Spaces:
Sleeping
Sleeping
Update
Browse files- app.py +4 -4
- wavs/{en_US=order-me-a-pizza.wav β en-US=order-me-a-pizza.wav} +0 -0
- wavs/{en_US=set-the-volume-to-low.wav β en-US=set-the-volume-to-low.wav} +0 -0
- wavs/{en_US=tell-me-a-good-joke.wav β en-US=tell-me-a-good-joke.wav} +0 -0
- wavs/{en_US=tell-me-the-artist-of-this-song.wav β en-US=tell-me-the-artist-of-this-song.wav} +0 -0
- wavs/{es_ES=poner-una-alarma-a-las-doce.wav β es-ES=poner-una-alarma-a-las-doce.wav} +0 -0
app.py
CHANGED
|
@@ -10,7 +10,7 @@ SAMPLE_RATE = 16_000
|
|
| 10 |
|
| 11 |
models = {}
|
| 12 |
|
| 13 |
-
|
| 14 |
"en-US": "jonatasgrosman/wav2vec2-large-xlsr-53-english",
|
| 15 |
"fr-FR": "jonatasgrosman/wav2vec2-large-xlsr-53-french",
|
| 16 |
"nl-NL": "jonatasgrosman/wav2vec2-large-xlsr-53-dutch",
|
|
@@ -56,8 +56,8 @@ def transcribe(audio_path, lang_code):
|
|
| 56 |
|
| 57 |
if lang_code not in models:
|
| 58 |
models[lang_code] = {}
|
| 59 |
-
models[lang_code]["processor"] = Wav2Vec2Processor.from_pretrained(
|
| 60 |
-
models[lang_code]["model"] = Wav2Vec2ForCTC.from_pretrained(
|
| 61 |
|
| 62 |
# Load model
|
| 63 |
processor_asr = models[lang_code]["processor"]
|
|
@@ -114,7 +114,7 @@ iface = gr.Interface(
|
|
| 114 |
description='Upload your wav file to test the models',
|
| 115 |
inputs=[
|
| 116 |
gr.inputs.Audio(label='wav file', source='microphone', type='filepath'),
|
| 117 |
-
gr.inputs.Dropdown(choices=list(
|
| 118 |
],
|
| 119 |
outputs=[
|
| 120 |
gr.outputs.JSON(label='Slot Recognition + Intent Classification + Language Classification + ASR'),
|
|
|
|
| 10 |
|
| 11 |
models = {}
|
| 12 |
|
| 13 |
+
models_paths = {
|
| 14 |
"en-US": "jonatasgrosman/wav2vec2-large-xlsr-53-english",
|
| 15 |
"fr-FR": "jonatasgrosman/wav2vec2-large-xlsr-53-french",
|
| 16 |
"nl-NL": "jonatasgrosman/wav2vec2-large-xlsr-53-dutch",
|
|
|
|
| 56 |
|
| 57 |
if lang_code not in models:
|
| 58 |
models[lang_code] = {}
|
| 59 |
+
models[lang_code]["processor"] = Wav2Vec2Processor.from_pretrained(models_paths[lang_code])
|
| 60 |
+
models[lang_code]["model"] = Wav2Vec2ForCTC.from_pretrained(models_paths[lang_code])
|
| 61 |
|
| 62 |
# Load model
|
| 63 |
processor_asr = models[lang_code]["processor"]
|
|
|
|
| 114 |
description='Upload your wav file to test the models',
|
| 115 |
inputs=[
|
| 116 |
gr.inputs.Audio(label='wav file', source='microphone', type='filepath'),
|
| 117 |
+
gr.inputs.Dropdown(choices=list(models_paths.keys())),
|
| 118 |
],
|
| 119 |
outputs=[
|
| 120 |
gr.outputs.JSON(label='Slot Recognition + Intent Classification + Language Classification + ASR'),
|
wavs/{en_US=order-me-a-pizza.wav β en-US=order-me-a-pizza.wav}
RENAMED
|
File without changes
|
wavs/{en_US=set-the-volume-to-low.wav β en-US=set-the-volume-to-low.wav}
RENAMED
|
File without changes
|
wavs/{en_US=tell-me-a-good-joke.wav β en-US=tell-me-a-good-joke.wav}
RENAMED
|
File without changes
|
wavs/{en_US=tell-me-the-artist-of-this-song.wav β en-US=tell-me-the-artist-of-this-song.wav}
RENAMED
|
File without changes
|
wavs/{es_ES=poner-una-alarma-a-las-doce.wav β es-ES=poner-una-alarma-a-las-doce.wav}
RENAMED
|
File without changes
|