Spaces:
Sleeping
Sleeping
| import os | |
| from typing import List | |
| from langchain.embeddings.openai import OpenAIEmbeddings | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain.vectorstores import Chroma | |
| from langchain.chains import ( | |
| ConversationalRetrievalChain, | |
| ) | |
| from langchain.document_loaders import PyPDFLoader | |
| from langchain.chat_models import ChatOpenAI | |
| from langchain.prompts.chat import ( | |
| ChatPromptTemplate, | |
| SystemMessagePromptTemplate, | |
| HumanMessagePromptTemplate, | |
| ) | |
| from langchain.docstore.document import Document | |
| from langchain.memory import ChatMessageHistory, ConversationBufferMemory | |
| from chainlit.types import AskFileResponse | |
| import chainlit as cl | |
| text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) | |
| system_template = """Use the following pieces of context to answer the users question. | |
| If you don't know the answer, just say that you don't know, don't try to make up an answer. | |
| ALWAYS return a "SOURCES" part in your answer. | |
| The "SOURCES" part should be a reference to the source of the document from which you got your answer. | |
| And if the user greets with greetings like Hi, hello, How are you, etc reply accordingly as well. | |
| Example of your response should be: | |
| The answer is foo | |
| SOURCES: xyz | |
| Begin! | |
| ---------------- | |
| {summaries}""" | |
| messages = [ | |
| SystemMessagePromptTemplate.from_template(system_template), | |
| HumanMessagePromptTemplate.from_template("{question}"), | |
| ] | |
| prompt = ChatPromptTemplate.from_messages(messages) | |
| chain_type_kwargs = {"prompt": prompt} | |
| def process_file(file: AskFileResponse): | |
| import tempfile | |
| with tempfile.NamedTemporaryFile(mode="w", delete=False) as tempfile: | |
| with open(tempfile.name, "wb") as f: | |
| f.write(file.content) | |
| pypdf_loader = PyPDFLoader(tempfile.name) | |
| texts = pypdf_loader.load_and_split() | |
| texts = [text.page_content for text in texts] | |
| return texts | |
| async def on_chat_start(): | |
| files = None | |
| # Wait for the user to upload a file | |
| while files == None: | |
| files = await cl.AskFileMessage( | |
| content="Please upload a PDF file to begin!", | |
| accept=["application/pdf"], | |
| max_size_mb=20, | |
| timeout=180, | |
| ).send() | |
| file = files[0] | |
| msg = cl.Message( | |
| content=f"Processing `{file.name}`...", disable_human_feedback=True | |
| ) | |
| await msg.send() | |
| # load the file | |
| texts = process_file(file) | |
| print(texts[0]) | |
| # Create a metadata for each chunk | |
| metadatas = [{"source": f"{i}-pl"} for i in range(len(texts))] | |
| # Create a Chroma vector store | |
| embeddings = OpenAIEmbeddings() | |
| docsearch = await cl.make_async(Chroma.from_texts)( | |
| texts, embeddings, metadatas=metadatas | |
| ) | |
| message_history = ChatMessageHistory() | |
| memory = ConversationBufferMemory( | |
| memory_key="chat_history", | |
| output_key="answer", | |
| chat_memory=message_history, | |
| return_messages=True, | |
| ) | |
| # Create a chain that uses the Chroma vector store | |
| chain = ConversationalRetrievalChain.from_llm( | |
| ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0, streaming=True), | |
| chain_type="stuff", | |
| retriever=docsearch.as_retriever(), | |
| memory=memory, | |
| return_source_documents=True, | |
| ) | |
| # Let the user know that the system is ready | |
| msg.content = f"Processing `{file.name}` done. You can now ask questions!" | |
| await msg.update() | |
| cl.user_session.set("chain", chain) | |
| async def main(message): | |
| chain = cl.user_session.get("chain") # type: ConversationalRetrievalChain | |
| cb = cl.AsyncLangchainCallbackHandler() | |
| res = await chain.acall(message.content, callbacks=[cb]) | |
| answer = res["answer"] | |
| source_documents = res["source_documents"] # type: List[Document] | |
| text_elements = [] # type: List[cl.Text] | |
| if source_documents: | |
| for source_idx, source_doc in enumerate(source_documents): | |
| source_name = f"source_{source_idx}" | |
| # Create the text element referenced in the message | |
| text_elements.append( | |
| cl.Text(content=source_doc.page_content, name=source_name) | |
| ) | |
| source_names = [text_el.name for text_el in text_elements] | |
| if source_names: | |
| answer += f"\nSources: {', '.join(source_names)}" | |
| else: | |
| answer += "\nNo sources found" | |
| await cl.Message(content=answer, elements=text_elements).send() | |