Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,50 +1,20 @@
|
|
| 1 |
import os
|
| 2 |
import torch
|
| 3 |
import spaces
|
| 4 |
-
from collections.abc import Iterator
|
| 5 |
-
from threading import Thread
|
| 6 |
import gradio as gr
|
|
|
|
|
|
|
| 7 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 8 |
|
| 9 |
MAX_MAX_NEW_TOKENS = 4096
|
| 10 |
-
DEFAULT_MAX_NEW_TOKENS = 2048
|
| 11 |
MAX_INPUT_TOKEN_LENGTH = 4096
|
| 12 |
-
|
| 13 |
HF_TOKEN = os.environ['HF_TOKEN']
|
| 14 |
|
| 15 |
-
DESCRIPTION = """\
|
| 16 |
-
## π IndicTrans3-beta π: Multilingual Translation for 22 Indic Languages
|
| 17 |
-
|
| 18 |
-
IndicTrans3 is the latest state-of-the-art (SOTA) translation model from AI4Bharat, designed to handle translations across **22 Indic languages** with high accuracy. It supports **document-level machine translation (MT)** and is built to match the performance of other leading SOTA models.
|
| 19 |
-
|
| 20 |
-
π’ **Training data will be released soon!**
|
| 21 |
-
|
| 22 |
-
### πΉ Features
|
| 23 |
-
β
Supports **22 Indic languages**
|
| 24 |
-
β
Enables **document-level translation**
|
| 25 |
-
β
Achieves **SOTA performance** in Indic MT
|
| 26 |
-
β
Optimized for **real-world applications**
|
| 27 |
-
|
| 28 |
-
### π Try It Out!
|
| 29 |
-
1οΈβ£ Enter text in any supported language
|
| 30 |
-
2οΈβ£ Select the target language
|
| 31 |
-
3οΈβ£ Click **Translate** and get high-quality results!
|
| 32 |
-
|
| 33 |
-
Built for **linguistic diversity and accessibility**, IndicTrans3 is a major step forward in **Indic language AI**.
|
| 34 |
-
|
| 35 |
-
π‘ **Source:** AI4Bharat | Powered by Hugging Face
|
| 36 |
-
"""
|
| 37 |
-
|
| 38 |
-
# if not torch.cuda.is_available():
|
| 39 |
-
# DESCRIPTION += "\n<p>Running on CPU π₯Ά This demo does not work on CPU.</p>"
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
# if torch.cuda.is_available():
|
| 43 |
model_id = "ai4bharat/IndicTrans3-beta"
|
| 44 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto",
|
| 45 |
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-3B-Instruct")
|
| 46 |
|
| 47 |
-
|
| 48 |
LANGUAGES = {
|
| 49 |
"Hindi": "hin_Deva",
|
| 50 |
"Bengali": "ben_Beng",
|
|
@@ -69,59 +39,33 @@ LANGUAGES = {
|
|
| 69 |
"Bodo": "brx_Deva"
|
| 70 |
}
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
tgt_lang: str,
|
| 75 |
-
message: str,
|
| 76 |
-
max_new_tokens: int = 1024,
|
| 77 |
-
temperature: float = 0.6,
|
| 78 |
-
top_p: float = 0.9,
|
| 79 |
-
top_k: int = 50,
|
| 80 |
-
repetition_penalty: float = 1.2,
|
| 81 |
-
) -> str:
|
| 82 |
-
conversation = []
|
| 83 |
-
conversation.append({"role": "user", "content": f"Translate the following text to {tgt_lang}: {message}"})
|
| 84 |
-
|
| 85 |
-
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt", add_generation_prompt=True)
|
| 86 |
-
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
| 87 |
-
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
| 88 |
-
input_ids = input_ids.to(model.device)
|
| 89 |
-
|
| 90 |
-
outputs = model.generate(
|
| 91 |
-
input_ids=input_ids,
|
| 92 |
-
max_new_tokens=max_new_tokens,
|
| 93 |
-
do_sample=True,
|
| 94 |
-
top_p=top_p,
|
| 95 |
-
top_k=top_k,
|
| 96 |
-
temperature=temperature,
|
| 97 |
-
num_beams=1,
|
| 98 |
-
repetition_penalty=repetition_penalty,
|
| 99 |
-
)
|
| 100 |
-
|
| 101 |
-
return tokenizer.decode(outputs[0][input_ids.shape[1]:], skip_special_tokens=True)
|
| 102 |
-
|
| 103 |
|
| 104 |
@spaces.GPU
|
| 105 |
-
def
|
| 106 |
-
tgt_lang: str,
|
| 107 |
message: str,
|
|
|
|
|
|
|
| 108 |
max_new_tokens: int = 1024,
|
| 109 |
temperature: float = 0.6,
|
| 110 |
top_p: float = 0.9,
|
| 111 |
top_k: int = 50,
|
| 112 |
repetition_penalty: float = 1.2,
|
| 113 |
) -> Iterator[str]:
|
| 114 |
-
|
| 115 |
conversation = []
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt", add_generation_prompt=True)
|
| 119 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
| 120 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
| 121 |
-
gr.Warning(f"Trimmed input
|
| 122 |
input_ids = input_ids.to(model.device)
|
| 123 |
|
| 124 |
-
streamer = TextIteratorStreamer(tokenizer, timeout=
|
| 125 |
generate_kwargs = dict(
|
| 126 |
{"input_ids": input_ids},
|
| 127 |
streamer=streamer,
|
|
@@ -154,84 +98,84 @@ def store_feedback(rating, feedback_text):
|
|
| 154 |
return "Thank you for your feedback!"
|
| 155 |
|
| 156 |
css = """
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
label="Translate To",
|
| 184 |
-
elem_id="translate-to"
|
| 185 |
-
)
|
| 186 |
-
|
| 187 |
-
text_output = gr.Textbox(
|
| 188 |
-
label="",
|
| 189 |
-
lines=10,
|
| 190 |
-
max_lines=100,
|
| 191 |
-
elem_id="output-text"
|
| 192 |
-
)
|
| 193 |
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
text_input,
|
| 200 |
-
gr.Number(value=4096, visible=False),
|
| 201 |
-
gr.Number(value=0.1, visible=False),
|
| 202 |
-
gr.Number(value=0.9, visible=False),
|
| 203 |
-
gr.Number(value=50, visible=False),
|
| 204 |
-
gr.Number(value=1.0, visible=False)
|
| 205 |
-
],
|
| 206 |
-
outputs=text_output
|
| 207 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
gr.Examples(
|
| 210 |
examples=[
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
],
|
| 217 |
-
inputs=
|
| 218 |
-
tgt_lang,
|
| 219 |
-
text_input,
|
| 220 |
-
gr.Number(value=4096, visible=False),
|
| 221 |
-
gr.Number(value=0.1, visible=False),
|
| 222 |
-
gr.Number(value=0.9, visible=False),
|
| 223 |
-
gr.Number(value=50, visible=False),
|
| 224 |
-
gr.Number(value=1.0, visible=False)
|
| 225 |
-
],
|
| 226 |
-
outputs=text_output,
|
| 227 |
-
fn=generate_for_examples,
|
| 228 |
-
cache_examples=True,
|
| 229 |
-
examples_per_page=5
|
| 230 |
)
|
| 231 |
|
| 232 |
-
|
|
|
|
| 233 |
gr.Markdown("## Rate Translation & Provide Feedback π")
|
| 234 |
-
gr.Markdown("Help us improve the translation quality by providing your feedback
|
| 235 |
with gr.Row():
|
| 236 |
rating = gr.Radio(
|
| 237 |
["1", "2", "3", "4", "5"],
|
|
@@ -246,11 +190,93 @@ with gr.Blocks(theme=gr.themes.Default(), css=css) as demo:
|
|
| 246 |
|
| 247 |
feedback_submit = gr.Button("Submit Feedback")
|
| 248 |
feedback_result = gr.Textbox(label="", visible=False)
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
|
| 256 |
-
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import torch
|
| 3 |
import spaces
|
|
|
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
+
from threading import Thread
|
| 6 |
+
from collections.abc import Iterator
|
| 7 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 8 |
|
| 9 |
MAX_MAX_NEW_TOKENS = 4096
|
|
|
|
| 10 |
MAX_INPUT_TOKEN_LENGTH = 4096
|
| 11 |
+
DEFAULT_MAX_NEW_TOKENS = 2048
|
| 12 |
HF_TOKEN = os.environ['HF_TOKEN']
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
model_id = "ai4bharat/IndicTrans3-beta"
|
| 15 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto", token=HF_TOKEN)
|
| 16 |
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-3B-Instruct")
|
| 17 |
|
|
|
|
| 18 |
LANGUAGES = {
|
| 19 |
"Hindi": "hin_Deva",
|
| 20 |
"Bengali": "ben_Beng",
|
|
|
|
| 39 |
"Bodo": "brx_Deva"
|
| 40 |
}
|
| 41 |
|
| 42 |
+
def format_message_for_translation(message, target_lang):
|
| 43 |
+
return f"Translate the following text to {target_lang}: {message}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
@spaces.GPU
|
| 46 |
+
def translate_message(
|
|
|
|
| 47 |
message: str,
|
| 48 |
+
chat_history: list[dict],
|
| 49 |
+
target_language: str = "Hindi",
|
| 50 |
max_new_tokens: int = 1024,
|
| 51 |
temperature: float = 0.6,
|
| 52 |
top_p: float = 0.9,
|
| 53 |
top_k: int = 50,
|
| 54 |
repetition_penalty: float = 1.2,
|
| 55 |
) -> Iterator[str]:
|
|
|
|
| 56 |
conversation = []
|
| 57 |
+
|
| 58 |
+
translation_request = format_message_for_translation(message, target_language)
|
| 59 |
+
print(f"Translation request: {translation_request}")
|
| 60 |
+
conversation.append({"role": "user", "content": translation_request})
|
| 61 |
|
| 62 |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt", add_generation_prompt=True)
|
| 63 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
| 64 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
| 65 |
+
gr.Warning(f"Trimmed input as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
| 66 |
input_ids = input_ids.to(model.device)
|
| 67 |
|
| 68 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=240.0, skip_prompt=True, skip_special_tokens=True)
|
| 69 |
generate_kwargs = dict(
|
| 70 |
{"input_ids": input_ids},
|
| 71 |
streamer=streamer,
|
|
|
|
| 98 |
return "Thank you for your feedback!"
|
| 99 |
|
| 100 |
css = """
|
| 101 |
+
body {
|
| 102 |
+
background-color: #f7f7f7;
|
| 103 |
+
}
|
| 104 |
+
.feedback-section {
|
| 105 |
+
margin-top: 30px;
|
| 106 |
+
border-top: 1px solid #ddd;
|
| 107 |
+
padding-top: 20px;
|
| 108 |
+
}
|
| 109 |
+
.container {
|
| 110 |
+
max-width: 90%;
|
| 111 |
+
margin: 0 auto;
|
| 112 |
+
}
|
| 113 |
+
.language-selector {
|
| 114 |
+
margin-bottom: 20px;
|
| 115 |
+
padding: 10px;
|
| 116 |
+
background-color: #ffffff;
|
| 117 |
+
border-radius: 8px;
|
| 118 |
+
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
|
| 119 |
+
}
|
| 120 |
+
.advanced-options {
|
| 121 |
+
margin-top: 20px;
|
| 122 |
+
}
|
| 123 |
+
"""
|
| 124 |
|
| 125 |
+
DESCRIPTION = """\
|
| 126 |
+
IndicTrans3 is the latest state-of-the-art (SOTA) translation model from AI4Bharat, designed to handle translations across <b>22 Indic languages</b> with high accuracy. It supports <b>document-level machine translation (MT)</b> and is built to match the performance of other leading SOTA models. <br>
|
| 127 |
+
π’ <b>Training data will be released soon!</b>
|
| 128 |
+
<h3>πΉ Features</h3>
|
| 129 |
+
β
Supports <b>22 Indic languages</b>
|
| 130 |
+
β
Enables <b>document-level translation</b>
|
| 131 |
+
β
Achieves <b>SOTA performance</b> in Indic MT
|
| 132 |
+
β
Optimized for <b>real-world applications</b>
|
| 133 |
+
<h3>π Try It Out!</h3>
|
| 134 |
+
1οΈβ£ Enter text in any supported language
|
| 135 |
+
2οΈβ£ Select the target language
|
| 136 |
+
3οΈβ£ Click <b>Translate</b> and get high-quality results!
|
| 137 |
+
Built for <b>linguistic diversity and accessibility</b>, IndicTrans3 is a major step forward in <b>Indic language AI</b>.
|
| 138 |
+
π‘ <b>Source:</b> AI4Bharat | Powered by Hugging Face
|
| 139 |
+
"""
|
| 140 |
+
|
| 141 |
+
with gr.Blocks(css=css) as demo:
|
| 142 |
+
with gr.Column(elem_classes="container"):
|
| 143 |
+
gr.Markdown("# π IndicTrans3-beta π: Multilingual Translation for 22 Indic Languages </center>")
|
| 144 |
+
gr.Markdown(DESCRIPTION)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
+
target_language = gr.Dropdown(
|
| 147 |
+
list(LANGUAGES.keys()),
|
| 148 |
+
value="Hindi",
|
| 149 |
+
label="Which language would you like to translate to?",
|
| 150 |
+
elem_id="language-dropdown"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
)
|
| 152 |
+
|
| 153 |
+
chatbot = gr.Chatbot(height=400, elem_id="chatbot")
|
| 154 |
+
|
| 155 |
+
with gr.Row():
|
| 156 |
+
msg = gr.Textbox(
|
| 157 |
+
placeholder="Enter text to translate...",
|
| 158 |
+
show_label=False,
|
| 159 |
+
container=False,
|
| 160 |
+
scale=9
|
| 161 |
+
)
|
| 162 |
+
submit_btn = gr.Button("Translate", scale=1)
|
| 163 |
|
| 164 |
gr.Examples(
|
| 165 |
examples=[
|
| 166 |
+
"The Taj Mahal stands majestically along the banks of river Yamuna, a timeless symbol of eternal love.",
|
| 167 |
+
"Kumbh Mela is the world's largest gathering of people, where millions of pilgrims bathe in sacred rivers for spiritual purification.",
|
| 168 |
+
"India's classical dance forms like Bharatanatyam, Kathak, and Odissi beautifully blend rhythm, expression, and storytelling.",
|
| 169 |
+
"Ayurveda, the ancient Indian medical system, focuses on holistic wellness through natural herbs and balanced living.",
|
| 170 |
+
"During Diwali, homes across India are decorated with oil lamps, colorful rangoli patterns, and twinkling lights to celebrate the victory of light over darkness."
|
| 171 |
],
|
| 172 |
+
inputs=msg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
)
|
| 174 |
|
| 175 |
+
|
| 176 |
+
with gr.Accordion("Provide Feedback", open=True):
|
| 177 |
gr.Markdown("## Rate Translation & Provide Feedback π")
|
| 178 |
+
gr.Markdown("Help us improve the translation quality by providing your feedback.")
|
| 179 |
with gr.Row():
|
| 180 |
rating = gr.Radio(
|
| 181 |
["1", "2", "3", "4", "5"],
|
|
|
|
| 190 |
|
| 191 |
feedback_submit = gr.Button("Submit Feedback")
|
| 192 |
feedback_result = gr.Textbox(label="", visible=False)
|
| 193 |
+
|
| 194 |
+
with gr.Accordion("Advanced Options", open=False, elem_classes="advanced-options"):
|
| 195 |
+
max_new_tokens = gr.Slider(
|
| 196 |
+
label="Max new tokens",
|
| 197 |
+
minimum=1,
|
| 198 |
+
maximum=MAX_MAX_NEW_TOKENS,
|
| 199 |
+
step=1,
|
| 200 |
+
value=DEFAULT_MAX_NEW_TOKENS,
|
| 201 |
+
)
|
| 202 |
+
temperature = gr.Slider(
|
| 203 |
+
label="Temperature",
|
| 204 |
+
minimum=0.1,
|
| 205 |
+
maximum=1.0,
|
| 206 |
+
step=0.1,
|
| 207 |
+
value=0.1,
|
| 208 |
+
)
|
| 209 |
+
top_p = gr.Slider(
|
| 210 |
+
label="Top-p (nucleus sampling)",
|
| 211 |
+
minimum=0.05,
|
| 212 |
+
maximum=1.0,
|
| 213 |
+
step=0.05,
|
| 214 |
+
value=0.9,
|
| 215 |
+
)
|
| 216 |
+
top_k = gr.Slider(
|
| 217 |
+
label="Top-k",
|
| 218 |
+
minimum=1,
|
| 219 |
+
maximum=100,
|
| 220 |
+
step=1,
|
| 221 |
+
value=50,
|
| 222 |
+
)
|
| 223 |
+
repetition_penalty = gr.Slider(
|
| 224 |
+
label="Repetition penalty",
|
| 225 |
+
minimum=1.0,
|
| 226 |
+
maximum=2.0,
|
| 227 |
+
step=0.05,
|
| 228 |
+
value=1.0,
|
| 229 |
)
|
| 230 |
+
|
| 231 |
+
chat_state = gr.State([])
|
| 232 |
+
|
| 233 |
+
def user(user_message, history, target_lang):
|
| 234 |
+
return "", history + [[user_message, None]]
|
| 235 |
+
|
| 236 |
+
def bot(history, target_lang, max_tokens, temp, top_p_val, top_k_val, rep_penalty):
|
| 237 |
+
user_message = history[-1][0]
|
| 238 |
+
history[-1][1] = ""
|
| 239 |
+
|
| 240 |
+
for chunk in translate_message(
|
| 241 |
+
user_message,
|
| 242 |
+
history[:-1],
|
| 243 |
+
target_lang,
|
| 244 |
+
max_tokens,
|
| 245 |
+
temp,
|
| 246 |
+
top_p_val,
|
| 247 |
+
top_k_val,
|
| 248 |
+
rep_penalty
|
| 249 |
+
):
|
| 250 |
+
history[-1][1] = chunk
|
| 251 |
+
yield history
|
| 252 |
+
|
| 253 |
+
msg.submit(
|
| 254 |
+
user,
|
| 255 |
+
[msg, chatbot, target_language],
|
| 256 |
+
[msg, chatbot],
|
| 257 |
+
queue=False
|
| 258 |
+
).then(
|
| 259 |
+
bot,
|
| 260 |
+
[chatbot, target_language, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 261 |
+
chatbot
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
submit_btn.click(
|
| 265 |
+
user,
|
| 266 |
+
[msg, chatbot, target_language],
|
| 267 |
+
[msg, chatbot],
|
| 268 |
+
queue=False
|
| 269 |
+
).then(
|
| 270 |
+
bot,
|
| 271 |
+
[chatbot, target_language, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 272 |
+
chatbot
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
feedback_submit.click(
|
| 276 |
+
fn=store_feedback,
|
| 277 |
+
inputs=[rating, feedback_text],
|
| 278 |
+
outputs=feedback_result
|
| 279 |
+
)
|
| 280 |
|
| 281 |
+
if __name__ == "__main__":
|
| 282 |
+
demo.launch()
|