Spaces:
Running
on
Zero
Running
on
Zero
Update modeling_colflor.py
Browse files- modeling_colflor.py +0 -46
modeling_colflor.py
CHANGED
|
@@ -6,52 +6,6 @@ from modeling_florence2 import Florence2ForConditionalGeneration, Florence2Visio
|
|
| 6 |
from configuration_florence2 import Florence2Config
|
| 7 |
|
| 8 |
|
| 9 |
-
class ColFlor2Old(Florence2ForConditionalGeneration):
|
| 10 |
-
"""
|
| 11 |
-
ColFlor2 model implementation from the "ColPali: Efficient Document Retrieval with Vision Language Models" paper.
|
| 12 |
-
"""
|
| 13 |
-
|
| 14 |
-
main_input_name: ClassVar[str] = "doc_input_ids" # transformers-related
|
| 15 |
-
|
| 16 |
-
def __init__(self, config: Florence2Config, use_cache=False):
|
| 17 |
-
super().__init__(config=config)
|
| 18 |
-
|
| 19 |
-
self.dim = 128
|
| 20 |
-
self.custom_text_proj = nn.Linear(self.config.text_config.d_model, self.dim)
|
| 21 |
-
# Now initialize weights properly
|
| 22 |
-
self.custom_text_proj.weight.data.normal_(mean=0.0, std=0.02)
|
| 23 |
-
self.custom_text_proj.bias.data.zero_()
|
| 24 |
-
|
| 25 |
-
self.padding_side = "right"
|
| 26 |
-
self.post_init()
|
| 27 |
-
|
| 28 |
-
def forward(self, *args, **kwargs) -> torch.Tensor:
|
| 29 |
-
# Delete output_hidden_states from kwargs
|
| 30 |
-
kwargs.pop("output_hidden_states", None)
|
| 31 |
-
|
| 32 |
-
# TO BE DELETED
|
| 33 |
-
kwargs['decoder_input_ids'] = kwargs['input_ids']
|
| 34 |
-
|
| 35 |
-
# Create Full Attention Mask that includes the image
|
| 36 |
-
if 'full_attention_mask' in kwargs:
|
| 37 |
-
full_attention_mask = kwargs['full_attention_mask']
|
| 38 |
-
del kwargs['full_attention_mask']
|
| 39 |
-
else:
|
| 40 |
-
full_attention_mask = kwargs['attention_mask']
|
| 41 |
-
|
| 42 |
-
outputs = super().forward(*args,
|
| 43 |
-
**kwargs) # (batch_size, sequence_length, hidden_size)
|
| 44 |
-
|
| 45 |
-
last_hidden_states = outputs['encoder_last_hidden_state'] # (batch_size, sequence_length, hidden_size)
|
| 46 |
-
|
| 47 |
-
proj = self.custom_text_proj(last_hidden_states) # (batch_size, sequence_length, dim)
|
| 48 |
-
# L2 normalization
|
| 49 |
-
proj = proj / proj.norm(dim=-1, keepdim=True) # (batch_size, sequence_length, dim)
|
| 50 |
-
proj = proj * full_attention_mask.unsqueeze(-1) # (batch_size, sequence_length, dim)
|
| 51 |
-
|
| 52 |
-
return proj
|
| 53 |
-
|
| 54 |
-
|
| 55 |
class ColFlor(Florence2VisionLanguageModel):
|
| 56 |
"""
|
| 57 |
ColFlor model implementation from the "ColPali: Efficient Document Retrieval with Vision Language Models" paper.
|
|
|
|
| 6 |
from configuration_florence2 import Florence2Config
|
| 7 |
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
class ColFlor(Florence2VisionLanguageModel):
|
| 10 |
"""
|
| 11 |
ColFlor model implementation from the "ColPali: Efficient Document Retrieval with Vision Language Models" paper.
|