Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,26 +1,24 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
from PIL import Image
|
| 3 |
-
import gradio as gr
|
| 4 |
import spaces
|
|
|
|
| 5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 6 |
-
import
|
| 7 |
from threading import Thread
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
TITLE = "<h1><center>Llama-3-
|
| 15 |
|
| 16 |
-
DESCRIPTION =
|
| 17 |
-
<h3>MODEL: <a href="https://hf.co/
|
| 18 |
<center>
|
| 19 |
-
<p>
|
| 20 |
-
<p>Llama-3-youko-8B is the large language model built by rinna.
|
| 21 |
-
<br>
|
| 22 |
-
Feel free to test without log.
|
| 23 |
-
</p>
|
| 24 |
</center>
|
| 25 |
"""
|
| 26 |
|
|
@@ -42,24 +40,15 @@ h3 {
|
|
| 42 |
}
|
| 43 |
"""
|
| 44 |
|
| 45 |
-
|
| 46 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 47 |
-
MODEL_ID,
|
| 48 |
-
torch_dtype=torch.float16,
|
| 49 |
-
device_map="auto",
|
| 50 |
-
)
|
| 51 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 52 |
-
|
| 53 |
-
@spaces.GPU
|
| 54 |
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float):
|
| 55 |
-
print(f'
|
| 56 |
-
print(f'
|
|
|
|
| 57 |
conversation = []
|
| 58 |
for prompt, answer in history:
|
| 59 |
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
|
| 60 |
conversation.append({"role": "user", "content": message})
|
| 61 |
-
|
| 62 |
-
#print(f"Conversation is -\n{conversation}")
|
| 63 |
|
| 64 |
input_ids = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
| 65 |
inputs = tokenizer(input_ids, return_tensors="pt").to(0)
|
|
@@ -75,7 +64,7 @@ def stream_chat(message: str, history: list, temperature: float, max_new_tokens:
|
|
| 75 |
max_new_tokens=max_new_tokens,
|
| 76 |
do_sample=True,
|
| 77 |
temperature=temperature,
|
| 78 |
-
eos_token_id
|
| 79 |
)
|
| 80 |
|
| 81 |
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
|
@@ -86,8 +75,6 @@ def stream_chat(message: str, history: list, temperature: float, max_new_tokens:
|
|
| 86 |
buffer += new_text
|
| 87 |
yield buffer
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
chatbot = gr.Chatbot(height=500)
|
| 92 |
|
| 93 |
with gr.Blocks(css=CSS) as demo:
|
|
@@ -145,15 +132,14 @@ with gr.Blocks(css=CSS) as demo:
|
|
| 145 |
),
|
| 146 |
],
|
| 147 |
examples=[
|
| 148 |
-
["
|
| 149 |
-
["
|
| 150 |
-
["
|
| 151 |
-
["
|
| 152 |
],
|
| 153 |
cache_examples=False,
|
| 154 |
)
|
| 155 |
|
| 156 |
-
|
| 157 |
-
|
| 158 |
if __name__ == "__main__":
|
| 159 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import spaces
|
| 2 |
+
import torch
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 4 |
+
import gradio as gr
|
| 5 |
from threading import Thread
|
| 6 |
|
| 7 |
+
model_id = "hugging-quants/Meta-Llama-3.1-70B-Instruct-AWQ-INT4"
|
| 8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 9 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 10 |
+
model_id,
|
| 11 |
+
torch_dtype=torch.float16,
|
| 12 |
+
low_cpu_mem_usage=True,
|
| 13 |
+
device_map="auto",
|
| 14 |
+
)
|
| 15 |
|
| 16 |
+
TITLE = "<h1><center>Meta-Llama-3.1-70B-Instruct-AWQ-INT4 Chat webui</center></h1>"
|
| 17 |
|
| 18 |
+
DESCRIPTION = """
|
| 19 |
+
<h3>MODEL: <a href="https://hf.co/hugging-quants/Meta-Llama-3.1-70B-Instruct-AWQ-INT4">Meta-Llama-3.1-70B-Instruct-AWQ-INT4</a></h3>
|
| 20 |
<center>
|
| 21 |
+
<p>This model is designed for conversational interactions.</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
</center>
|
| 23 |
"""
|
| 24 |
|
|
|
|
| 40 |
}
|
| 41 |
"""
|
| 42 |
|
| 43 |
+
@gr.GPU
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float):
|
| 45 |
+
print(f'Message: {message}')
|
| 46 |
+
print(f'History: {history}')
|
| 47 |
+
|
| 48 |
conversation = []
|
| 49 |
for prompt, answer in history:
|
| 50 |
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
|
| 51 |
conversation.append({"role": "user", "content": message})
|
|
|
|
|
|
|
| 52 |
|
| 53 |
input_ids = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
| 54 |
inputs = tokenizer(input_ids, return_tensors="pt").to(0)
|
|
|
|
| 64 |
max_new_tokens=max_new_tokens,
|
| 65 |
do_sample=True,
|
| 66 |
temperature=temperature,
|
| 67 |
+
eos_token_id=[128001, 128009],
|
| 68 |
)
|
| 69 |
|
| 70 |
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
|
|
|
| 75 |
buffer += new_text
|
| 76 |
yield buffer
|
| 77 |
|
|
|
|
|
|
|
| 78 |
chatbot = gr.Chatbot(height=500)
|
| 79 |
|
| 80 |
with gr.Blocks(css=CSS) as demo:
|
|
|
|
| 132 |
),
|
| 133 |
],
|
| 134 |
examples=[
|
| 135 |
+
["Explain Deep Learning as a pirate."],
|
| 136 |
+
["Give me five ideas for a child's summer science project."],
|
| 137 |
+
["Provide advice for writing a script for a puzzle game."],
|
| 138 |
+
["Create a tutorial for building a breakout game using markdown."],
|
| 139 |
],
|
| 140 |
cache_examples=False,
|
| 141 |
)
|
| 142 |
|
|
|
|
|
|
|
| 143 |
if __name__ == "__main__":
|
| 144 |
demo.launch()
|
| 145 |
+
|