+
# inputs=[file, query],
|
| 135 |
+
# )
|
| 136 |
+
|
| 137 |
+
# Define the actions
|
| 138 |
+
search_button = gr.Button("🔍 Search", variant="primary")
|
| 139 |
+
output_gallery = gr.Gallery(label="Retrieved Documents", height=600, show_label=True)
|
| 140 |
+
|
| 141 |
+
convert_button.click(index, inputs=[file, embeds], outputs=[message, embeds, imgs])
|
| 142 |
+
search_button.click(search, inputs=[query, embeds, imgs, k], outputs=[output_gallery])
|
| 143 |
+
|
| 144 |
+
if __name__ == "__main__":
|
| 145 |
+
demo.queue(max_size=10).launch(debug=True)
|