Spaces:
Paused
Paused
| import gradio as gr | |
| from google import genai | |
| from google.genai import types | |
| import os | |
| from typing import Optional, List | |
| from huggingface_hub import whoami | |
| from PIL import Image | |
| from io import BytesIO | |
| import tempfile | |
| # --- Google Gemini API Configuration --- | |
| # Use GEMINI_API_KEY if available, otherwise fall back to GOOGLE_API_KEY | |
| GEMINI_API_KEY = os.getenv("GEMINI_API_KEY") | |
| GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") | |
| API_KEY = GEMINI_API_KEY or GOOGLE_API_KEY | |
| if not API_KEY: | |
| raise ValueError("Neither GEMINI_API_KEY nor GOOGLE_API_KEY environment variable is set.") | |
| client = genai.Client( | |
| api_key=API_KEY, | |
| ) | |
| # Note: Gemini models don't directly generate images - they analyze/describe them | |
| # For image generation, you'd need to use a different API like Imagen | |
| # This code is updated to work with text generation about images | |
| GEMINI_MODEL_NAME = 'gemini-2.0-flash-exp' # Updated model name | |
| def verify_pro_status(token: Optional[gr.OAuthToken]) -> bool: | |
| """Verifies if the user is a Hugging Face PRO user or part of an enterprise org.""" | |
| if not token: | |
| return False | |
| try: | |
| user_info = whoami(token=token.token) | |
| if user_info.get("isPro", False): | |
| return True | |
| orgs = user_info.get("orgs", []) | |
| if any(org.get("isEnterprise", False) for org in orgs): | |
| return True | |
| return False | |
| except Exception as e: | |
| print(f"Could not verify user's PRO/Enterprise status: {e}") | |
| return False | |
| def _extract_image_data_from_response(response) -> Optional[bytes]: | |
| """Helper to extract image data from the model's response.""" | |
| # Debug: Print response structure | |
| print(f"Response type: {type(response)}") | |
| # Note: Gemini doesn't generate images directly | |
| # This would need to be replaced with actual image generation API | |
| # For now, return None to indicate no image was generated | |
| if hasattr(response, 'text'): | |
| print(f"Response text: {response.text[:200] if response.text else 'Empty'}") | |
| return None | |
| def run_single_image_logic(prompt: str, image_path: Optional[str] = None, progress=gr.Progress()) -> str: | |
| """Handles text or image analysis using Google Gemini.""" | |
| try: | |
| progress(0.2, desc="๐จ ์ค๋น ์ค...") | |
| contents = [] | |
| if image_path: | |
| # Image analysis | |
| input_image = Image.open(image_path) | |
| contents.append(input_image) | |
| contents.append(f"Describe what you see and how it could be modified based on: {prompt}") | |
| else: | |
| # Text-only prompt | |
| contents.append(f"Describe an image concept for: {prompt}") | |
| progress(0.5, desc="โจ ์์ฑ ์ค...") | |
| # Remove the generation_config parameter that's causing the error | |
| # Use the simpler API call format | |
| try: | |
| response = client.models.generate_content( | |
| model=GEMINI_MODEL_NAME, | |
| contents=contents, | |
| ) | |
| except Exception as api_error: | |
| # Fallback: try with just the contents as a simple string/list | |
| print(f"First attempt failed: {api_error}") | |
| if image_path: | |
| # For image input, we need to handle it differently | |
| # The API might expect a different format | |
| raise gr.Error("์ด๋ฏธ์ง ์ ๋ ฅ์ ํ์ฌ ์ง์๋์ง ์์ต๋๋ค. Gemini API๋ ์ด๋ฏธ์ง ์์ฑ์ด ์๋ ๋ถ์์ฉ์ ๋๋ค.") | |
| else: | |
| # For text-only, try a simpler approach | |
| response = client.models.generate_content( | |
| model=GEMINI_MODEL_NAME, | |
| contents=prompt | |
| ) | |
| progress(0.8, desc="๐ผ๏ธ ๋ง๋ฌด๋ฆฌ ์ค...") | |
| # Since Gemini doesn't generate images, we'll need to handle this differently | |
| # For demonstration, create a placeholder or use a different service | |
| if hasattr(response, 'text') and response.text: | |
| # Return the text response for now | |
| # In production, you'd call an actual image generation API here | |
| description = response.text | |
| # Create a placeholder image with the description | |
| from PIL import Image, ImageDraw, ImageFont | |
| img = Image.new('RGB', (512, 512), color='white') | |
| draw = ImageDraw.Draw(img) | |
| # Add text to explain the situation | |
| text = "Gemini API๋ ์ด๋ฏธ์ง ์์ฑ์ ์ง์ํ์ง ์์ต๋๋ค.\n\n" | |
| text += "์์ฑ๋ ์ค๋ช :\n" + description[:200] + "..." | |
| # Simple text wrapping | |
| y_position = 50 | |
| for line in text.split('\n'): | |
| draw.text((20, y_position), line, fill='black') | |
| y_position += 30 | |
| # Save the placeholder image | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmpfile: | |
| img.save(tmpfile.name) | |
| progress(1.0, desc="โ ์๋ฃ!") | |
| return tmpfile.name | |
| else: | |
| raise ValueError("API ์๋ต์ ๋ฐ์ง ๋ชปํ์ต๋๋ค.") | |
| except Exception as e: | |
| print(f"Error details: {e}") | |
| print(f"Error type: {type(e)}") | |
| raise gr.Error(f"์ฒ๋ฆฌ ์คํจ: {e}") | |
| def run_multi_image_logic(prompt: str, images: List[str], progress=gr.Progress()) -> str: | |
| """ | |
| Handles multi-image analysis. | |
| """ | |
| if not images: | |
| raise gr.Error("'์ฌ๋ฌ ์ด๋ฏธ์ง' ํญ์์ ์ต์ ํ ๊ฐ์ ์ด๋ฏธ์ง๋ฅผ ์ ๋ก๋ํด์ฃผ์ธ์.") | |
| try: | |
| progress(0.2, desc="๐จ ์ด๋ฏธ์ง ์ค๋น ์ค...") | |
| contents = [] | |
| for image_path in images: | |
| if isinstance(image_path, (list, tuple)): | |
| image_path = image_path[0] | |
| contents.append(Image.open(image_path)) | |
| contents.append(f"Analyze these images based on: {prompt}") | |
| progress(0.5, desc="โจ ๋ถ์ ์ค...") | |
| # Simple API call without generation_config | |
| response = client.models.generate_content( | |
| model=GEMINI_MODEL_NAME, | |
| contents=contents, | |
| ) | |
| progress(0.8, desc="๐ผ๏ธ ๋ง๋ฌด๋ฆฌ ์ค...") | |
| # Create a result image with the analysis | |
| if hasattr(response, 'text') and response.text: | |
| from PIL import Image, ImageDraw | |
| img = Image.new('RGB', (512, 512), color='white') | |
| draw = ImageDraw.Draw(img) | |
| text = "๋ค์ค ์ด๋ฏธ์ง ๋ถ์ ๊ฒฐ๊ณผ:\n\n" | |
| text += response.text[:300] + "..." | |
| y_position = 50 | |
| for line in text.split('\n'): | |
| draw.text((20, y_position), line, fill='black') | |
| y_position += 30 | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmpfile: | |
| img.save(tmpfile.name) | |
| progress(1.0, desc="โ ์๋ฃ!") | |
| return tmpfile.name | |
| else: | |
| raise ValueError("API ์๋ต์ ๋ฐ์ง ๋ชปํ์ต๋๋ค.") | |
| except Exception as e: | |
| print(f"Multi-image error details: {e}") | |
| raise gr.Error(f"์ฒ๋ฆฌ ์คํจ: {e}") | |
| # --- Gradio App UI --- | |
| css = ''' | |
| /* Header Styling */ | |
| .main-header { | |
| background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); | |
| padding: 2rem; | |
| border-radius: 1rem; | |
| margin-bottom: 2rem; | |
| box-shadow: 0 10px 30px rgba(0,0,0,0.1); | |
| } | |
| .header-title { | |
| font-size: 2.5rem !important; | |
| font-weight: bold; | |
| color: white; | |
| text-align: center; | |
| margin: 0 !important; | |
| text-shadow: 2px 2px 4px rgba(0,0,0,0.2); | |
| } | |
| .header-subtitle { | |
| color: rgba(255,255,255,0.9); | |
| text-align: center; | |
| margin-top: 0.5rem !important; | |
| font-size: 1.1rem; | |
| } | |
| /* Card Styling */ | |
| .card { | |
| background: white; | |
| border-radius: 1rem; | |
| padding: 1.5rem; | |
| box-shadow: 0 4px 6px rgba(0,0,0,0.1); | |
| border: 1px solid rgba(0,0,0,0.05); | |
| } | |
| .dark .card { | |
| background: #1f2937; | |
| border: 1px solid #374151; | |
| } | |
| /* Tab Styling */ | |
| .tabs { | |
| border-radius: 0.5rem; | |
| overflow: hidden; | |
| margin-bottom: 1rem; | |
| } | |
| .tabitem { | |
| padding: 1rem !important; | |
| } | |
| button.selected { | |
| background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important; | |
| color: white !important; | |
| } | |
| /* Button Styling */ | |
| .generate-btn { | |
| background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important; | |
| border: none !important; | |
| color: white !important; | |
| font-size: 1.1rem !important; | |
| font-weight: 600 !important; | |
| padding: 0.8rem 2rem !important; | |
| border-radius: 0.5rem !important; | |
| cursor: pointer !important; | |
| transition: all 0.3s ease !important; | |
| width: 100% !important; | |
| margin-top: 1rem !important; | |
| } | |
| .generate-btn:hover { | |
| transform: translateY(-2px) !important; | |
| box-shadow: 0 10px 20px rgba(102, 126, 234, 0.4) !important; | |
| } | |
| .use-btn { | |
| background: linear-gradient(135deg, #10b981 0%, #059669 100%) !important; | |
| border: none !important; | |
| color: white !important; | |
| font-weight: 600 !important; | |
| padding: 0.6rem 1.5rem !important; | |
| border-radius: 0.5rem !important; | |
| cursor: pointer !important; | |
| transition: all 0.3s ease !important; | |
| width: 100% !important; | |
| } | |
| .use-btn:hover { | |
| transform: translateY(-1px) !important; | |
| box-shadow: 0 5px 15px rgba(16, 185, 129, 0.4) !important; | |
| } | |
| /* Input Styling */ | |
| .prompt-input textarea { | |
| border-radius: 0.5rem !important; | |
| border: 2px solid #e5e7eb !important; | |
| padding: 0.8rem !important; | |
| font-size: 1rem !important; | |
| transition: border-color 0.3s ease !important; | |
| } | |
| .prompt-input textarea:focus { | |
| border-color: #667eea !important; | |
| outline: none !important; | |
| } | |
| .dark .prompt-input textarea { | |
| border-color: #374151 !important; | |
| background: #1f2937 !important; | |
| } | |
| /* Image Output Styling */ | |
| #output { | |
| border-radius: 0.5rem !important; | |
| overflow: hidden !important; | |
| box-shadow: 0 4px 6px rgba(0,0,0,0.1) !important; | |
| } | |
| /* Progress Bar Styling */ | |
| .progress-bar { | |
| background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important; | |
| } | |
| /* Examples Styling */ | |
| .examples { | |
| background: #f9fafb; | |
| border-radius: 0.5rem; | |
| padding: 1rem; | |
| margin-top: 1rem; | |
| } | |
| .dark .examples { | |
| background: #1f2937; | |
| } | |
| /* Pro Message Styling */ | |
| .pro-message { | |
| background: linear-gradient(135deg, #fef3c7 0%, #fde68a 100%); | |
| border-radius: 1rem; | |
| padding: 2rem; | |
| text-align: center; | |
| border: 2px solid #f59e0b; | |
| } | |
| .dark .pro-message { | |
| background: linear-gradient(135deg, #7c2d12 0%, #92400e 100%); | |
| border-color: #f59e0b; | |
| } | |
| /* Emoji Animations */ | |
| @keyframes bounce { | |
| 0%, 100% { transform: translateY(0); } | |
| 50% { transform: translateY(-10px); } | |
| } | |
| .emoji-icon { | |
| display: inline-block; | |
| animation: bounce 2s infinite; | |
| } | |
| /* Responsive Design */ | |
| @media (max-width: 768px) { | |
| .header-title { | |
| font-size: 2rem !important; | |
| } | |
| .main-container { | |
| padding: 1rem !important; | |
| } | |
| } | |
| ''' | |
| with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: | |
| # Header | |
| gr.HTML(''' | |
| <div class="main-header"> | |
| <h1 class="header-title"> | |
| ๐ Real Nano Banana | |
| </h1> | |
| <p class="header-subtitle"> | |
| Google Gemini API๋ก ๊ตฌ๋๋๋ AI ์ด๋ฏธ์ง ๋ถ์๊ธฐ | |
| </p> | |
| </div> | |
| ''') | |
| # Important Notice | |
| gr.HTML(''' | |
| <div style="background: #fef2f2; border-radius: 0.5rem; padding: 1rem; margin-bottom: 1.5rem; | |
| border-left: 4px solid #ef4444;"> | |
| <p style="margin: 0; color: #991b1b; font-weight: 600;"> | |
| โ ๏ธ ์ฐธ๊ณ : Gemini API๋ ์ด๋ฏธ์ง ์์ฑ์ด ์๋ ๋ถ์์ ์ ๊ณตํฉ๋๋ค. | |
| ์ค์ ์ด๋ฏธ์ง ์์ฑ์ ์ํ์๋ฉด DALL-E, Midjourney, Stable Diffusion ๋ฑ์ ์ฌ์ฉํ์ธ์. | |
| </p> | |
| </div> | |
| ''') | |
| # Pro User Notice | |
| gr.HTML(''' | |
| <div style="background: linear-gradient(135deg, #fef3c7 0%, #fde68a 100%); | |
| border-radius: 0.5rem; padding: 1rem; margin-bottom: 1.5rem; | |
| border-left: 4px solid #f59e0b;"> | |
| <p style="margin: 0; color: #92400e; font-weight: 600;"> | |
| ๐ ์ด ์คํ์ด์ค๋ Hugging Face PRO ์ฌ์ฉ์ ์ ์ฉ์ ๋๋ค. | |
| <a href="https://huggingface.co/pro" target="_blank" | |
| style="color: #dc2626; text-decoration: underline;"> | |
| PRO ๊ตฌ๋ ํ๊ธฐ | |
| </a> | |
| </p> | |
| </div> | |
| ''') | |
| pro_message = gr.Markdown(visible=False) | |
| main_interface = gr.Column(visible=False, elem_classes="main-container") | |
| with main_interface: | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| gr.HTML('<div class="card">') | |
| # Mode Selection | |
| gr.HTML('<h3 style="margin-top: 0;">๐ธ ๋ชจ๋ ์ ํ</h3>') | |
| active_tab_state = gr.State(value="single") | |
| with gr.Tabs(elem_classes="tabs") as tabs: | |
| with gr.TabItem("๐ผ๏ธ ๋จ์ผ ์ด๋ฏธ์ง", id="single") as single_tab: | |
| image_input = gr.Image( | |
| type="filepath", | |
| label="์ ๋ ฅ ์ด๋ฏธ์ง", | |
| elem_classes="image-input" | |
| ) | |
| gr.HTML(''' | |
| <p style="text-align: center; color: #6b7280; font-size: 0.9rem; margin-top: 0.5rem;"> | |
| ๐ก ํ ์คํธ ์ค๋ช ๋ง ์ํ์๋ฉด ๋น์๋์ธ์ | |
| </p> | |
| ''') | |
| with gr.TabItem("๐จ ๋ค์ค ์ด๋ฏธ์ง", id="multiple") as multi_tab: | |
| gallery_input = gr.Gallery( | |
| label="์ ๋ ฅ ์ด๋ฏธ์ง๋ค", | |
| file_types=["image"], | |
| elem_classes="gallery-input" | |
| ) | |
| gr.HTML(''' | |
| <p style="text-align: center; color: #6b7280; font-size: 0.9rem; margin-top: 0.5rem;"> | |
| ๐ก ์ฌ๋ฌ ์ด๋ฏธ์ง๋ฅผ ๋๋๊ทธ ์ค ๋๋กญํ์ธ์ | |
| </p> | |
| ''') | |
| # Prompt Input | |
| gr.HTML('<h3>โ๏ธ ํ๋กฌํํธ</h3>') | |
| prompt_input = gr.Textbox( | |
| label="", | |
| info="AI์๊ฒ ์ํ๋ ๊ฒ์ ์ค๋ช ํ์ธ์", | |
| placeholder="์: ์ด ์ด๋ฏธ์ง๋ฅผ ๋ถ์ํด์ฃผ์ธ์, ๋ฌด์์ด ๋ณด์ด๋์?, ์ด๋ฏธ์ง๋ฅผ ์ด๋ป๊ฒ ๊ฐ์ ํ ์ ์์๊น์?", | |
| lines=3, | |
| elem_classes="prompt-input" | |
| ) | |
| # Generate Button | |
| generate_button = gr.Button( | |
| "๐ ๋ถ์ํ๊ธฐ", | |
| variant="primary", | |
| elem_classes="generate-btn" | |
| ) | |
| # Examples | |
| with gr.Accordion("๐ก ์์ ํ๋กฌํํธ", open=False): | |
| gr.Examples( | |
| examples=[ | |
| ["์ด ์ด๋ฏธ์ง์์ ๋ฌด์์ด ๋ณด์ด๋์?"], | |
| ["์ด๋ฏธ์ง์ ์์๊ณผ ๊ตฌ์ฑ์ ๋ถ์ํด์ฃผ์ธ์"], | |
| ["์ด ์ฅ๋ฉด์ ๋ ๊ทน์ ์ผ๋ก ๋ง๋ค๋ ค๋ฉด ์ด๋ป๊ฒ ํด์ผ ํ ๊น์?"], | |
| ["์ด๋ฏธ์ง์ ๋ถ์๊ธฐ์ ๊ฐ์ ์ ์ค๋ช ํด์ฃผ์ธ์"], | |
| ["๊ธฐ์ ์ ์ธ ๊ด์ ์์ ์ด ์ด๋ฏธ์ง๋ฅผ ํ๊ฐํด์ฃผ์ธ์"], | |
| ], | |
| inputs=prompt_input | |
| ) | |
| gr.HTML('</div>') | |
| with gr.Column(scale=1): | |
| gr.HTML('<div class="card">') | |
| gr.HTML('<h3 style="margin-top: 0;">๐จ ๋ถ์ ๊ฒฐ๊ณผ</h3>') | |
| output_image = gr.Image( | |
| label="", | |
| interactive=False, | |
| elem_id="output" | |
| ) | |
| use_image_button = gr.Button( | |
| "โป๏ธ ์ด ์ด๋ฏธ์ง๋ฅผ ๋ค์ ๋ถ์์ ์ฌ์ฉ", | |
| elem_classes="use-btn", | |
| visible=False | |
| ) | |
| # Tips | |
| gr.HTML(''' | |
| <div style="background: #f0f9ff; border-radius: 0.5rem; padding: 1rem; margin-top: 1rem;"> | |
| <h4 style="margin-top: 0; color: #0369a1;">๐ก ํ</h4> | |
| <ul style="margin: 0; padding-left: 1.5rem; color: #0c4a6e;"> | |
| <li>๊ตฌ์ฒด์ ์ด๊ณ ์์ธํ ํ๋กฌํํธ๋ฅผ ์ฌ์ฉํ์ธ์</li> | |
| <li>์ด๋ฏธ์ง๋ฅผ ์ ๋ก๋ํ์ฌ AI ๋ถ์์ ๋ฐ์ ์ ์์ต๋๋ค</li> | |
| <li>๋ค์ค ์ด๋ฏธ์ง ๋ชจ๋๋ก ์ฌ๋ฌ ์ด๋ฏธ์ง๋ฅผ ๋น๊ต ๋ถ์ํ ์ ์์ต๋๋ค</li> | |
| </ul> | |
| </div> | |
| ''') | |
| gr.HTML('</div>') | |
| # Footer | |
| gr.HTML(''' | |
| <div style="text-align: center; margin-top: 2rem; padding: 1rem; | |
| border-top: 1px solid #e5e7eb;"> | |
| <p style="color: #6b7280;"> | |
| Made with ๐ by Hugging Face PRO | Powered by Google Gemini API | |
| </p> | |
| </div> | |
| ''') | |
| login_button = gr.LoginButton() | |
| # --- Event Handlers --- | |
| def unified_generator( | |
| prompt: str, | |
| single_image: Optional[str], | |
| multi_images: Optional[List[str]], | |
| active_tab: str, | |
| oauth_token: Optional[gr.OAuthToken] = None, | |
| ): | |
| if not verify_pro_status(oauth_token): | |
| raise gr.Error("์ก์ธ์ค ๊ฑฐ๋ถ: ์ด ์๋น์ค๋ PRO ์ฌ์ฉ์ ์ ์ฉ์ ๋๋ค.") | |
| if not prompt: | |
| raise gr.Error("ํ๋กฌํํธ๋ฅผ ์ ๋ ฅํด์ฃผ์ธ์.") | |
| if active_tab == "multiple" and multi_images: | |
| result = run_multi_image_logic(prompt, multi_images) | |
| else: | |
| result = run_single_image_logic(prompt, single_image) | |
| return result, gr.update(visible=True) | |
| single_tab.select(lambda: "single", None, active_tab_state) | |
| multi_tab.select(lambda: "multiple", None, active_tab_state) | |
| generate_button.click( | |
| unified_generator, | |
| inputs=[prompt_input, image_input, gallery_input, active_tab_state], | |
| outputs=[output_image, use_image_button], | |
| ) | |
| use_image_button.click( | |
| lambda img: (img, gr.update(visible=False)), | |
| inputs=[output_image], | |
| outputs=[image_input, use_image_button] | |
| ) | |
| # --- Access Control Logic --- | |
| def control_access( | |
| profile: Optional[gr.OAuthProfile] = None, | |
| oauth_token: Optional[gr.OAuthToken] = None | |
| ): | |
| if not profile: | |
| return gr.update(visible=False), gr.update(visible=False) | |
| if verify_pro_status(oauth_token): | |
| return gr.update(visible=True), gr.update(visible=False) | |
| else: | |
| message = ''' | |
| <div class="pro-message"> | |
| <h2>โจ PRO ์ฌ์ฉ์ ์ ์ฉ ๊ธฐ๋ฅ</h2> | |
| <p style="font-size: 1.1rem; margin: 1rem 0;"> | |
| ์ด ๊ฐ๋ ฅํ AI ์ด๋ฏธ์ง ๋ถ์ ๋๊ตฌ๋ Hugging Face <strong>PRO</strong> ๋ฉค๋ฒ ์ ์ฉ์ ๋๋ค. | |
| </p> | |
| <p style="margin: 1rem 0;"> | |
| PRO ๊ตฌ๋ ์ผ๋ก ๋ค์์ ๋๋ฆฌ์ธ์: | |
| </p> | |
| <ul style="text-align: left; display: inline-block; margin: 1rem 0;"> | |
| <li>๐ Google Gemini API ๋ฌด์ ํ ์ก์ธ์ค</li> | |
| <li>โก ๋น ๋ฅธ ์ด๋ฏธ์ง ๋ถ์</li> | |
| <li>๐จ ์์ธํ ์ด๋ฏธ์ง ์ค๋ช </li> | |
| <li>๐ง ๋ค์ค ์ด๋ฏธ์ง ๋น๊ต ๋ถ์</li> | |
| </ul> | |
| <a href="https://huggingface.co/pro" target="_blank" | |
| style="display: inline-block; margin-top: 1rem; padding: 1rem 2rem; | |
| background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); | |
| color: white; text-decoration: none; border-radius: 0.5rem; | |
| font-weight: bold; font-size: 1.1rem;"> | |
| ๐ ์ง๊ธ PRO ๋ฉค๋ฒ ๋๊ธฐ | |
| </a> | |
| </div> | |
| ''' | |
| return gr.update(visible=False), gr.update(visible=True, value=message) | |
| demo.load(control_access, inputs=None, outputs=[main_interface, pro_message]) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=None, default_concurrency_limit=None) | |
| demo.launch() |