File size: 18,994 Bytes
7cc801b 6f0ddde 7cc801b f6f0a7d 7cc801b f6f0a7d 7cc801b 6f0ddde 7cc801b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
import os
import json
import re
import streamlit as st
import pandas as pd
import numpy as np
from urllib.parse import quote
from pathlib import Path
import re
import html
import pickle
from typing import Dict, Any
from scipy.stats import sem
from utils.constants import (DATASETS, DIGITS_FOR_VALUES, DIGITS_FOR_ERRORS,
DATASET_INFO, DIMENSIONS, RESULTS_DIR,
DIMENSION_INFO)
def sanitize_model_name(model_name):
# Only allow alphanumeric chars, hyphen, underscore
if model_name.startswith('.'):
raise ValueError("model name cannot start with a dot")
if not re.match("^[a-zA-Z0-9-_][a-zA-Z0-9-_.]*$", model_name):
raise ValueError("Invalid model name format")
return model_name
def safe_path_join(*parts):
# Ensure we stay within results directory
base = Path("results").resolve()
try:
path = base.joinpath(*parts).resolve()
if not str(path).startswith(str(base)):
raise ValueError("Path traversal detected")
return path
except Exception:
raise ValueError("Invalid path")
def sanitize_column_name(col: str) -> str:
"""Sanitize column names for HTML display"""
col= str(col)
is_result_column = [True if item in col else False for item in ["IQM", "Mean"]]
col = col.replace("_", " ") if any(is_result_column) else col.replace("_", " ").title()
return html.escape(col)
def sanitize_cell_value(value: Any) -> str:
"""Sanitize cell values for HTML display"""
if isinstance(value, (int, float)):
return str(value)
return html.escape(str(value))
def create_html_results_table(df, df_err):
html = '''
<style>
table {
width: 100%;
border-collapse: collapse;
}
th, td {
border: 1px solid #ddd;
padding: 8px;
text-align: center;
}
th {
font-weight: bold;
}
.table-container {
padding-bottom: 20px;
}
</style>
'''
html += '<div class="table-container">'
html += '<table>'
html += '<thead><tr>'
for column in df.columns:
#if column == "index": continue
html += f'<th>{sanitize_column_name(column)}</th>'
html += '</tr></thead>'
html += '<tbody>'
for (_, row), (_, row_err) in zip(df.iterrows(), df_err.iterrows()):
html += '<tr>'
for col in df.columns:
#if column == "index": continue
if col == "Model":
html += f'<td>{row[col]}</td>'
else:
if col in row_err:
if row[col] != row_err[col]:
html += f'<td>{sanitize_cell_value(row[col])} Β± {sanitize_cell_value(row_err[col])} </td>'
else:
html += f'<td>{sanitize_cell_value(row[col])}</td>'
else:
html += f'<td>{sanitize_cell_value(row[col])}</td>'
html += '</tr>'
html += '</tbody></table>'
html += '</div>'
return html
def create_html_table_info(df):
#create html table
html = '''
<style>
table {
width: 100%;
border-collapse: collapse;
}
th, td {
border: 1px solid #ddd;
padding: 8px;
text-align: center;
}
th {
font-weight: bold;
}
.table-container {
padding-bottom: 20px;
}
</style>
'''
html += '<div class="table-container">'
html += '<table>'
html += '<thead><tr>'
for column in df.columns:
html += f'<th>{sanitize_column_name(column)}</th>'
html += '</tr></thead>'
html += '<tbody>'
for (_, row) in df.iterrows():
html += '<tr>'
for column in df.columns:
if column == "Citation":
html += f'<td>{row[column]}</td>'
else:
html += f'<td>{sanitize_cell_value(row[column])}</td>'
html += '</tr>'
html += '</tbody></table>'
html += '</div>'
return html
def check_sanity(model_name):
try:
safe_model = sanitize_model_name(model_name)
for benchmark in DATASETS:
file_path = safe_path_join(safe_model, f"{benchmark.lower()}.json")
if not file_path.is_file():
continue
original_count = 0
with open(file_path) as f:
results = json.load(f)
for result in results:
#if not all(key in result for key in ["model_name", "benchmark", "original_or_reproduced", "score", "std_err", "task_type", "followed_evaluation_protocol", "reproducible", "comments", "date_time"]):
# return False
#if result["model_name"] != model_name:
# return False
#if result["benchmark"] != benchmark:
# return False
if result["original_or_reproduced"] == "Original":
original_count += 1
if original_count != 1:
return False
return True
except ValueError:
return False
def make_hyperlink_datasets(url: str ,
url_name: str,
root: str = "") -> str:
try:
if len(url) == 0:
return url_name
full_url = f"{root}{url}"
return f'<a href="{html.escape(full_url)}" target="_blank">{html.escape(url_name)}</a>'
except ValueError:
return ""
def filter_with_user_selections(unique_key: str,
iqm_column_name: str,
table = pd.DataFrame,
table_err = pd.DataFrame
) -> tuple[pd.DataFrame, pd.DataFrame]:
table.reset_index(inplace=True)
table_err.reset_index(inplace=True)
#filter best results per model if selected
view_best_per_model = st.radio(
"Select all results or best results",
["all results", "best results per model"],
index=0,
key=unique_key,
horizontal=True
)
if view_best_per_model == "best results per model":
table[iqm_column_name] = pd.to_numeric(table[iqm_column_name])
table = table.loc[table.groupby('Model')[iqm_column_name].transform('idxmax'),:]
table = table.drop_duplicates(['Model'])
#filter by search bars
col1, col2, col3 = st.columns(3)
with col1:
search_models_query = st.text_input(f"Search by model", "", key=f"search_{unique_key}_models")
with col2:
search_submission_query = st.text_input(f"Search by submission", "", key=f"search_{unique_key}_submission")
with col3:
search_settings_query = st.text_input(f"Search by settings", "", key=f"search_{unique_key}_settings")
if search_models_query:
table = table[table['Model'].str.contains(search_models_query, case=False)]
if search_submission_query:
table = table[table['submission'].str.contains(search_submission_query, case=False)]
if search_settings_query:
table = table[table['Config Settings'].str.contains(search_settings_query, case=False)]
# Sort values
table = table.sort_values(by=iqm_column_name, ascending=False)
table_err = table_err.loc[table.index]
#table = table.reset_index()
#table_err = table_err.reset_index()
table = table.drop(["index"], errors='ignore')
table_err = table_err.drop(["index"], errors='ignore')
return table, table_err
def create_overall_performance_tab(overall_performance_tables):
# Main Leaderboard tab
st.header("Overall Performance")
#show raw or normalized results if selected
view_raw_or_normalized = st.radio(
"Select raw or normalized values",
["normalized values (with IQM)", "raw values (with Mean)"],
index=0,
key="overall_raw_or_normalized",
horizontal=True
)
if view_raw_or_normalized == "normalized values (with IQM)":
overall_table = overall_performance_tables["normalized"].copy()
overall_table_err = overall_performance_tables["normalized_err"].copy()
iqm_column_name = 'Overall IQM'
else:
overall_table = overall_performance_tables["raw"].copy()
overall_table_err = overall_performance_tables["raw_err"].copy()
iqm_column_name = 'Overall Mean'
# filter with user selections
overall_table, overall_table_err = filter_with_user_selections(unique_key="overall_all_or_best",
iqm_column_name = iqm_column_name,
table = overall_table,
table_err = overall_table_err
)
# Display the filtered DataFrame or the entire leaderboard
#df['submission'] = df['submission'].apply(make_hyperlink)
#overall_performance_table['Model'] = overall_performance_table['Model'].apply(make_hyperlink)
html_table = create_html_results_table(overall_table, overall_table_err)
st.markdown(html_table, unsafe_allow_html=True)
# Export the DataFrame to CSV
if st.button("Export to CSV", key=f"overall_performance_export_main"):
csv_data = overall_table.to_csv(index=False)
st.download_button(
label="Download CSV",
data=csv_data,
file_name=f"overall_performance_leaderboard.csv",
key="download-csv",
help="Click to download the CSV file",
)
def create_dimension_performance_tab(
performance_by_dimension_tables
):
# Dimension tab
st.header("Performance By Dimension")
#add drop down
dimension_drop_down = st.selectbox('Select dimension to view',
([f"{key} ({value})" for key, value in DIMENSION_INFO.items()]))
dimension_drop_down = dimension_drop_down.split(" (")[0]
#show raw or normalized results if selected
view_raw_or_normalized_dimension = st.radio(
"Select raw or normalized values",
["normalized values (with IQM)", "raw values (with Mean)"],
index=0,
key="dimension_raw_or_normalized",
horizontal=True
)
if view_raw_or_normalized_dimension == "normalized values (with IQM)":
dimension_table = performance_by_dimension_tables["normalized"][dimension_drop_down].copy()
dimension_table_err = performance_by_dimension_tables["normalized_err"][f"{dimension_drop_down}_err"].copy()
iqm_column_name = f'Overall {dimension_drop_down} IQM'
else:
dimension_table = performance_by_dimension_tables["raw"][dimension_drop_down].copy()
dimension_table_err = performance_by_dimension_tables["raw_err"][f"{dimension_drop_down}_err"].copy()
iqm_column_name = f'Overall {dimension_drop_down} Mean'
# filter with search bars
dimension_table, dimension_table_err = filter_with_user_selections(unique_key = "dimension_all_or_best",
iqm_column_name = iqm_column_name,
table = dimension_table,
table_err = dimension_table_err)
#st.markdown(f"DIMENSION INFO: {dimension_drop_down} {DIMENSION_INFO[dimension_drop_down]}")
#performance_by_dimension_tables[dimension_drop_down]['Model'] = performance_by_dimension_tables[dimension_drop_down]['Model'].apply(make_hyperlink)
html_table = create_html_results_table(dimension_table, dimension_table_err)
st.markdown(html_table, unsafe_allow_html=True)
def create_datasets_tabs(datasets_tables: dict
):
datasets_tabs = st.tabs([dataset.replace("_", " ") for dataset in DATASETS])
for i, dataset in enumerate(DATASETS):
with datasets_tabs[i]:
dataset_name = dataset.replace("_", " ").title()
dataset_desc = DATASET_INFO["Description"][DATASET_INFO["Dataset"].index(dataset_name)]
st.header(dataset.replace("_", " ").title())
st.markdown(dataset_desc)
#show raw or normalized results if selected
view_raw_or_normalized_dataset = st.radio(
"Select raw or normalized values",
["normalized values (with IQM)", "raw values (with Mean)"],
index=0,
key=f"{dataset}_raw_or_normalized",
horizontal=True
)
if view_raw_or_normalized_dataset == "normalized values (with IQM)":
dataset_table = datasets_tables["normalized"][dataset].copy()
dataset_table_err = datasets_tables["normalized_err"][dataset].copy()
iqm_column_name = "IQM"
else:
dataset_table = datasets_tables["raw"][dataset].copy()
dataset_table_err = datasets_tables["raw_err"][dataset].copy()
iqm_column_name = "Mean"
# filter with search bars
dataset_table, dataset_table_err = filter_with_user_selections(unique_key = dataset,
iqm_column_name = iqm_column_name,
table = dataset_table,
table_err = dataset_table_err
)
#create html table
html_table = create_html_results_table(dataset_table, dataset_table_err)
st.markdown(html_table, unsafe_allow_html=True)
def create_info_tab():
tabs = st.tabs(["Dataset Info", "Dimension Info"])
with tabs[0]:
st.header("Dataset Info")
dataset_table = pd.DataFrame(DATASET_INFO)
citation_hyperlinks = [make_hyperlink_datasets(url = row.Hyperlinks,
url_name = row.Citation) for _, row in dataset_table.iterrows()]
dataset_table.drop(columns=['Hyperlinks', 'Citation'], inplace = True)
dataset_table["Citation"] = citation_hyperlinks
dataset_table = create_html_table_info(dataset_table)
st.markdown(dataset_table, unsafe_allow_html=True)
with tabs[1]:
st.header("Dimension Info")
dims = []
datasets = []
details = []
for dimension, info in DIMENSION_INFO.items():
dims.append(dimension)
datasets.append(", ".join(DIMENSIONS[dimension]))
details.append(info)
dim_table = pd.DataFrame({
"Dimension": dims,
"Details": details,
"Datasets": datasets,
})
dim_table = create_html_table_info(dim_table)
st.markdown(dim_table, unsafe_allow_html=True)
def main():
st.set_page_config(page_title="GeoBench Leaderboard", layout="wide", initial_sidebar_state="expanded")
st.markdown("""
<head>
<meta http-equiv="Content-Security-Policy"
content="default-src 'self' https://huggingface.co;
script-src 'self' 'unsafe-inline';
style-src 'self' 'unsafe-inline';
img-src 'self' data: https:;
frame-ancestors 'none';">
<meta http-equiv="X-Frame-Options" content="DENY">
<meta http-equiv="X-Content-Type-Options" content="nosniff">
<meta http-equiv="Referrer-Policy" content="strict-origin-when-cross-origin">
</head>
""", unsafe_allow_html=True)
#read compiled results
with open(f'{RESULTS_DIR}/compiled.pkl', 'rb') as handle:
compiled_results = pickle.load(handle)
overall_performance_tables = compiled_results["overall_performance_tables"]
performance_by_dimension_tables = compiled_results["performance_by_dimension_tables"]
datasets_tables = compiled_results["datasets_tables"]
del compiled_results
#create header
st.title("π GEO-Bench Leaderboard")
st.markdown("Leaderboard to evaluate Geospatial Foundation Models on downstream tasks")
# content = create_yall()
tabs = st.tabs(["π Main Leaderboard", "Dimensions", "Datasets", "Info", "π How to Submit"])
with tabs[0]:
create_overall_performance_tab(overall_performance_tables=overall_performance_tables)
with tabs[1]:
create_dimension_performance_tab(performance_by_dimension_tables=performance_by_dimension_tables)
with tabs[2]:
# Datasets tabs
#create individual dataset pages
create_datasets_tabs(datasets_tables=datasets_tables)
with tabs[3]:
# Dimensions tab
create_info_tab()
with tabs[-1]:
#About page
st.header("How to Submit")
with open("utils/about_page.txt") as f:
about_page = f.read()
st.markdown(about_page)
comment = """
with tabs[2]:
# Models tab
st.markdown("Models used for benchmarking")
model_tabs = st.tabs(all_model_names)
#create individual benchmark pages
#create_models_tabs(all_submission_results=all_submission_results,
# model_tabs=model_tabs,
# all_model_names=all_model_names
# )
with tabs[3]:
# Submissions tab
st.markdown("Experiments submitted to benchmark benchmarking")
submissions_tabs = st.tabs(all_submissions)
#create individual benchmark pages
#create_submissions_tabs(all_submission_results=all_submission_results,
# model_tabs=submissions_tabs,
# all_submissions=all_submissions
# )
"""
if __name__ == "__main__":
main()
|