Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
6b26b26
1
Parent(s):
c4fe1db
proper threaded generation interrupt
Browse files- utils/models.py +118 -35
utils/models.py
CHANGED
|
@@ -2,6 +2,9 @@ import torch
|
|
| 2 |
from transformers import AutoTokenizer, AutoModelForCausalLM, StoppingCriteria, StoppingCriteriaList
|
| 3 |
from .prompts import format_rag_prompt
|
| 4 |
from .shared import generation_interrupt
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
models = {
|
| 7 |
"Qwen2.5-1.5b-Instruct": "qwen/qwen2.5-1.5b-instruct",
|
|
@@ -42,84 +45,164 @@ def generate_summaries(example, model_a_name, model_b_name):
|
|
| 42 |
if generation_interrupt.is_set():
|
| 43 |
return "", ""
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
return summary_a, ""
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
return summary_a, summary_b
|
| 52 |
|
| 53 |
-
|
|
|
|
|
|
|
| 54 |
"""
|
| 55 |
-
Run inference using the specified model.
|
|
|
|
| 56 |
"""
|
|
|
|
| 57 |
if generation_interrupt.is_set():
|
| 58 |
-
|
| 59 |
-
|
|
|
|
| 60 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
try:
|
| 63 |
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left", token=True)
|
| 64 |
accepts_sys = (
|
| 65 |
"System role not supported" not in tokenizer.chat_template
|
|
|
|
| 66 |
)
|
| 67 |
-
|
| 68 |
if tokenizer.pad_token is None:
|
| 69 |
tokenizer.pad_token = tokenizer.eos_token
|
| 70 |
-
|
|
|
|
| 71 |
if generation_interrupt.is_set():
|
| 72 |
-
|
| 73 |
-
|
|
|
|
| 74 |
model = AutoModelForCausalLM.from_pretrained(
|
| 75 |
model_name, torch_dtype=torch.bfloat16, attn_implementation="eager", token=True
|
| 76 |
).to(device)
|
|
|
|
| 77 |
|
| 78 |
text_input = format_rag_prompt(question, context, accepts_sys)
|
| 79 |
|
|
|
|
| 80 |
if generation_interrupt.is_set():
|
| 81 |
-
|
| 82 |
-
|
|
|
|
| 83 |
actual_input = tokenizer.apply_chat_template(
|
| 84 |
text_input,
|
| 85 |
return_tensors="pt",
|
| 86 |
tokenize=True,
|
| 87 |
-
max_length
|
|
|
|
|
|
|
|
|
|
| 88 |
add_generation_prompt=True,
|
| 89 |
).to(device)
|
| 90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
input_length = actual_input.shape[1]
|
| 92 |
attention_mask = torch.ones_like(actual_input).to(device)
|
| 93 |
-
|
|
|
|
| 94 |
if generation_interrupt.is_set():
|
| 95 |
-
|
| 96 |
-
|
|
|
|
| 97 |
stopping_criteria = StoppingCriteriaList([InterruptCriteria(generation_interrupt)])
|
| 98 |
-
|
| 99 |
with torch.inference_mode():
|
| 100 |
outputs = model.generate(
|
| 101 |
actual_input,
|
| 102 |
attention_mask=attention_mask,
|
| 103 |
-
max_new_tokens=512,
|
| 104 |
pad_token_id=tokenizer.pad_token_id,
|
| 105 |
-
stopping_criteria=stopping_criteria
|
|
|
|
|
|
|
|
|
|
| 106 |
)
|
| 107 |
|
|
|
|
| 108 |
if generation_interrupt.is_set():
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
|
|
|
| 115 |
except Exception as e:
|
| 116 |
-
print(f"Error in inference: {e}")
|
| 117 |
-
|
| 118 |
-
|
|
|
|
| 119 |
finally:
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
|
|
|
| 124 |
if torch.cuda.is_available():
|
| 125 |
torch.cuda.empty_cache()
|
|
|
|
| 2 |
from transformers import AutoTokenizer, AutoModelForCausalLM, StoppingCriteria, StoppingCriteriaList
|
| 3 |
from .prompts import format_rag_prompt
|
| 4 |
from .shared import generation_interrupt
|
| 5 |
+
import threading
|
| 6 |
+
import queue
|
| 7 |
+
import time # Added for sleep
|
| 8 |
|
| 9 |
models = {
|
| 10 |
"Qwen2.5-1.5b-Instruct": "qwen/qwen2.5-1.5b-instruct",
|
|
|
|
| 45 |
if generation_interrupt.is_set():
|
| 46 |
return "", ""
|
| 47 |
|
| 48 |
+
# Use a queue to get results from threads
|
| 49 |
+
result_queue_a = queue.Queue()
|
| 50 |
+
thread_a = threading.Thread(target=run_inference, args=(models[model_a_name], context_text, question, result_queue_a))
|
| 51 |
+
thread_a.start()
|
| 52 |
+
|
| 53 |
+
summary_a = ""
|
| 54 |
+
while thread_a.is_alive():
|
| 55 |
+
if generation_interrupt.is_set():
|
| 56 |
+
print(f"Interrupting model A ({model_a_name})...")
|
| 57 |
+
# The InterruptCriteria within the thread will handle stopping generate
|
| 58 |
+
# We return early from the main control flow.
|
| 59 |
+
thread_a.join(timeout=1.0) # Give thread a moment to potentially stop
|
| 60 |
+
return "", ""
|
| 61 |
+
try:
|
| 62 |
+
summary_a = result_queue_a.get(timeout=0.1) # Check queue periodically
|
| 63 |
+
break # Got result
|
| 64 |
+
except queue.Empty:
|
| 65 |
+
continue # Still running, check interrupt again
|
| 66 |
+
|
| 67 |
+
# If thread finished but we didn't get a result (e.g., interrupted just before putting in queue)
|
| 68 |
+
if not summary_a and not result_queue_a.empty():
|
| 69 |
+
summary_a = result_queue_a.get_nowait()
|
| 70 |
+
elif not summary_a and generation_interrupt.is_set(): # Check interrupt again if thread finished quickly
|
| 71 |
+
return "", ""
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
if generation_interrupt.is_set(): # Check between models
|
| 75 |
return summary_a, ""
|
| 76 |
+
|
| 77 |
+
# --- Model B ---
|
| 78 |
+
result_queue_b = queue.Queue()
|
| 79 |
+
thread_b = threading.Thread(target=run_inference, args=(models[model_b_name], context_text, question, result_queue_b))
|
| 80 |
+
thread_b.start()
|
| 81 |
+
|
| 82 |
+
summary_b = ""
|
| 83 |
+
while thread_b.is_alive():
|
| 84 |
+
if generation_interrupt.is_set():
|
| 85 |
+
print(f"Interrupting model B ({model_b_name})...")
|
| 86 |
+
thread_b.join(timeout=1.0)
|
| 87 |
+
return summary_a, "" # Return summary_a obtained so far
|
| 88 |
+
try:
|
| 89 |
+
summary_b = result_queue_b.get(timeout=0.1)
|
| 90 |
+
break
|
| 91 |
+
except queue.Empty:
|
| 92 |
+
continue
|
| 93 |
+
|
| 94 |
+
if not summary_b and not result_queue_b.empty():
|
| 95 |
+
summary_b = result_queue_b.get_nowait()
|
| 96 |
+
elif not summary_b and generation_interrupt.is_set():
|
| 97 |
+
return summary_a, ""
|
| 98 |
+
|
| 99 |
+
|
| 100 |
return summary_a, summary_b
|
| 101 |
|
| 102 |
+
|
| 103 |
+
# Modified run_inference to run in a thread and use a queue for results
|
| 104 |
+
def run_inference(model_name, context, question, result_queue):
|
| 105 |
"""
|
| 106 |
+
Run inference using the specified model. Designed to be run in a thread.
|
| 107 |
+
Puts the result or an error string into the result_queue.
|
| 108 |
"""
|
| 109 |
+
# Check interrupt at the very beginning of the thread
|
| 110 |
if generation_interrupt.is_set():
|
| 111 |
+
result_queue.put("")
|
| 112 |
+
return
|
| 113 |
+
|
| 114 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 115 |
+
model = None
|
| 116 |
+
tokenizer = None
|
| 117 |
+
result = ""
|
| 118 |
|
| 119 |
try:
|
| 120 |
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left", token=True)
|
| 121 |
accepts_sys = (
|
| 122 |
"System role not supported" not in tokenizer.chat_template
|
| 123 |
+
if tokenizer.chat_template else False # Handle missing chat_template
|
| 124 |
)
|
| 125 |
+
|
| 126 |
if tokenizer.pad_token is None:
|
| 127 |
tokenizer.pad_token = tokenizer.eos_token
|
| 128 |
+
|
| 129 |
+
# Check interrupt before loading the model
|
| 130 |
if generation_interrupt.is_set():
|
| 131 |
+
result_queue.put("")
|
| 132 |
+
return
|
| 133 |
+
|
| 134 |
model = AutoModelForCausalLM.from_pretrained(
|
| 135 |
model_name, torch_dtype=torch.bfloat16, attn_implementation="eager", token=True
|
| 136 |
).to(device)
|
| 137 |
+
model.eval() # Set model to evaluation mode
|
| 138 |
|
| 139 |
text_input = format_rag_prompt(question, context, accepts_sys)
|
| 140 |
|
| 141 |
+
# Check interrupt before tokenization/template application
|
| 142 |
if generation_interrupt.is_set():
|
| 143 |
+
result_queue.put("")
|
| 144 |
+
return
|
| 145 |
+
|
| 146 |
actual_input = tokenizer.apply_chat_template(
|
| 147 |
text_input,
|
| 148 |
return_tensors="pt",
|
| 149 |
tokenize=True,
|
| 150 |
+
# Consider reducing max_length if context/question is very long
|
| 151 |
+
# max_length=tokenizer.model_max_length, # Use model's max length
|
| 152 |
+
# truncation=True, # Ensure truncation if needed
|
| 153 |
+
max_length=2048, # Keep original max_length for now
|
| 154 |
add_generation_prompt=True,
|
| 155 |
).to(device)
|
| 156 |
|
| 157 |
+
# Ensure input does not exceed model max length after adding generation prompt
|
| 158 |
+
# This check might be redundant if tokenizer handles it, but good for safety
|
| 159 |
+
# if actual_input.shape[1] > tokenizer.model_max_length:
|
| 160 |
+
# # Handle too long input - maybe truncate manually or raise error
|
| 161 |
+
# print(f"Warning: Input length {actual_input.shape[1]} exceeds model max length {tokenizer.model_max_length}")
|
| 162 |
+
# # Simple truncation (might lose important info):
|
| 163 |
+
# # actual_input = actual_input[:, -tokenizer.model_max_length:]
|
| 164 |
+
|
| 165 |
input_length = actual_input.shape[1]
|
| 166 |
attention_mask = torch.ones_like(actual_input).to(device)
|
| 167 |
+
|
| 168 |
+
# Check interrupt before generation
|
| 169 |
if generation_interrupt.is_set():
|
| 170 |
+
result_queue.put("")
|
| 171 |
+
return
|
| 172 |
+
|
| 173 |
stopping_criteria = StoppingCriteriaList([InterruptCriteria(generation_interrupt)])
|
| 174 |
+
|
| 175 |
with torch.inference_mode():
|
| 176 |
outputs = model.generate(
|
| 177 |
actual_input,
|
| 178 |
attention_mask=attention_mask,
|
| 179 |
+
max_new_tokens=512,
|
| 180 |
pad_token_id=tokenizer.pad_token_id,
|
| 181 |
+
stopping_criteria=stopping_criteria,
|
| 182 |
+
do_sample=True, # Consider adding sampling parameters if needed
|
| 183 |
+
temperature=0.6,
|
| 184 |
+
top_p=0.9,
|
| 185 |
)
|
| 186 |
|
| 187 |
+
# Check interrupt immediately after generation finishes or stops
|
| 188 |
if generation_interrupt.is_set():
|
| 189 |
+
result = "" # Discard potentially partial result if interrupted
|
| 190 |
+
else:
|
| 191 |
+
# Decode the generated tokens, excluding the input tokens
|
| 192 |
+
result = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True)
|
| 193 |
+
|
| 194 |
+
result_queue.put(result)
|
| 195 |
+
|
| 196 |
except Exception as e:
|
| 197 |
+
print(f"Error in inference thread for {model_name}: {e}")
|
| 198 |
+
# Put error message in queue for the main thread to handle/display
|
| 199 |
+
result_queue.put(f"Error generating response: {str(e)[:100]}...")
|
| 200 |
+
|
| 201 |
finally:
|
| 202 |
+
# Clean up resources within the thread
|
| 203 |
+
del model
|
| 204 |
+
del tokenizer
|
| 205 |
+
del actual_input
|
| 206 |
+
del outputs
|
| 207 |
if torch.cuda.is_available():
|
| 208 |
torch.cuda.empty_cache()
|