Spaces:
Running
on
Zero
Running
on
Zero
Update modeling_colflor.py
Browse files- modeling_colflor.py +94 -95
modeling_colflor.py
CHANGED
|
@@ -1,96 +1,95 @@
|
|
| 1 |
-
from typing import ClassVar
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
import
|
| 5 |
-
from
|
| 6 |
-
from
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
""
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
self.
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
self.custom_text_proj.
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
self.
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
#
|
| 50 |
-
proj = proj
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
""
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
self.
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
self.custom_text_proj.
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
self.
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
#
|
| 93 |
-
proj = proj
|
| 94 |
-
|
| 95 |
-
|
| 96 |
return proj
|
|
|
|
| 1 |
+
from typing import ClassVar
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from torch import nn
|
| 5 |
+
from modeling_florence2 import Florence2ForConditionalGeneration, Florence2VisionLanguageModel
|
| 6 |
+
from configuration_florence2 import Florence2Config
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class ColFlor2Old(Florence2ForConditionalGeneration):
|
| 10 |
+
"""
|
| 11 |
+
ColFlor2 model implementation from the "ColPali: Efficient Document Retrieval with Vision Language Models" paper.
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
+
main_input_name: ClassVar[str] = "doc_input_ids" # transformers-related
|
| 15 |
+
|
| 16 |
+
def __init__(self, config: Florence2Config, use_cache=False):
|
| 17 |
+
super().__init__(config=config)
|
| 18 |
+
|
| 19 |
+
self.dim = 128
|
| 20 |
+
self.custom_text_proj = nn.Linear(self.config.text_config.d_model, self.dim)
|
| 21 |
+
# Now initialize weights properly
|
| 22 |
+
self.custom_text_proj.weight.data.normal_(mean=0.0, std=0.02)
|
| 23 |
+
self.custom_text_proj.bias.data.zero_()
|
| 24 |
+
|
| 25 |
+
self.padding_side = "right"
|
| 26 |
+
self.post_init()
|
| 27 |
+
|
| 28 |
+
def forward(self, *args, **kwargs) -> torch.Tensor:
|
| 29 |
+
# Delete output_hidden_states from kwargs
|
| 30 |
+
kwargs.pop("output_hidden_states", None)
|
| 31 |
+
|
| 32 |
+
# TO BE DELETED
|
| 33 |
+
kwargs['decoder_input_ids'] = kwargs['input_ids']
|
| 34 |
+
|
| 35 |
+
# Create Full Attention Mask that includes the image
|
| 36 |
+
if 'full_attention_mask' in kwargs:
|
| 37 |
+
full_attention_mask = kwargs['full_attention_mask']
|
| 38 |
+
del kwargs['full_attention_mask']
|
| 39 |
+
else:
|
| 40 |
+
full_attention_mask = kwargs['attention_mask']
|
| 41 |
+
|
| 42 |
+
outputs = super().forward(*args,
|
| 43 |
+
**kwargs) # (batch_size, sequence_length, hidden_size)
|
| 44 |
+
|
| 45 |
+
last_hidden_states = outputs['encoder_last_hidden_state'] # (batch_size, sequence_length, hidden_size)
|
| 46 |
+
|
| 47 |
+
proj = self.custom_text_proj(last_hidden_states) # (batch_size, sequence_length, dim)
|
| 48 |
+
# L2 normalization
|
| 49 |
+
proj = proj / proj.norm(dim=-1, keepdim=True) # (batch_size, sequence_length, dim)
|
| 50 |
+
proj = proj * full_attention_mask.unsqueeze(-1) # (batch_size, sequence_length, dim)
|
| 51 |
+
|
| 52 |
+
return proj
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
class ColFlor(Florence2VisionLanguageModel):
|
| 56 |
+
"""
|
| 57 |
+
ColFlor model implementation from the "ColPali: Efficient Document Retrieval with Vision Language Models" paper.
|
| 58 |
+
"""
|
| 59 |
+
|
| 60 |
+
main_input_name: ClassVar[str] = "doc_input_ids" # transformers-related
|
| 61 |
+
|
| 62 |
+
def __init__(self, config: Florence2Config, use_cache=False):
|
| 63 |
+
super().__init__(config=config)
|
| 64 |
+
|
| 65 |
+
self.dim = 128
|
| 66 |
+
self.custom_text_proj = nn.Linear(self.config.text_config.d_model, self.dim)
|
| 67 |
+
# Now initialize weights properly
|
| 68 |
+
self.custom_text_proj.weight.data.normal_(mean=0.0, std=0.02)
|
| 69 |
+
self.custom_text_proj.bias.data.zero_()
|
| 70 |
+
|
| 71 |
+
self.padding_side = "right"
|
| 72 |
+
self.post_init()
|
| 73 |
+
|
| 74 |
+
def forward(self, *args, **kwargs) -> torch.Tensor:
|
| 75 |
+
# Delete output_hidden_states from kwargs
|
| 76 |
+
kwargs.pop("output_hidden_states", None)
|
| 77 |
+
|
| 78 |
+
# Create Full Attention Mask that includes both the image and text
|
| 79 |
+
if 'full_attention_mask' in kwargs:
|
| 80 |
+
full_attention_mask = kwargs['full_attention_mask']
|
| 81 |
+
del kwargs['full_attention_mask']
|
| 82 |
+
else:
|
| 83 |
+
full_attention_mask = kwargs['attention_mask']
|
| 84 |
+
|
| 85 |
+
outputs = super().forward(*args,
|
| 86 |
+
**kwargs) # (batch_size, sequence_length, hidden_size)
|
| 87 |
+
|
| 88 |
+
last_hidden_states = outputs['encoder_last_hidden_state'] # (batch_size, sequence_length, hidden_size)
|
| 89 |
+
|
| 90 |
+
proj = self.custom_text_proj(last_hidden_states) # (batch_size, sequence_length, dim)
|
| 91 |
+
# L2 normalization
|
| 92 |
+
proj = proj / proj.norm(dim=-1, keepdim=True) # (batch_size, sequence_length, dim)
|
| 93 |
+
proj = proj * full_attention_mask.unsqueeze(-1) # (batch_size, sequence_length, dim)
|
| 94 |
+
|
|
|
|
| 95 |
return proj
|