Spaces:
Sleeping
Sleeping
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from fastapi import FastAPI, Request | |
| from pydantic import BaseModel | |
| import uvicorn | |
| app = FastAPI() | |
| model_name = "meta-llama/Meta-Llama-3.1-405B" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained(model_name) | |
| class Query(BaseModel): | |
| inputs: str | |
| async def generate(query: Query): | |
| inputs = tokenizer(query.inputs, return_tensors="pt") | |
| outputs = model.generate(inputs["input_ids"]) | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return {"generated_text": response} | |
| if __name__ == "__main__": | |
| uvicorn.run(app, host="0.0.0.0", port=8000) | |