Spaces:
Running
on
Zero
Running
on
Zero
Create processing_utils.py
Browse files- processing_utils.py +121 -0
processing_utils.py
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from abc import ABC, abstractmethod
|
| 2 |
+
from typing import List, Optional, Union
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from transformers import BatchEncoding, BatchFeature
|
| 7 |
+
|
| 8 |
+
def get_torch_device(device: str = "auto") -> str:
|
| 9 |
+
"""
|
| 10 |
+
Returns the device (string) to be used by PyTorch.
|
| 11 |
+
|
| 12 |
+
`device` arg defaults to "auto" which will use:
|
| 13 |
+
- "cuda:0" if available
|
| 14 |
+
- else "mps" if available
|
| 15 |
+
- else "cpu".
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
if device == "auto":
|
| 19 |
+
if torch.cuda.is_available():
|
| 20 |
+
device = "cuda:0"
|
| 21 |
+
elif torch.backends.mps.is_available(): # for Apple Silicon
|
| 22 |
+
device = "mps"
|
| 23 |
+
else:
|
| 24 |
+
device = "cpu"
|
| 25 |
+
logger.info(f"Using device: {device}")
|
| 26 |
+
|
| 27 |
+
return device
|
| 28 |
+
|
| 29 |
+
class BaseVisualRetrieverProcessor(ABC):
|
| 30 |
+
"""
|
| 31 |
+
Base class for visual retriever processors.
|
| 32 |
+
"""
|
| 33 |
+
|
| 34 |
+
@abstractmethod
|
| 35 |
+
def process_images(
|
| 36 |
+
self,
|
| 37 |
+
images: List[Image.Image],
|
| 38 |
+
) -> Union[BatchFeature, BatchEncoding]:
|
| 39 |
+
pass
|
| 40 |
+
|
| 41 |
+
@abstractmethod
|
| 42 |
+
def process_queries(
|
| 43 |
+
self,
|
| 44 |
+
queries: List[str],
|
| 45 |
+
max_length: int = 50,
|
| 46 |
+
suffix: Optional[str] = None,
|
| 47 |
+
) -> Union[BatchFeature, BatchEncoding]:
|
| 48 |
+
pass
|
| 49 |
+
|
| 50 |
+
@abstractmethod
|
| 51 |
+
def score(
|
| 52 |
+
self,
|
| 53 |
+
qs: List[torch.Tensor],
|
| 54 |
+
ps: List[torch.Tensor],
|
| 55 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 56 |
+
**kwargs,
|
| 57 |
+
) -> torch.Tensor:
|
| 58 |
+
pass
|
| 59 |
+
|
| 60 |
+
@staticmethod
|
| 61 |
+
def score_single_vector(
|
| 62 |
+
qs: List[torch.Tensor],
|
| 63 |
+
ps: List[torch.Tensor],
|
| 64 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 65 |
+
) -> torch.Tensor:
|
| 66 |
+
"""
|
| 67 |
+
Compute the dot product score for the given single-vector query and passage embeddings.
|
| 68 |
+
"""
|
| 69 |
+
device = device or get_torch_device("auto")
|
| 70 |
+
|
| 71 |
+
if len(qs) == 0:
|
| 72 |
+
raise ValueError("No queries provided")
|
| 73 |
+
if len(ps) == 0:
|
| 74 |
+
raise ValueError("No passages provided")
|
| 75 |
+
|
| 76 |
+
qs_stacked = torch.stack(qs).to(device)
|
| 77 |
+
ps_stacked = torch.stack(ps).to(device)
|
| 78 |
+
|
| 79 |
+
scores = torch.einsum("bd,cd->bc", qs_stacked, ps_stacked)
|
| 80 |
+
assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}"
|
| 81 |
+
|
| 82 |
+
scores = scores.to(torch.float32)
|
| 83 |
+
return scores
|
| 84 |
+
|
| 85 |
+
@staticmethod
|
| 86 |
+
def score_multi_vector(
|
| 87 |
+
qs: List[torch.Tensor],
|
| 88 |
+
ps: List[torch.Tensor],
|
| 89 |
+
batch_size: int = 128,
|
| 90 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 91 |
+
) -> torch.Tensor:
|
| 92 |
+
"""
|
| 93 |
+
Compute the MaxSim score (ColBERT-like) for the given multi-vector query and passage embeddings.
|
| 94 |
+
"""
|
| 95 |
+
device = device or get_torch_device("auto")
|
| 96 |
+
|
| 97 |
+
if len(qs) == 0:
|
| 98 |
+
raise ValueError("No queries provided")
|
| 99 |
+
if len(ps) == 0:
|
| 100 |
+
raise ValueError("No passages provided")
|
| 101 |
+
|
| 102 |
+
scores_list: List[torch.Tensor] = []
|
| 103 |
+
|
| 104 |
+
for i in range(0, len(qs), batch_size):
|
| 105 |
+
scores_batch = []
|
| 106 |
+
qs_batch = torch.nn.utils.rnn.pad_sequence(qs[i : i + batch_size], batch_first=True, padding_value=0).to(
|
| 107 |
+
device
|
| 108 |
+
)
|
| 109 |
+
for j in range(0, len(ps), batch_size):
|
| 110 |
+
ps_batch = torch.nn.utils.rnn.pad_sequence(
|
| 111 |
+
ps[j : j + batch_size], batch_first=True, padding_value=0
|
| 112 |
+
).to(device)
|
| 113 |
+
scores_batch.append(torch.einsum("bnd,csd->bcns", qs_batch, ps_batch).max(dim=3)[0].sum(dim=2))
|
| 114 |
+
scores_batch = torch.cat(scores_batch, dim=1).cpu()
|
| 115 |
+
scores_list.append(scores_batch)
|
| 116 |
+
|
| 117 |
+
scores = torch.cat(scores_list, dim=0)
|
| 118 |
+
assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}"
|
| 119 |
+
|
| 120 |
+
scores = scores.to(torch.float32)
|
| 121 |
+
return scores
|