Spaces:
Runtime error
Runtime error
| import pathlib | |
| import pandas as pd | |
| from datasets import Dataset | |
| from src.display.formatting import has_no_nan_values, make_clickable_model | |
| from src.display.utils import AutoEvalColumn, EvalQueueColumn, baseline_row | |
| from src.leaderboard.filter_models import filter_models_flags | |
| from src.display.utils import load_json_data | |
| def _process_model_data(entry, model_name_key="model", revision_key="revision"): | |
| """Enrich model data with clickable links and revisions.""" | |
| entry[EvalQueueColumn.model.name] = make_clickable_model(entry.get(model_name_key, "")) | |
| entry[EvalQueueColumn.revision.name] = entry.get(revision_key, "main") | |
| return entry | |
| def get_evaluation_queue_df(save_path, cols): | |
| """Generate dataframes for pending, running, and finished evaluation entries.""" | |
| save_path = pathlib.Path(save_path) | |
| all_evals = [] | |
| for path in save_path.rglob("*.json"): | |
| data = load_json_data(path) | |
| if data: | |
| all_evals.append(_process_model_data(data)) | |
| # Organizing data by status | |
| status_map = { | |
| "PENDING": ["PENDING", "RERUN"], | |
| "RUNNING": ["RUNNING"], | |
| "FINISHED": ["FINISHED", "PENDING_NEW_EVAL"], | |
| } | |
| status_dfs = {status: [] for status in status_map} | |
| for eval_data in all_evals: | |
| for status, extra_statuses in status_map.items(): | |
| if eval_data["status"] in extra_statuses: | |
| status_dfs[status].append(eval_data) | |
| return tuple(pd.DataFrame(status_dfs[status], columns=cols) for status in ["FINISHED", "RUNNING", "PENDING"]) | |
| def get_leaderboard_df(leaderboard_dataset: Dataset, cols: list, benchmark_cols: list): | |
| """Retrieve and process leaderboard data.""" | |
| all_data_json = leaderboard_dataset.to_dict() | |
| num_items = leaderboard_dataset.num_rows | |
| all_data_json = [{k: all_data_json[k][ix] for k in all_data_json.keys()} for ix in range(num_items)] | |
| filter_models_flags(all_data_json) | |
| df = pd.DataFrame.from_records(all_data_json) | |
| df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False) | |
| df = df[cols].round(decimals=2) | |
| df = df[has_no_nan_values(df, benchmark_cols)] | |
| return df | |