Spaces:
Running
on
Zero
Running
on
Zero
add model inference
Browse files
app.py
CHANGED
|
@@ -1,9 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
# device = 0 if torch.cuda.is_available() else -1
|
| 7 |
|
| 8 |
LANGUAGES = {
|
| 9 |
"Hindi": "hin_Deva",
|
|
@@ -29,9 +44,51 @@ LANGUAGES = {
|
|
| 29 |
"Bodo": "brx_Deva"
|
| 30 |
}
|
| 31 |
|
| 32 |
-
|
|
|
|
| 33 |
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
def store_feedback(rating, feedback_text):
|
| 37 |
if not rating:
|
|
@@ -59,12 +116,6 @@ with gr.Blocks(theme=gr.themes.Default(), css=css) as demo:
|
|
| 59 |
with gr.Column(elem_id="col-container"):
|
| 60 |
with gr.Row():
|
| 61 |
with gr.Column():
|
| 62 |
-
src_lang = gr.Dropdown(
|
| 63 |
-
["English"],
|
| 64 |
-
value="English",
|
| 65 |
-
label="Translate From",
|
| 66 |
-
elem_id="translate-from"
|
| 67 |
-
)
|
| 68 |
|
| 69 |
text_input = gr.Textbox(
|
| 70 |
placeholder="Enter text to translate...",
|
|
@@ -90,7 +141,7 @@ with gr.Blocks(theme=gr.themes.Default(), css=css) as demo:
|
|
| 90 |
)
|
| 91 |
|
| 92 |
btn_submit = gr.Button("Translate")
|
| 93 |
-
btn_submit.click(fn=
|
| 94 |
|
| 95 |
gr.Examples(
|
| 96 |
examples=[
|
|
@@ -100,9 +151,9 @@ with gr.Blocks(theme=gr.themes.Default(), css=css) as demo:
|
|
| 100 |
["English", "Hello, how are you today? I hope you're doing well.", "Marathi"],
|
| 101 |
["English", "Hello, how are you today? I hope you're doing well.", "Malayalam"]
|
| 102 |
],
|
| 103 |
-
inputs=[
|
| 104 |
outputs=text_output,
|
| 105 |
-
fn=
|
| 106 |
cache_examples=True,
|
| 107 |
examples_per_page=5
|
| 108 |
)
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import spaces
|
| 3 |
+
from collections.abc import Iterator
|
| 4 |
+
from threading import Thread
|
| 5 |
import gradio as gr
|
| 6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 7 |
|
| 8 |
+
MAX_MAX_NEW_TOKENS = 4096
|
| 9 |
+
DEFAULT_MAX_NEW_TOKENS = 2048
|
| 10 |
+
MAX_INPUT_TOKEN_LENGTH = 4096
|
| 11 |
+
|
| 12 |
+
if not torch.cuda.is_available():
|
| 13 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
if torch.cuda.is_available():
|
| 17 |
+
model_id = "ai4bharat/IndicTrans3-beta"
|
| 18 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
|
| 19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 20 |
+
tokenizer.use_default_system_prompt = False
|
| 21 |
|
|
|
|
| 22 |
|
| 23 |
LANGUAGES = {
|
| 24 |
"Hindi": "hin_Deva",
|
|
|
|
| 44 |
"Bodo": "brx_Deva"
|
| 45 |
}
|
| 46 |
|
| 47 |
+
|
| 48 |
+
# def translate(src_lang, text, tgt_lang):
|
| 49 |
|
| 50 |
+
# return "Translation output will appear here..."
|
| 51 |
+
|
| 52 |
+
@spaces.GPU
|
| 53 |
+
def generate(
|
| 54 |
+
tgt_lang: str,
|
| 55 |
+
message: str,
|
| 56 |
+
max_new_tokens: int = 1024,
|
| 57 |
+
temperature: float = 0.6,
|
| 58 |
+
top_p: float = 0.9,
|
| 59 |
+
top_k: int = 50,
|
| 60 |
+
repetition_penalty: float = 1.2,
|
| 61 |
+
) -> Iterator[str]:
|
| 62 |
+
|
| 63 |
+
conversation = []
|
| 64 |
+
conversation.append({"role": "user", "content": f"Translate the following text to {tgt_lang}: {message}"})
|
| 65 |
+
|
| 66 |
+
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
|
| 67 |
+
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
| 68 |
+
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
| 69 |
+
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
| 70 |
+
input_ids = input_ids.to(model.device)
|
| 71 |
+
|
| 72 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
| 73 |
+
generate_kwargs = dict(
|
| 74 |
+
{"input_ids": input_ids},
|
| 75 |
+
streamer=streamer,
|
| 76 |
+
max_new_tokens=max_new_tokens,
|
| 77 |
+
do_sample=True,
|
| 78 |
+
top_p=top_p,
|
| 79 |
+
top_k=top_k,
|
| 80 |
+
temperature=temperature,
|
| 81 |
+
num_beams=1,
|
| 82 |
+
repetition_penalty=repetition_penalty,
|
| 83 |
+
)
|
| 84 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 85 |
+
t.start()
|
| 86 |
+
|
| 87 |
+
outputs = []
|
| 88 |
+
for text in streamer:
|
| 89 |
+
outputs.append(text)
|
| 90 |
+
yield "".join(outputs)
|
| 91 |
+
|
| 92 |
|
| 93 |
def store_feedback(rating, feedback_text):
|
| 94 |
if not rating:
|
|
|
|
| 116 |
with gr.Column(elem_id="col-container"):
|
| 117 |
with gr.Row():
|
| 118 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
text_input = gr.Textbox(
|
| 121 |
placeholder="Enter text to translate...",
|
|
|
|
| 141 |
)
|
| 142 |
|
| 143 |
btn_submit = gr.Button("Translate")
|
| 144 |
+
btn_submit.click(fn=generate, inputs=[tgt_lang, text_input, 4096, 0, 50, 0], outputs=text_output)
|
| 145 |
|
| 146 |
gr.Examples(
|
| 147 |
examples=[
|
|
|
|
| 151 |
["English", "Hello, how are you today? I hope you're doing well.", "Marathi"],
|
| 152 |
["English", "Hello, how are you today? I hope you're doing well.", "Malayalam"]
|
| 153 |
],
|
| 154 |
+
inputs=[tgt_lang, text_input, 4096, 0, 50, 0],
|
| 155 |
outputs=text_output,
|
| 156 |
+
fn=generate,
|
| 157 |
cache_examples=True,
|
| 158 |
examples_per_page=5
|
| 159 |
)
|