Spaces:
Sleeping
Sleeping
Update reccomendation.py
Browse files- reccomendation.py +0 -1085
reccomendation.py
CHANGED
|
@@ -1,1088 +1,3 @@
|
|
| 1 |
-
# import pandas as pd
|
| 2 |
-
# import requests
|
| 3 |
-
# from pydantic import BaseModel, Field
|
| 4 |
-
# from typing import List, Tuple, Optional
|
| 5 |
-
# from langchain_openai import ChatOpenAI
|
| 6 |
-
# from langchain_core.prompts import ChatPromptTemplate
|
| 7 |
-
# import os
|
| 8 |
-
# from fastapi import FastAPI, UploadFile, File, Form, HTTPException, Depends, Header, Request
|
| 9 |
-
# from fastapi.responses import JSONResponse
|
| 10 |
-
# from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
| 11 |
-
# from fastapi.middleware.cors import CORSMiddleware
|
| 12 |
-
# import json
|
| 13 |
-
# import tempfile
|
| 14 |
-
# import shutil
|
| 15 |
-
# import PyPDF2
|
| 16 |
-
# from dotenv import load_dotenv
|
| 17 |
-
# import pdfplumber
|
| 18 |
-
# import re
|
| 19 |
-
# from db import *
|
| 20 |
-
# import time
|
| 21 |
-
# import asyncio
|
| 22 |
-
# from contextlib import asynccontextmanager
|
| 23 |
-
# import logging
|
| 24 |
-
# from sqlalchemy.pool import NullPool
|
| 25 |
-
# from cloud_config import *
|
| 26 |
-
# import uuid
|
| 27 |
-
|
| 28 |
-
# # Load environment variables
|
| 29 |
-
# load_dotenv()
|
| 30 |
-
|
| 31 |
-
# # Configure logging for Cloud Run
|
| 32 |
-
# logging.basicConfig(
|
| 33 |
-
# level=getattr(logging, LOG_LEVEL),
|
| 34 |
-
# format=LOG_FORMAT
|
| 35 |
-
# )
|
| 36 |
-
# logger = logging.getLogger(__name__)
|
| 37 |
-
|
| 38 |
-
# # Global variable to store access token
|
| 39 |
-
# access_token = None
|
| 40 |
-
|
| 41 |
-
# # Startup/shutdown events
|
| 42 |
-
# @asynccontextmanager
|
| 43 |
-
# async def lifespan(app: FastAPI):
|
| 44 |
-
# # Startup
|
| 45 |
-
# logger.info("Starting up Job Recommendation API...")
|
| 46 |
-
# # You can initialize connection pools here if needed
|
| 47 |
-
# yield
|
| 48 |
-
# # Shutdown
|
| 49 |
-
# logger.info("Shutting down Job Recommendation API...")
|
| 50 |
-
# # Close any open connections here
|
| 51 |
-
|
| 52 |
-
# # Initialize FastAPI app with lifespan
|
| 53 |
-
# app = FastAPI(
|
| 54 |
-
# title="Job Recommendation API",
|
| 55 |
-
# description="API for processing resumes and recommending jobs",
|
| 56 |
-
# lifespan=lifespan
|
| 57 |
-
# )
|
| 58 |
-
|
| 59 |
-
# # Add CORS middleware for cloud deployment
|
| 60 |
-
# app.add_middleware(
|
| 61 |
-
# CORSMiddleware,
|
| 62 |
-
# allow_origins=["*"], # Configure based on your needs
|
| 63 |
-
# allow_credentials=True,
|
| 64 |
-
# allow_methods=["*"],
|
| 65 |
-
# allow_headers=["*"],
|
| 66 |
-
# )
|
| 67 |
-
|
| 68 |
-
# # Add request ID middleware for better tracing
|
| 69 |
-
# @app.middleware("http")
|
| 70 |
-
# async def add_request_id(request: Request, call_next):
|
| 71 |
-
# request_id = f"{time.time()}-{request.client.host}"
|
| 72 |
-
# request.state.request_id = request_id
|
| 73 |
-
|
| 74 |
-
# # Log the request
|
| 75 |
-
# logger.info(f"Request ID: {request_id} - {request.method} {request.url.path}")
|
| 76 |
-
|
| 77 |
-
# try:
|
| 78 |
-
# response = await call_next(request)
|
| 79 |
-
# response.headers["X-Request-ID"] = request_id
|
| 80 |
-
# return response
|
| 81 |
-
# except Exception as e:
|
| 82 |
-
# logger.error(f"Request ID: {request_id} - Error: {str(e)}")
|
| 83 |
-
# raise
|
| 84 |
-
|
| 85 |
-
# # Security configuration
|
| 86 |
-
# API_KEY = os.getenv("API_KEY")
|
| 87 |
-
# security = HTTPBearer()
|
| 88 |
-
|
| 89 |
-
# def verify_api_key(credentials: HTTPAuthorizationCredentials = Depends(security)):
|
| 90 |
-
# """
|
| 91 |
-
# Verify the API key from the Authorization header
|
| 92 |
-
# """
|
| 93 |
-
# if not API_KEY:
|
| 94 |
-
# logger.error("API key not configured")
|
| 95 |
-
# raise HTTPException(
|
| 96 |
-
# status_code=500,
|
| 97 |
-
# detail="API key not configured",
|
| 98 |
-
# )
|
| 99 |
-
|
| 100 |
-
# if credentials.credentials != API_KEY:
|
| 101 |
-
# logger.warning("Invalid API key attempt")
|
| 102 |
-
# raise HTTPException(
|
| 103 |
-
# status_code=401,
|
| 104 |
-
# detail="Invalid API key",
|
| 105 |
-
# headers={"WWW-Authenticate": "Bearer"},
|
| 106 |
-
# )
|
| 107 |
-
# return credentials.credentials
|
| 108 |
-
|
| 109 |
-
# # Initialize OpenAI client with error handling
|
| 110 |
-
# try:
|
| 111 |
-
# llm = ChatOpenAI(
|
| 112 |
-
# model="gpt-4o-mini",
|
| 113 |
-
# temperature=0,
|
| 114 |
-
# api_key=os.getenv("OPENAI_API_KEY")
|
| 115 |
-
# )
|
| 116 |
-
# logger.info("OpenAI client initialized successfully")
|
| 117 |
-
# except Exception as e:
|
| 118 |
-
# logger.error(f"Failed to initialize OpenAI client: {e}")
|
| 119 |
-
# raise
|
| 120 |
-
|
| 121 |
-
# # Initialize database engine with connection pooling suitable for Cloud Run
|
| 122 |
-
# def get_engine():
|
| 123 |
-
# """
|
| 124 |
-
# Get database engine with NullPool for Cloud Run
|
| 125 |
-
# """
|
| 126 |
-
# try:
|
| 127 |
-
# conn_string = f"postgresql://{DB_PARAMS['user']}:{DB_PARAMS['password']}@{DB_PARAMS['host']}:{DB_PARAMS['port']}/{DB_PARAMS['dbname']}"
|
| 128 |
-
# # Use NullPool for Cloud Run to avoid connection issues
|
| 129 |
-
# engine = create_engine(conn_string, poolclass=NullPool, pool_pre_ping=True)
|
| 130 |
-
# logger.info("Database engine created successfully")
|
| 131 |
-
# return engine
|
| 132 |
-
# except Exception as e:
|
| 133 |
-
# logger.error(f"Failed to create database engine: {e}")
|
| 134 |
-
# raise
|
| 135 |
-
|
| 136 |
-
# # Initialize database engine
|
| 137 |
-
# engine = get_engine()
|
| 138 |
-
|
| 139 |
-
# def get_access_token():
|
| 140 |
-
# """
|
| 141 |
-
# Get access token for the external API with better error handling
|
| 142 |
-
# """
|
| 143 |
-
# global access_token
|
| 144 |
-
|
| 145 |
-
# # If we already have a token, return it
|
| 146 |
-
# if access_token:
|
| 147 |
-
# return access_token
|
| 148 |
-
|
| 149 |
-
# try:
|
| 150 |
-
# login_url = "https://fitscore-agent-535960463668.us-central1.run.app/auth/login"
|
| 151 |
-
# login_data = {
|
| 152 |
-
# "email": "johnrecruiter@example.com",
|
| 153 |
-
# "password": "Password@123"
|
| 154 |
-
# }
|
| 155 |
-
# login_headers = {
|
| 156 |
-
# 'accept': 'application/json',
|
| 157 |
-
# 'Content-Type': 'application/json'
|
| 158 |
-
# }
|
| 159 |
-
|
| 160 |
-
# # Add timeout to prevent hanging
|
| 161 |
-
# login_response = requests.post(login_url, headers=login_headers, json=login_data, timeout=LOGIN_TIMEOUT)
|
| 162 |
-
|
| 163 |
-
# if login_response.status_code == 200:
|
| 164 |
-
# login_result = login_response.json()
|
| 165 |
-
# access_token = login_result.get('data', {}).get('tokens', {}).get('accessToken')
|
| 166 |
-
# if access_token:
|
| 167 |
-
# logger.info("Successfully obtained access token")
|
| 168 |
-
# return access_token
|
| 169 |
-
# else:
|
| 170 |
-
# logger.error("Login successful but no access token found in response")
|
| 171 |
-
# return None
|
| 172 |
-
# else:
|
| 173 |
-
# logger.error(f"Login failed with status {login_response.status_code}: {login_response.text}")
|
| 174 |
-
# return None
|
| 175 |
-
# except requests.exceptions.Timeout:
|
| 176 |
-
# logger.error("Login request timed out")
|
| 177 |
-
# return None
|
| 178 |
-
# except requests.exceptions.RequestException as e:
|
| 179 |
-
# logger.error(f"Network error during login: {e}")
|
| 180 |
-
# return None
|
| 181 |
-
# except Exception as e:
|
| 182 |
-
# logger.error(f"Unexpected error getting access token: {e}")
|
| 183 |
-
# return None
|
| 184 |
-
|
| 185 |
-
# def generate_smart_hiring_collateral(job_description_text: str) -> tuple[str, str]:
|
| 186 |
-
# """
|
| 187 |
-
# Generate collateral using the smart-hiring/generate endpoint
|
| 188 |
-
# Returns a tuple of (collateral, job_id)
|
| 189 |
-
# """
|
| 190 |
-
# try:
|
| 191 |
-
# url = "https://fitscore-agent-535960463668.us-central1.run.app/smart-hiring/generate"
|
| 192 |
-
|
| 193 |
-
# # Generate a unique job ID using UUID
|
| 194 |
-
# job_id = str(uuid.uuid4())
|
| 195 |
-
|
| 196 |
-
# # Prepare headers with authentication
|
| 197 |
-
# headers = {
|
| 198 |
-
# 'accept': 'application/json',
|
| 199 |
-
# 'Authorization': f'Bearer {get_access_token()}'
|
| 200 |
-
# }
|
| 201 |
-
|
| 202 |
-
# # Prepare payload
|
| 203 |
-
# payload = {
|
| 204 |
-
# 'job_id': job_id,
|
| 205 |
-
# 'job_description_text': job_description_text
|
| 206 |
-
# }
|
| 207 |
-
|
| 208 |
-
# # Make the API request
|
| 209 |
-
# response = requests.post(url, headers=headers, data=payload, timeout=EXTERNAL_API_TIMEOUT)
|
| 210 |
-
|
| 211 |
-
# if response.status_code == 200:
|
| 212 |
-
# logger.info("Smart hiring collateral generated successfully")
|
| 213 |
-
# # Parse the response to extract smart_hiring_criteria
|
| 214 |
-
# try:
|
| 215 |
-
# response_data = response.json()
|
| 216 |
-
# if response_data.get('success') and 'data' in response_data:
|
| 217 |
-
# smart_hiring_criteria = response_data['data'].get('smart_hiring_criteria', '')
|
| 218 |
-
# if smart_hiring_criteria:
|
| 219 |
-
# logger.info("Successfully extracted smart hiring criteria")
|
| 220 |
-
# return smart_hiring_criteria, job_id
|
| 221 |
-
# else:
|
| 222 |
-
# logger.warning("No smart_hiring_criteria found in response")
|
| 223 |
-
# return "", job_id
|
| 224 |
-
# else:
|
| 225 |
-
# logger.warning("Invalid response format from smart hiring API")
|
| 226 |
-
# return "", job_id
|
| 227 |
-
# except json.JSONDecodeError as e:
|
| 228 |
-
# logger.error(f"Failed to parse smart hiring response as JSON: {e}")
|
| 229 |
-
# return "", job_id
|
| 230 |
-
# elif response.status_code == 401:
|
| 231 |
-
# logger.warning("Authentication failed for smart hiring, getting fresh token...")
|
| 232 |
-
# global access_token
|
| 233 |
-
# access_token = None # Reset the token
|
| 234 |
-
# new_token = get_access_token()
|
| 235 |
-
# if new_token:
|
| 236 |
-
# headers['Authorization'] = f'Bearer {new_token}'
|
| 237 |
-
# response = requests.post(url, headers=headers, data=payload, timeout=EXTERNAL_API_TIMEOUT)
|
| 238 |
-
# if response.status_code == 200:
|
| 239 |
-
# logger.info("Smart hiring collateral generated successfully with fresh token")
|
| 240 |
-
# # Parse the response to extract smart_hiring_criteria
|
| 241 |
-
# try:
|
| 242 |
-
# response_data = response.json()
|
| 243 |
-
# if response_data.get('success') and 'data' in response_data:
|
| 244 |
-
# smart_hiring_criteria = response_data['data'].get('smart_hiring_criteria', '')
|
| 245 |
-
# if smart_hiring_criteria:
|
| 246 |
-
# logger.info("Successfully extracted smart hiring criteria with fresh token")
|
| 247 |
-
# return smart_hiring_criteria, job_id
|
| 248 |
-
# else:
|
| 249 |
-
# logger.warning("No smart_hiring_criteria found in response with fresh token")
|
| 250 |
-
# return "", job_id
|
| 251 |
-
# else:
|
| 252 |
-
# logger.warning("Invalid response format from smart hiring API with fresh token")
|
| 253 |
-
# return "", job_id
|
| 254 |
-
# except json.JSONDecodeError as e:
|
| 255 |
-
# logger.error(f"Failed to parse smart hiring response as JSON with fresh token: {e}")
|
| 256 |
-
# return "", job_id
|
| 257 |
-
# else:
|
| 258 |
-
# logger.error(f"Smart hiring API call failed with status {response.status_code}")
|
| 259 |
-
# return "", job_id
|
| 260 |
-
# else:
|
| 261 |
-
# logger.error("Could not obtain fresh token for smart hiring")
|
| 262 |
-
# return "", job_id
|
| 263 |
-
# else:
|
| 264 |
-
# logger.error(f"Smart hiring API call failed with status {response.status_code}: {response.text}")
|
| 265 |
-
# return "", job_id
|
| 266 |
-
|
| 267 |
-
# except requests.exceptions.Timeout:
|
| 268 |
-
# logger.error(f"Smart hiring API request timed out after {EXTERNAL_API_TIMEOUT} seconds")
|
| 269 |
-
# return "", ""
|
| 270 |
-
# except Exception as e:
|
| 271 |
-
# logger.error(f"Exception occurred in smart hiring generation: {str(e)}")
|
| 272 |
-
# return "", ""
|
| 273 |
-
|
| 274 |
-
# class structure(BaseModel):
|
| 275 |
-
# name: str = Field(description="Name of the candidate")
|
| 276 |
-
# location: str = Field(description="The location of the candidate. Extract city and state if possible.")
|
| 277 |
-
# skills: List[str] = Field(description="List of individual skills of the candidate")
|
| 278 |
-
# ideal_jobs: str = Field(description="List of ideal jobs for the candidate based on past experience.")
|
| 279 |
-
# email: str = Field(description="The email of the candidate")
|
| 280 |
-
# yoe: str = Field(description="Years of experience of the candidate.")
|
| 281 |
-
# experience: str = Field(description="A brief summary of the candidate's past experience.")
|
| 282 |
-
# industry: str = Field(description="The industry the candidate has experience in.(Tech,Legal,Finance/Accounting,Healthcare,Industrial,Logistics,Telecom,Admin,Other)")
|
| 283 |
-
|
| 284 |
-
# class JobAnalysis(BaseModel):
|
| 285 |
-
# job_title: str
|
| 286 |
-
# company_name: str
|
| 287 |
-
# analysis: dict
|
| 288 |
-
|
| 289 |
-
# def extract_text_from_pdf(pdf_file_path: str) -> str:
|
| 290 |
-
# """
|
| 291 |
-
# Extract text from PDF file using multiple methods for better accuracy
|
| 292 |
-
# """
|
| 293 |
-
# text = ""
|
| 294 |
-
|
| 295 |
-
# # Method 1: Try pdfplumber (better for complex layouts)
|
| 296 |
-
# try:
|
| 297 |
-
# with pdfplumber.open(pdf_file_path) as pdf:
|
| 298 |
-
# for page in pdf.pages:
|
| 299 |
-
# page_text = page.extract_text()
|
| 300 |
-
# if page_text:
|
| 301 |
-
# text += page_text + "\n"
|
| 302 |
-
# if text.strip():
|
| 303 |
-
# logger.info(f"Successfully extracted text using pdfplumber: {len(text)} characters")
|
| 304 |
-
# return text.strip()
|
| 305 |
-
# except Exception as e:
|
| 306 |
-
# logger.warning(f"pdfplumber failed: {e}")
|
| 307 |
-
|
| 308 |
-
# # Method 2: Try PyPDF2 (fallback)
|
| 309 |
-
# try:
|
| 310 |
-
# with open(pdf_file_path, 'rb') as file:
|
| 311 |
-
# pdf_reader = PyPDF2.PdfReader(file)
|
| 312 |
-
# for page in pdf_reader.pages:
|
| 313 |
-
# page_text = page.extract_text()
|
| 314 |
-
# if page_text:
|
| 315 |
-
# text += page_text + "\n"
|
| 316 |
-
# if text.strip():
|
| 317 |
-
# logger.info(f"Successfully extracted text using PyPDF2: {len(text)} characters")
|
| 318 |
-
# return text.strip()
|
| 319 |
-
# except Exception as e:
|
| 320 |
-
# logger.error(f"PyPDF2 failed: {e}")
|
| 321 |
-
|
| 322 |
-
# # If both methods fail, return empty string
|
| 323 |
-
# logger.error("Failed to extract text from PDF")
|
| 324 |
-
# return ""
|
| 325 |
-
|
| 326 |
-
# def extract_resume_info(resume_text: str) -> structure:
|
| 327 |
-
# """
|
| 328 |
-
# Extract structured information from resume using LLM
|
| 329 |
-
# """
|
| 330 |
-
# prompt = ChatPromptTemplate.from_template("""
|
| 331 |
-
# You are an expert resume parser. Extract the following information from the resume text provided and return it in a structured JSON format.
|
| 332 |
-
|
| 333 |
-
# Resume Text:
|
| 334 |
-
# {resume_text}
|
| 335 |
-
|
| 336 |
-
# Please extract and structure the information according to the following schema:
|
| 337 |
-
# - name: Full name of the candidate
|
| 338 |
-
# - location: City and state if available, otherwise general location
|
| 339 |
-
# - skills: List of technical skills, tools, technologies, programming languages, etc.
|
| 340 |
-
# - ideal_jobs: Based on their experience, what types of jobs would be ideal for this candidate
|
| 341 |
-
# - email: Email address of the candidate (if found in resume)
|
| 342 |
-
# - yoe: Years of experience (extract from work history)
|
| 343 |
-
# - experience: Brief summary of their work experience and background
|
| 344 |
-
# - industry: Categorize into one of these industries: Tech, Legal, Finance/Accounting, Healthcare, Industrial, Logistics, Telecom, Admin, Other
|
| 345 |
-
|
| 346 |
-
# Return ONLY a valid JSON object with these fields. Do not include any other text or explanations.
|
| 347 |
-
# """)
|
| 348 |
-
|
| 349 |
-
# try:
|
| 350 |
-
# str_llm = llm.with_structured_output(structure)
|
| 351 |
-
# chain = prompt | str_llm
|
| 352 |
-
# response = chain.invoke({"resume_text": resume_text})
|
| 353 |
-
|
| 354 |
-
# validated_data = {
|
| 355 |
-
# 'name': response.name,
|
| 356 |
-
# 'location': response.location,
|
| 357 |
-
# 'email': response.email,
|
| 358 |
-
# 'skills': response.skills,
|
| 359 |
-
# 'ideal_jobs': response.ideal_jobs,
|
| 360 |
-
# 'yoe': response.yoe,
|
| 361 |
-
# 'experience': response.experience,
|
| 362 |
-
# 'industry': response.industry
|
| 363 |
-
# }
|
| 364 |
-
|
| 365 |
-
# logger.info(f"Successfully extracted resume info for: {validated_data['name']}")
|
| 366 |
-
# return validated_data
|
| 367 |
-
|
| 368 |
-
# except Exception as e:
|
| 369 |
-
# logger.error(f"Failed to extract resume info: {e}")
|
| 370 |
-
# return {
|
| 371 |
-
# 'name': "Unknown",
|
| 372 |
-
# 'location': "Unknown",
|
| 373 |
-
# 'email': "",
|
| 374 |
-
# 'skills': [],
|
| 375 |
-
# 'ideal_jobs': "Software Engineer",
|
| 376 |
-
# 'yoe': "0",
|
| 377 |
-
# 'experience': "No experience listed",
|
| 378 |
-
# 'industry': "Tech"
|
| 379 |
-
# }
|
| 380 |
-
|
| 381 |
-
# def filter_jobs_by_industry(jobs_df: pd.DataFrame, target_industry: str) -> pd.DataFrame:
|
| 382 |
-
# """
|
| 383 |
-
# Filter jobs by industry
|
| 384 |
-
# """
|
| 385 |
-
# # Map the extracted industry to database industry values
|
| 386 |
-
# industry_mapping = {
|
| 387 |
-
# 'Tech': ['technology', 'VC Tech'],
|
| 388 |
-
# 'Legal': ['Legal'],
|
| 389 |
-
# 'Finance/Accounting': ['finance/Accounting'],
|
| 390 |
-
# 'Healthcare': ['healthcare'],
|
| 391 |
-
# 'Industrial': ['industrial'],
|
| 392 |
-
# 'Logistics': ['logistics'],
|
| 393 |
-
# 'Telecom': ['telecom'],
|
| 394 |
-
# 'Admin': ['admin'],
|
| 395 |
-
# 'Other': ['Other']
|
| 396 |
-
# }
|
| 397 |
-
|
| 398 |
-
# target_industries = industry_mapping.get(target_industry, ['Tech'])
|
| 399 |
-
|
| 400 |
-
# # Filter jobs by industry (using database column name 'industry')
|
| 401 |
-
# filtered_jobs = jobs_df[jobs_df['industry'].isin(target_industries)]
|
| 402 |
-
|
| 403 |
-
# logger.info(f"Filtered {len(filtered_jobs)} jobs for industry: {target_industry}")
|
| 404 |
-
# return filtered_jobs
|
| 405 |
-
|
| 406 |
-
# def filter_jobs_by_location(jobs_df: pd.DataFrame, candidate_location: str) -> pd.DataFrame:
|
| 407 |
-
# """
|
| 408 |
-
# Filter jobs by location matching the candidate's location
|
| 409 |
-
# """
|
| 410 |
-
# if not candidate_location or candidate_location.lower() in ['unknown', 'n/a', '']:
|
| 411 |
-
# logger.info(f"No location info provided, returning all {len(jobs_df)} jobs")
|
| 412 |
-
# return jobs_df # Return all jobs if no location info
|
| 413 |
-
|
| 414 |
-
# # Clean and normalize candidate location
|
| 415 |
-
# candidate_location = candidate_location.lower().strip()
|
| 416 |
-
# logger.info(f"Filtering jobs for candidate location: {candidate_location}")
|
| 417 |
-
|
| 418 |
-
# # Extract state abbreviations and full names
|
| 419 |
-
# state_mapping = {
|
| 420 |
-
# 'alabama': 'al', 'alaska': 'ak', 'arizona': 'az', 'arkansas': 'ar', 'california': 'ca',
|
| 421 |
-
# 'colorado': 'co', 'connecticut': 'ct', 'delaware': 'de', 'district of columbia': 'dc', 'florida': 'fl', 'georgia': 'ga',
|
| 422 |
-
# 'hawaii': 'hi', 'idaho': 'id', 'illinois': 'il', 'indiana': 'in', 'iowa': 'ia',
|
| 423 |
-
# 'kansas': 'ks', 'kentucky': 'ky', 'louisiana': 'la', 'maine': 'me', 'maryland': 'md',
|
| 424 |
-
# 'massachusetts': 'ma', 'michigan': 'mi', 'minnesota': 'mn', 'mississippi': 'ms', 'missouri': 'mo',
|
| 425 |
-
# 'montana': 'mt', 'nebraska': 'ne', 'nevada': 'nv', 'new hampshire': 'nh', 'new jersey': 'nj',
|
| 426 |
-
# 'new mexico': 'nm', 'new york': 'ny', 'north carolina': 'nc', 'north dakota': 'nd', 'ohio': 'oh',
|
| 427 |
-
# 'oklahoma': 'ok', 'oregon': 'or', 'pennsylvania': 'pa', 'rhode island': 'ri', 'south carolina': 'sc',
|
| 428 |
-
# 'south dakota': 'sd', 'tennessee': 'tn', 'texas': 'tx', 'utah': 'ut', 'vermont': 'vt',
|
| 429 |
-
# 'virginia': 'va', 'washington': 'wa', 'west virginia': 'wv', 'wisconsin': 'wi', 'wyoming': 'wy'
|
| 430 |
-
# }
|
| 431 |
-
|
| 432 |
-
# # Create location patterns to match
|
| 433 |
-
# location_patterns = []
|
| 434 |
-
|
| 435 |
-
# # Add the original location
|
| 436 |
-
# location_patterns.append(candidate_location)
|
| 437 |
-
|
| 438 |
-
# # Add state variations
|
| 439 |
-
# for state_name, state_abbr in state_mapping.items():
|
| 440 |
-
# if state_name in candidate_location or state_abbr in candidate_location:
|
| 441 |
-
# location_patterns.extend([state_name, state_abbr])
|
| 442 |
-
|
| 443 |
-
# # Add common city variations (extract city name)
|
| 444 |
-
# city_match = re.search(r'^([^,]+)', candidate_location)
|
| 445 |
-
# if city_match:
|
| 446 |
-
# city_name = city_match.group(1).strip()
|
| 447 |
-
# location_patterns.append(city_name)
|
| 448 |
-
|
| 449 |
-
# # Add remote/anywhere patterns if location is remote
|
| 450 |
-
# if 'remote' in candidate_location or 'anywhere' in candidate_location:
|
| 451 |
-
# location_patterns.extend(['remote', 'anywhere', 'work from home', 'wfh'])
|
| 452 |
-
|
| 453 |
-
# logger.info(f"Location patterns to match: {location_patterns}")
|
| 454 |
-
|
| 455 |
-
# # Filter jobs by location
|
| 456 |
-
# matching_jobs = []
|
| 457 |
-
|
| 458 |
-
# for _, job_row in jobs_df.iterrows():
|
| 459 |
-
# job_location = str(job_row.get('job_location', '')).lower()
|
| 460 |
-
|
| 461 |
-
# # Check if any location pattern matches
|
| 462 |
-
# location_matches = any(pattern in job_location for pattern in location_patterns)
|
| 463 |
-
|
| 464 |
-
# # Also check for remote jobs if candidate location includes remote
|
| 465 |
-
# if 'remote' in candidate_location and any(remote_term in job_location for remote_term in ['remote', 'anywhere', 'work from home', 'wfh']):
|
| 466 |
-
# location_matches = True
|
| 467 |
-
|
| 468 |
-
# # Check for exact city/state matches
|
| 469 |
-
# if candidate_location in job_location or job_location in candidate_location:
|
| 470 |
-
# location_matches = True
|
| 471 |
-
|
| 472 |
-
# if location_matches:
|
| 473 |
-
# matching_jobs.append(job_row)
|
| 474 |
-
|
| 475 |
-
# result_df = pd.DataFrame(matching_jobs) if matching_jobs else jobs_df
|
| 476 |
-
# logger.info(f"Found {len(matching_jobs)} jobs matching location out of {len(jobs_df)} total jobs")
|
| 477 |
-
|
| 478 |
-
# return result_df
|
| 479 |
-
|
| 480 |
-
# def extract_experience_requirement(requirements_text: str) -> dict:
|
| 481 |
-
# """
|
| 482 |
-
# Extract experience requirements from job requirements text
|
| 483 |
-
# Returns a dictionary with min_years, max_years, and level
|
| 484 |
-
# """
|
| 485 |
-
# if not requirements_text or pd.isna(requirements_text):
|
| 486 |
-
# return {'min_years': 0, 'max_years': 999, 'level': 'any'}
|
| 487 |
-
|
| 488 |
-
# requirements_text = str(requirements_text).lower()
|
| 489 |
-
|
| 490 |
-
# # Common experience patterns
|
| 491 |
-
# experience_patterns = [
|
| 492 |
-
# # Specific year ranges
|
| 493 |
-
# r'(\d+)[\-\+]\s*(\d+)\s*years?\s*experience',
|
| 494 |
-
# r'(\d+)\s*to\s*(\d+)\s*years?\s*experience',
|
| 495 |
-
# r'(\d+)\s*-\s*(\d+)\s*years?\s*experience',
|
| 496 |
-
|
| 497 |
-
# # Minimum years
|
| 498 |
-
# r'(\d+)\+?\s*years?\s*experience',
|
| 499 |
-
# r'minimum\s*(\d+)\s*years?\s*experience',
|
| 500 |
-
# r'at\s*least\s*(\d+)\s*years?\s*experience',
|
| 501 |
-
|
| 502 |
-
# # Level-based patterns
|
| 503 |
-
# r'(entry\s*level|junior|associate)',
|
| 504 |
-
# r'(mid\s*level|intermediate|mid\s*senior)',
|
| 505 |
-
# r'(senior|lead|principal|staff)',
|
| 506 |
-
# r'(executive|director|vp|chief|c\s*level)',
|
| 507 |
-
|
| 508 |
-
# # Specific year mentions
|
| 509 |
-
# r'(\d+)\s*years?\s*in\s*the\s*field',
|
| 510 |
-
# r'(\d+)\s*years?\s*of\s*professional\s*experience',
|
| 511 |
-
# r'(\d+)\s*years?\s*of\s*relevant\s*experience'
|
| 512 |
-
# ]
|
| 513 |
-
|
| 514 |
-
# min_years = 0
|
| 515 |
-
# max_years = 999
|
| 516 |
-
# level = 'any'
|
| 517 |
-
|
| 518 |
-
# # Check for specific year ranges
|
| 519 |
-
# for pattern in experience_patterns[:3]: # First 3 patterns are for ranges
|
| 520 |
-
# matches = re.findall(pattern, requirements_text)
|
| 521 |
-
# if matches:
|
| 522 |
-
# try:
|
| 523 |
-
# min_years = int(matches[0][0])
|
| 524 |
-
# max_years = int(matches[0][1])
|
| 525 |
-
# break
|
| 526 |
-
# except (ValueError, IndexError):
|
| 527 |
-
# continue
|
| 528 |
-
|
| 529 |
-
# # Check for minimum years if no range found
|
| 530 |
-
# if min_years == 0:
|
| 531 |
-
# for pattern in experience_patterns[3:6]: # Minimum year patterns
|
| 532 |
-
# matches = re.findall(pattern, requirements_text)
|
| 533 |
-
# if matches:
|
| 534 |
-
# try:
|
| 535 |
-
# min_years = int(matches[0])
|
| 536 |
-
# break
|
| 537 |
-
# except (ValueError, IndexError):
|
| 538 |
-
# continue
|
| 539 |
-
|
| 540 |
-
# # Check for level-based requirements
|
| 541 |
-
# for pattern in experience_patterns[6:10]: # Level patterns
|
| 542 |
-
# matches = re.findall(pattern, requirements_text)
|
| 543 |
-
# if matches:
|
| 544 |
-
# level_match = matches[0].lower()
|
| 545 |
-
# if 'entry' in level_match or 'junior' in level_match or 'associate' in level_match:
|
| 546 |
-
# level = 'entry'
|
| 547 |
-
# if min_years == 0:
|
| 548 |
-
# min_years = 0
|
| 549 |
-
# max_years = 2
|
| 550 |
-
# elif 'mid' in level_match or 'intermediate' in level_match:
|
| 551 |
-
# level = 'mid'
|
| 552 |
-
# if min_years == 0:
|
| 553 |
-
# min_years = 2
|
| 554 |
-
# max_years = 5
|
| 555 |
-
# elif 'senior' in level_match or 'lead' in level_match or 'principal' in level_match or 'staff' in level_match:
|
| 556 |
-
# level = 'senior'
|
| 557 |
-
# if min_years == 0:
|
| 558 |
-
# min_years = 5
|
| 559 |
-
# max_years = 10
|
| 560 |
-
# elif 'executive' in level_match or 'director' in level_match or 'vp' in level_match or 'chief' in level_match:
|
| 561 |
-
# level = 'executive'
|
| 562 |
-
# if min_years == 0:
|
| 563 |
-
# min_years = 10
|
| 564 |
-
# max_years = 999
|
| 565 |
-
# break
|
| 566 |
-
|
| 567 |
-
# # Check for specific year mentions if still no match
|
| 568 |
-
# if min_years == 0:
|
| 569 |
-
# for pattern in experience_patterns[10:]: # Specific year mention patterns
|
| 570 |
-
# matches = re.findall(pattern, requirements_text)
|
| 571 |
-
# if matches:
|
| 572 |
-
# try:
|
| 573 |
-
# min_years = int(matches[0])
|
| 574 |
-
# max_years = min_years + 2 # Add buffer
|
| 575 |
-
# break
|
| 576 |
-
# except (ValueError, IndexError):
|
| 577 |
-
# continue
|
| 578 |
-
|
| 579 |
-
# return {
|
| 580 |
-
# 'min_years': min_years,
|
| 581 |
-
# 'max_years': max_years,
|
| 582 |
-
# 'level': level
|
| 583 |
-
# }
|
| 584 |
-
|
| 585 |
-
# def filter_jobs_by_experience(jobs_df: pd.DataFrame, candidate_yoe: str) -> pd.DataFrame:
|
| 586 |
-
# """
|
| 587 |
-
# Filter jobs by experience level matching the candidate's years of experience
|
| 588 |
-
# """
|
| 589 |
-
# if not candidate_yoe or candidate_yoe.lower() in ['unknown', 'n/a', '']:
|
| 590 |
-
# logger.info(f"No experience info provided, returning all {len(jobs_df)} jobs")
|
| 591 |
-
# return jobs_df
|
| 592 |
-
|
| 593 |
-
# # Extract numeric years from candidate experience
|
| 594 |
-
# try:
|
| 595 |
-
# # Handle various formats like "5 years", "5+ years", "5-7 years", etc.
|
| 596 |
-
# yoe_match = re.search(r'(\d+(?:\.\d+)?)', str(candidate_yoe))
|
| 597 |
-
# if yoe_match:
|
| 598 |
-
# candidate_years = float(yoe_match.group(1))
|
| 599 |
-
# else:
|
| 600 |
-
# logger.warning(f"Could not extract years from: {candidate_yoe}")
|
| 601 |
-
# return jobs_df
|
| 602 |
-
# except (ValueError, TypeError):
|
| 603 |
-
# logger.error(f"Invalid experience format: {candidate_yoe}")
|
| 604 |
-
# return jobs_df
|
| 605 |
-
|
| 606 |
-
# logger.info(f"Filtering jobs for candidate with {candidate_years} years of experience")
|
| 607 |
-
|
| 608 |
-
# # Filter jobs by experience requirements
|
| 609 |
-
# matching_jobs = []
|
| 610 |
-
|
| 611 |
-
# for _, job_row in jobs_df.iterrows():
|
| 612 |
-
# requirements_text = str(job_row.get('requirements', ''))
|
| 613 |
-
# experience_req = extract_experience_requirement(requirements_text)
|
| 614 |
-
|
| 615 |
-
# # Check if candidate's experience matches the job requirements
|
| 616 |
-
# if (candidate_years >= experience_req['min_years'] and
|
| 617 |
-
# candidate_years <= experience_req['max_years']):
|
| 618 |
-
# matching_jobs.append(job_row)
|
| 619 |
-
|
| 620 |
-
# result_df = pd.DataFrame(matching_jobs) if matching_jobs else jobs_df
|
| 621 |
-
# logger.info(f"Found {len(matching_jobs)} jobs matching experience out of {len(jobs_df)} total jobs")
|
| 622 |
-
|
| 623 |
-
# return result_df
|
| 624 |
-
|
| 625 |
-
# def filter_jobs_by_priority(jobs_df: pd.DataFrame) -> pd.DataFrame:
|
| 626 |
-
# """
|
| 627 |
-
# Filter jobs to only include high priority jobs
|
| 628 |
-
# """
|
| 629 |
-
# if jobs_df.empty:
|
| 630 |
-
# logger.info("No jobs to filter by priority")
|
| 631 |
-
# return jobs_df
|
| 632 |
-
|
| 633 |
-
# # Filter jobs by priority - only include high priority jobs
|
| 634 |
-
# priority_filtered_jobs = jobs_df[jobs_df['priority'].str.lower() == 'high']
|
| 635 |
-
|
| 636 |
-
# logger.info(f"Found {len(priority_filtered_jobs)} high priority jobs out of {len(jobs_df)} total jobs")
|
| 637 |
-
|
| 638 |
-
# return priority_filtered_jobs
|
| 639 |
-
|
| 640 |
-
# def create_job_description(job_row: pd.Series) -> str:
|
| 641 |
-
# """
|
| 642 |
-
# Create a comprehensive job description from job data
|
| 643 |
-
# """
|
| 644 |
-
# description_parts = []
|
| 645 |
-
|
| 646 |
-
# if pd.notna(job_row.get('company_blurb')):
|
| 647 |
-
# description_parts.append(f"Company: {job_row['company_blurb']}")
|
| 648 |
-
|
| 649 |
-
# if pd.notna(job_row.get('company_culture')):
|
| 650 |
-
# description_parts.append(f"Company Culture: {job_row['company_culture']}")
|
| 651 |
-
|
| 652 |
-
# if pd.notna(job_row.get('description')):
|
| 653 |
-
# description_parts.append(f"Description: {job_row['description']}")
|
| 654 |
-
|
| 655 |
-
# if pd.notna(job_row.get('requirements')):
|
| 656 |
-
# description_parts.append(f"Requirements: {job_row['requirements']}")
|
| 657 |
-
|
| 658 |
-
# if pd.notna(job_row.get('role_responsibilities')):
|
| 659 |
-
# description_parts.append(f"Role Responsibilities: {job_row['role_responsibilities']}")
|
| 660 |
-
|
| 661 |
-
# if pd.notna(job_row.get('job_location')):
|
| 662 |
-
# description_parts.append(f"Location: {job_row['job_location']}")
|
| 663 |
-
|
| 664 |
-
# return "\n\n".join(description_parts)
|
| 665 |
-
|
| 666 |
-
# def create_jd_smart_hiring(job_row: pd.Series) -> str:
|
| 667 |
-
# """
|
| 668 |
-
# Create a smart hiring job description from job data
|
| 669 |
-
# """
|
| 670 |
-
# description_parts = []
|
| 671 |
-
# if pd.notna(job_row.get('description')):
|
| 672 |
-
# description_parts.append(f"Description: {job_row['description']}")
|
| 673 |
-
# if pd.notna(job_row.get('requirements')):
|
| 674 |
-
# description_parts.append(f"Requirements: {job_row['requirements']}")
|
| 675 |
-
|
| 676 |
-
# return "\n\n".join(description_parts)
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
|
| 680 |
-
# def clean_analysis_result(analysis_result: dict) -> dict:
|
| 681 |
-
# """
|
| 682 |
-
# Clean up the analysis result to only include final_score and summary
|
| 683 |
-
# """
|
| 684 |
-
# if not isinstance(analysis_result, dict):
|
| 685 |
-
# return analysis_result
|
| 686 |
-
|
| 687 |
-
# # Remove user_context if present
|
| 688 |
-
# if 'user_context' in analysis_result:
|
| 689 |
-
# del analysis_result['user_context']
|
| 690 |
-
|
| 691 |
-
# # Clean up final_response if present
|
| 692 |
-
# if 'final_response' in analysis_result:
|
| 693 |
-
# try:
|
| 694 |
-
# # Handle both string and dict formats
|
| 695 |
-
# if isinstance(analysis_result['final_response'], str):
|
| 696 |
-
# final_response = json.loads(analysis_result['final_response'])
|
| 697 |
-
# else:
|
| 698 |
-
# final_response = analysis_result['final_response']
|
| 699 |
-
|
| 700 |
-
# # Extract and format the evaluation data
|
| 701 |
-
# if 'evaluation' in final_response and len(final_response['evaluation']) > 0:
|
| 702 |
-
# evaluation = final_response['evaluation'][0]
|
| 703 |
-
|
| 704 |
-
# # Create a minimal structure with only final_score and summary
|
| 705 |
-
# cleaned_response = {
|
| 706 |
-
# 'final_score': evaluation.get('final_score', 0),
|
| 707 |
-
# 'summary': {}
|
| 708 |
-
# }
|
| 709 |
-
|
| 710 |
-
# # Extract summary information
|
| 711 |
-
# if 'summary' in evaluation and len(evaluation['summary']) > 0:
|
| 712 |
-
# summary = evaluation['summary'][0]
|
| 713 |
-
# cleaned_response['summary'] = {
|
| 714 |
-
# 'strengths': summary.get('strengths', []),
|
| 715 |
-
# 'weaknesses': summary.get('weaknesses', []),
|
| 716 |
-
# 'opportunities': summary.get('opportunities', []),
|
| 717 |
-
# 'recommendations': summary.get('recommendations', [])
|
| 718 |
-
# }
|
| 719 |
-
|
| 720 |
-
# analysis_result['final_response'] = cleaned_response
|
| 721 |
-
|
| 722 |
-
# except (json.JSONDecodeError, KeyError, IndexError) as e:
|
| 723 |
-
# logger.error(f"Error cleaning analysis result: {e}")
|
| 724 |
-
# # Keep original if cleaning fails
|
| 725 |
-
# pass
|
| 726 |
-
|
| 727 |
-
# return analysis_result
|
| 728 |
-
|
| 729 |
-
# def sort_jobs_by_score(job_analyses: list) -> list:
|
| 730 |
-
# """
|
| 731 |
-
# Sort jobs by final_score in descending order (highest scores first)
|
| 732 |
-
# """
|
| 733 |
-
# def extract_score(job_analysis):
|
| 734 |
-
# try:
|
| 735 |
-
# analysis = job_analysis.get('analysis', {})
|
| 736 |
-
# if 'final_response' in analysis and isinstance(analysis['final_response'], dict):
|
| 737 |
-
# return analysis['final_response'].get('final_score', 0)
|
| 738 |
-
# return 0
|
| 739 |
-
# except:
|
| 740 |
-
# return 0
|
| 741 |
-
|
| 742 |
-
# return sorted(job_analyses, key=extract_score, reverse=True)
|
| 743 |
-
|
| 744 |
-
# async def analyze_job_fit_with_retry(job_description: str, resume_file_path: str, job_row: pd.Series = None, max_retries: int = 3) -> dict:
|
| 745 |
-
# """
|
| 746 |
-
# Analyze job-candidate fit with retry logic for resilience
|
| 747 |
-
# """
|
| 748 |
-
# for attempt in range(max_retries):
|
| 749 |
-
# try:
|
| 750 |
-
# result = analyze_job_fit(job_description, resume_file_path, job_row)
|
| 751 |
-
# if "error" not in result:
|
| 752 |
-
# return result
|
| 753 |
-
|
| 754 |
-
# # If authentication error and not last attempt, retry
|
| 755 |
-
# if "Authentication failed" in result.get("error", "") and attempt < max_retries - 1:
|
| 756 |
-
# logger.warning(f"Authentication failed, retrying... (attempt {attempt + 1}/{max_retries})")
|
| 757 |
-
# global access_token
|
| 758 |
-
# access_token = None # Reset token to force refresh
|
| 759 |
-
# await asyncio.sleep(2 ** attempt) # Exponential backoff
|
| 760 |
-
# continue
|
| 761 |
-
|
| 762 |
-
# # If timeout error and not last attempt, retry with longer timeout
|
| 763 |
-
# if "timed out" in result.get("error", "").lower() and attempt < max_retries - 1:
|
| 764 |
-
# logger.warning(f"Request timed out, retrying with longer timeout... (attempt {attempt + 1}/{max_retries})")
|
| 765 |
-
# await asyncio.sleep(2 ** attempt) # Exponential backoff
|
| 766 |
-
# continue
|
| 767 |
-
|
| 768 |
-
# return result
|
| 769 |
-
# except Exception as e:
|
| 770 |
-
# logger.error(f"Attempt {attempt + 1}/{max_retries} failed: {str(e)}")
|
| 771 |
-
# if attempt == max_retries - 1:
|
| 772 |
-
# return {"error": f"Failed after {max_retries} attempts: {str(e)}"}
|
| 773 |
-
# await asyncio.sleep(2 ** attempt)
|
| 774 |
-
|
| 775 |
-
# def analyze_job_fit(job_description: str, resume_file_path: str, job_row: pd.Series = None) -> dict:
|
| 776 |
-
# """
|
| 777 |
-
# Analyze job-candidate fit using the external API
|
| 778 |
-
# """
|
| 779 |
-
|
| 780 |
-
# url = "https://fitscore-agent-535960463668.us-central1.run.app/analyze"
|
| 781 |
-
|
| 782 |
-
# # Check if resume file exists
|
| 783 |
-
# if not os.path.exists(resume_file_path):
|
| 784 |
-
# logger.error(f"Resume file not found: {resume_file_path}")
|
| 785 |
-
# return {"error": f"Resume file not found: {resume_file_path}"}
|
| 786 |
-
|
| 787 |
-
|
| 788 |
-
# # Prepare headers with authentication
|
| 789 |
-
# headers = {
|
| 790 |
-
# 'accept': 'application/json',
|
| 791 |
-
# 'Authorization': f'Bearer {get_access_token()}'
|
| 792 |
-
# }
|
| 793 |
-
|
| 794 |
-
# # Prepare form data
|
| 795 |
-
# files = {
|
| 796 |
-
# 'resume': (os.path.basename(resume_file_path), open(resume_file_path, 'rb'), 'application/pdf')
|
| 797 |
-
# }
|
| 798 |
-
|
| 799 |
-
# data = {
|
| 800 |
-
# 'jd_text': job_description
|
| 801 |
-
# }
|
| 802 |
-
|
| 803 |
-
# # Generate collateral if job_row is provided
|
| 804 |
-
# if job_row is not None:
|
| 805 |
-
# try:
|
| 806 |
-
# job_description_text = create_jd_smart_hiring(job_row)
|
| 807 |
-
# if job_description_text:
|
| 808 |
-
# collateral, job_id = generate_smart_hiring_collateral(job_description_text)
|
| 809 |
-
# if collateral:
|
| 810 |
-
# data['collateral'] = collateral
|
| 811 |
-
# data['job_id'] = job_id
|
| 812 |
-
# logger.info(f"Added collateral and job_id ({job_id}) to job fit analysis request")
|
| 813 |
-
# elif job_id:
|
| 814 |
-
# # Even if collateral is empty, we can still use the job_id
|
| 815 |
-
# data['job_id'] = job_id
|
| 816 |
-
# logger.info(f"Added job_id ({job_id}) to job fit analysis request (no collateral)")
|
| 817 |
-
# except Exception as e:
|
| 818 |
-
# logger.warning(f"Failed to generate collateral: {e}")
|
| 819 |
-
# # Continue without collateral if generation fails
|
| 820 |
-
|
| 821 |
-
# try:
|
| 822 |
-
# # Make the API request with configured timeout
|
| 823 |
-
# response = requests.post(url, headers=headers, files=files, data=data, timeout=EXTERNAL_API_TIMEOUT)
|
| 824 |
-
|
| 825 |
-
# # If we get an authentication error, try to get a fresh token and retry once
|
| 826 |
-
# if response.status_code == 401:
|
| 827 |
-
# logger.warning("Authentication failed, getting fresh token...")
|
| 828 |
-
# global access_token
|
| 829 |
-
# access_token = None # Reset the token
|
| 830 |
-
# new_token = get_access_token()
|
| 831 |
-
# if new_token:
|
| 832 |
-
# headers['Authorization'] = f'Bearer {new_token}'
|
| 833 |
-
# # Close the previous file and reopen
|
| 834 |
-
# files['resume'][1].close()
|
| 835 |
-
# files['resume'] = (os.path.basename(resume_file_path), open(resume_file_path, 'rb'), 'application/pdf')
|
| 836 |
-
# response = requests.post(url, headers=headers, files=files, data=data, timeout=EXTERNAL_API_TIMEOUT)
|
| 837 |
-
# else:
|
| 838 |
-
# # If we can't get a fresh token, return error
|
| 839 |
-
# return {"error": "Authentication failed and could not obtain fresh token"}
|
| 840 |
-
|
| 841 |
-
# if response.status_code == 200:
|
| 842 |
-
# logger.info("Job fit analysis completed successfully")
|
| 843 |
-
# return response.json()
|
| 844 |
-
# elif response.status_code == 401:
|
| 845 |
-
# # If we still get 401 after fresh token, return error
|
| 846 |
-
# return {"error": "Authentication failed even with fresh token"}
|
| 847 |
-
# else:
|
| 848 |
-
# logger.error(f"API call failed with status {response.status_code}")
|
| 849 |
-
# return {"error": f"API call failed with status {response.status_code}", "details": response.text}
|
| 850 |
-
|
| 851 |
-
# except requests.exceptions.Timeout:
|
| 852 |
-
# logger.error(f"API request timed out after {EXTERNAL_API_TIMEOUT} seconds")
|
| 853 |
-
# return {"error": f"API request timed out after {EXTERNAL_API_TIMEOUT} seconds"}
|
| 854 |
-
# except Exception as e:
|
| 855 |
-
# logger.error(f"Exception occurred: {str(e)}")
|
| 856 |
-
# return {"error": f"Exception occurred: {str(e)}"}
|
| 857 |
-
# finally:
|
| 858 |
-
# # Ensure the file is closed
|
| 859 |
-
# if 'resume' in files:
|
| 860 |
-
# try:
|
| 861 |
-
# files['resume'][1].close()
|
| 862 |
-
# except:
|
| 863 |
-
# pass
|
| 864 |
-
|
| 865 |
-
# @app.post("/process_resume_and_recommend_jobs")
|
| 866 |
-
# async def process_resume_and_recommend_jobs(
|
| 867 |
-
# resume: UploadFile = File(...),
|
| 868 |
-
# resume_text: str = Form(""),
|
| 869 |
-
# api_key: str = Depends(verify_api_key)
|
| 870 |
-
# ):
|
| 871 |
-
# """
|
| 872 |
-
# Process resume, extract information, filter jobs by industry, and analyze fit
|
| 873 |
-
# """
|
| 874 |
-
# request_start_time = time.time()
|
| 875 |
-
|
| 876 |
-
# try:
|
| 877 |
-
# logger.info(f"Processing resume: {resume.filename}")
|
| 878 |
-
|
| 879 |
-
# # Save uploaded file temporarily
|
| 880 |
-
# with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file:
|
| 881 |
-
# shutil.copyfileobj(resume.file, tmp_file)
|
| 882 |
-
# tmp_file_path = tmp_file.name
|
| 883 |
-
|
| 884 |
-
# try:
|
| 885 |
-
# # Extract text from PDF if no resume_text provided
|
| 886 |
-
# if not resume_text:
|
| 887 |
-
# resume_text = extract_text_from_pdf(tmp_file_path)
|
| 888 |
-
# if not resume_text:
|
| 889 |
-
# logger.error("Could not extract text from PDF file")
|
| 890 |
-
# return JSONResponse(
|
| 891 |
-
# status_code=400,
|
| 892 |
-
# content={"error": "Could not extract text from PDF file"}
|
| 893 |
-
# )
|
| 894 |
-
|
| 895 |
-
# # Extract resume information using LLM
|
| 896 |
-
# resume_info = extract_resume_info(resume_text)
|
| 897 |
-
|
| 898 |
-
# # Load jobs data from PostgreSQL database
|
| 899 |
-
# try:
|
| 900 |
-
# jobs_df = pd.read_sql_table("jobs", con=engine)
|
| 901 |
-
# candidates_df = pd.read_sql_table("candidates", con=engine)
|
| 902 |
-
# submissions_df = pd.read_sql_table("candidate_submissions", con=engine)
|
| 903 |
-
# logger.info(f"Loaded {len(jobs_df)} jobs, {len(candidates_df)} candidates, {len(submissions_df)} submissions")
|
| 904 |
-
# except Exception as db_error:
|
| 905 |
-
# logger.error(f"Database error: {db_error}")
|
| 906 |
-
# return JSONResponse(
|
| 907 |
-
# status_code=500,
|
| 908 |
-
# content={"error": "Database connection error"}
|
| 909 |
-
# )
|
| 910 |
-
|
| 911 |
-
# # Filter jobs by industry
|
| 912 |
-
# filtered_jobs = filter_jobs_by_industry(jobs_df, resume_info['industry'])
|
| 913 |
-
|
| 914 |
-
# if filtered_jobs.empty:
|
| 915 |
-
# logger.warning(f"No jobs found for industry: {resume_info['industry']}")
|
| 916 |
-
# return JSONResponse(
|
| 917 |
-
# status_code=404,
|
| 918 |
-
# content={"message": f"No jobs found for industry: {resume_info['industry']}"}
|
| 919 |
-
# )
|
| 920 |
-
|
| 921 |
-
# # Filter jobs by location
|
| 922 |
-
# location_filtered_jobs = filter_jobs_by_location(filtered_jobs, resume_info['location'])
|
| 923 |
-
|
| 924 |
-
# # Filter jobs by experience level
|
| 925 |
-
# experience_filtered_jobs = filter_jobs_by_experience(location_filtered_jobs, resume_info['yoe'])
|
| 926 |
-
|
| 927 |
-
# # Filter jobs by priority
|
| 928 |
-
# priority_filtered_jobs = filter_jobs_by_priority(experience_filtered_jobs)
|
| 929 |
-
|
| 930 |
-
# # Use priority filtered jobs if available, otherwise fall back to experience filtered jobs, then location filtered jobs
|
| 931 |
-
# if not priority_filtered_jobs.empty:
|
| 932 |
-
# jobs_to_analyze = priority_filtered_jobs
|
| 933 |
-
# elif not experience_filtered_jobs.empty:
|
| 934 |
-
# jobs_to_analyze = experience_filtered_jobs
|
| 935 |
-
# else:
|
| 936 |
-
# jobs_to_analyze = location_filtered_jobs
|
| 937 |
-
|
| 938 |
-
# # Create filtered_submission_df with job_ids from jobs_to_analyze
|
| 939 |
-
# job_ids_to_analyze = jobs_to_analyze['id'].tolist()
|
| 940 |
-
# filtered_submission_df = submissions_df[submissions_df['jobId'].isin(job_ids_to_analyze)]
|
| 941 |
-
|
| 942 |
-
# # Check if candidate email exists in candidates_df
|
| 943 |
-
# candidate_id = None
|
| 944 |
-
# if resume_info.get('email'):
|
| 945 |
-
# candidate_match = candidates_df[candidates_df['email'] == resume_info['email']]
|
| 946 |
-
# if not candidate_match.empty:
|
| 947 |
-
# candidate_id = candidate_match.iloc[0]['id']
|
| 948 |
-
# logger.info(f"Found existing candidate with ID: {candidate_id}")
|
| 949 |
-
|
| 950 |
-
# # Analyze job fit for each filtered job
|
| 951 |
-
# job_analyses = []
|
| 952 |
-
|
| 953 |
-
# # Use configured number of jobs to analyze
|
| 954 |
-
# for _, job_row in jobs_to_analyze.head(MAX_JOBS_TO_ANALYZE).iterrows():
|
| 955 |
-
# job_id = job_row.get('id')
|
| 956 |
-
|
| 957 |
-
# # Check if we have an existing submission for this candidate and job
|
| 958 |
-
# existing_submission = None
|
| 959 |
-
# if candidate_id and job_id:
|
| 960 |
-
# submission_match = filtered_submission_df[
|
| 961 |
-
# (filtered_submission_df['candidate_id'] == candidate_id) &
|
| 962 |
-
# (filtered_submission_df['jobId'] == job_id)
|
| 963 |
-
# ]
|
| 964 |
-
# if not submission_match.empty:
|
| 965 |
-
# existing_submission = submission_match.iloc[0]
|
| 966 |
-
# logger.info(f"Found existing submission for job_id: {job_id}, candidate_id: {candidate_id}")
|
| 967 |
-
|
| 968 |
-
# if existing_submission is not None:
|
| 969 |
-
# # Use existing fit score from submission
|
| 970 |
-
# fit_score = existing_submission.get('fit_score', 0)
|
| 971 |
-
# existing_analysis = {
|
| 972 |
-
# 'final_response': {
|
| 973 |
-
# 'final_score': fit_score,
|
| 974 |
-
# 'summary': {
|
| 975 |
-
# 'strengths': [],
|
| 976 |
-
# 'weaknesses': [],
|
| 977 |
-
# 'opportunities': [],
|
| 978 |
-
# 'recommendations': []
|
| 979 |
-
# }
|
| 980 |
-
# },
|
| 981 |
-
# 'source': 'existing_submission'
|
| 982 |
-
# }
|
| 983 |
-
# analysis_result = existing_analysis
|
| 984 |
-
# else:
|
| 985 |
-
# # Call API for new analysis with retry logic
|
| 986 |
-
# job_description = create_job_description(job_row)
|
| 987 |
-
# analysis_result = await analyze_job_fit_with_retry(job_description, tmp_file_path, job_row)
|
| 988 |
-
# analysis_result['source'] = 'api_call'
|
| 989 |
-
|
| 990 |
-
# # Clean up the analysis result
|
| 991 |
-
# cleaned_analysis = clean_analysis_result(analysis_result)
|
| 992 |
-
|
| 993 |
-
# job_analysis = JobAnalysis(
|
| 994 |
-
# job_title=job_row.get('job_title', 'Unknown'),
|
| 995 |
-
# company_name=job_row.get('company_name', 'Unknown'),
|
| 996 |
-
# analysis=cleaned_analysis
|
| 997 |
-
# )
|
| 998 |
-
# job_analyses.append(job_analysis.dict())
|
| 999 |
-
|
| 1000 |
-
# # Sort jobs by final_score in descending order (highest scores first)
|
| 1001 |
-
# job_analyses = sort_jobs_by_score(job_analyses)
|
| 1002 |
-
|
| 1003 |
-
# # Count existing submissions vs API calls
|
| 1004 |
-
# existing_submissions_count = sum(1 for analysis in job_analyses if analysis.get('analysis', {}).get('source') == 'existing_submission')
|
| 1005 |
-
# api_calls_count = sum(1 for analysis in job_analyses if analysis.get('analysis', {}).get('source') == 'api_call')
|
| 1006 |
-
|
| 1007 |
-
# # Clean up temporary file
|
| 1008 |
-
# os.unlink(tmp_file_path)
|
| 1009 |
-
|
| 1010 |
-
# # Calculate processing time
|
| 1011 |
-
# processing_time = time.time() - request_start_time
|
| 1012 |
-
# logger.info(f"Request completed in {processing_time:.2f} seconds")
|
| 1013 |
-
|
| 1014 |
-
# return {
|
| 1015 |
-
# "resume_info": resume_info,
|
| 1016 |
-
# "industry": resume_info['industry'],
|
| 1017 |
-
# "location": resume_info['location'],
|
| 1018 |
-
# "experience_years": resume_info['yoe'],
|
| 1019 |
-
# "jobs_analyzed": len(job_analyses),
|
| 1020 |
-
# "location_filtered": not location_filtered_jobs.empty,
|
| 1021 |
-
# "experience_filtered": not experience_filtered_jobs.empty,
|
| 1022 |
-
# "priority_filtered": not priority_filtered_jobs.empty,
|
| 1023 |
-
# "existing_submissions_used": existing_submissions_count,
|
| 1024 |
-
# "api_calls_made": api_calls_count,
|
| 1025 |
-
# "candidate_found": candidate_id is not None,
|
| 1026 |
-
# "processing_time_seconds": round(processing_time, 2),
|
| 1027 |
-
# "job_analyses": job_analyses
|
| 1028 |
-
# }
|
| 1029 |
-
|
| 1030 |
-
# except Exception as e:
|
| 1031 |
-
# # Clean up temporary file in case of error
|
| 1032 |
-
# if os.path.exists(tmp_file_path):
|
| 1033 |
-
# os.unlink(tmp_file_path)
|
| 1034 |
-
# raise e
|
| 1035 |
-
|
| 1036 |
-
# except Exception as e:
|
| 1037 |
-
# logger.error(f"Processing failed: {str(e)}", exc_info=True)
|
| 1038 |
-
# return JSONResponse(
|
| 1039 |
-
# status_code=500,
|
| 1040 |
-
# content={"error": f"Processing failed: {str(e)}"}
|
| 1041 |
-
# )
|
| 1042 |
-
|
| 1043 |
-
# @app.get("/health")
|
| 1044 |
-
# async def health_check(api_key: str = Depends(verify_api_key)):
|
| 1045 |
-
# """
|
| 1046 |
-
# Health check endpoint with database connectivity check
|
| 1047 |
-
# """
|
| 1048 |
-
# health_status = {
|
| 1049 |
-
# "status": "healthy",
|
| 1050 |
-
# "message": "Job Recommendation API is running",
|
| 1051 |
-
# "timestamp": time.time()
|
| 1052 |
-
# }
|
| 1053 |
-
|
| 1054 |
-
# # Check database connectivity
|
| 1055 |
-
# try:
|
| 1056 |
-
# with engine.connect() as conn:
|
| 1057 |
-
# result = conn.execute(text("SELECT 1"))
|
| 1058 |
-
# health_status["database"] = "connected"
|
| 1059 |
-
# except Exception as e:
|
| 1060 |
-
# logger.error(f"Database health check failed: {e}")
|
| 1061 |
-
# health_status["database"] = "disconnected"
|
| 1062 |
-
# health_status["status"] = "degraded"
|
| 1063 |
-
|
| 1064 |
-
# return health_status
|
| 1065 |
-
|
| 1066 |
-
# @app.get("/")
|
| 1067 |
-
# async def root():
|
| 1068 |
-
# """
|
| 1069 |
-
# Root endpoint
|
| 1070 |
-
# """
|
| 1071 |
-
# return {
|
| 1072 |
-
# "message": "Job Recommendation API",
|
| 1073 |
-
# "version": "1.0.0",
|
| 1074 |
-
# "docs": "/docs",
|
| 1075 |
-
# "health": "/health"
|
| 1076 |
-
# }
|
| 1077 |
-
|
| 1078 |
-
# if __name__ == "__main__":
|
| 1079 |
-
# import uvicorn
|
| 1080 |
-
# port = int(os.getenv("PORT", 8080))
|
| 1081 |
-
# logger.info(f"Starting server on port {port}")
|
| 1082 |
-
# uvicorn.run(app, host="0.0.0.0", port=port)
|
| 1083 |
-
|
| 1084 |
-
|
| 1085 |
-
|
| 1086 |
import pandas as pd
|
| 1087 |
import requests
|
| 1088 |
from pydantic import BaseModel, Field
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
import requests
|
| 3 |
from pydantic import BaseModel, Field
|