Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- db.py +36 -0
- reccomendation.py +949 -0
- requirements.txt +14 -0
db.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import os
|
| 3 |
+
import psycopg2
|
| 4 |
+
from sqlalchemy import create_engine, inspect, text
|
| 5 |
+
import re
|
| 6 |
+
from datetime import datetime
|
| 7 |
+
import logging
|
| 8 |
+
from dotenv import load_dotenv
|
| 9 |
+
|
| 10 |
+
load_dotenv()
|
| 11 |
+
|
| 12 |
+
# Set up logging
|
| 13 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 14 |
+
logger = logging.getLogger(__name__)
|
| 15 |
+
|
| 16 |
+
# Database connection parameters - use environment variables with fallbacks
|
| 17 |
+
DB_PARAMS = {
|
| 18 |
+
'dbname': os.getenv("DB_NAME"),
|
| 19 |
+
'user': os.getenv("DB_USER"),
|
| 20 |
+
'password': os.getenv("DB_PASSWORD"),
|
| 21 |
+
'host': os.getenv("DB_HOST"),
|
| 22 |
+
'port': os.getenv("DB_PORT")
|
| 23 |
+
}
|
| 24 |
+
|
| 25 |
+
# Create SQLAlchemy engine
|
| 26 |
+
def get_engine():
|
| 27 |
+
conn_string = f"postgresql://{DB_PARAMS['user']}:{DB_PARAMS['password']}@{DB_PARAMS['host']}:{DB_PARAMS['port']}/{DB_PARAMS['dbname']}"
|
| 28 |
+
return create_engine(conn_string)
|
| 29 |
+
|
| 30 |
+
def get_jobs():
|
| 31 |
+
engine = get_engine()
|
| 32 |
+
df = pd.read_sql_table("jobs", con=engine)
|
| 33 |
+
|
| 34 |
+
def submissions():
|
| 35 |
+
engine = get_engine()
|
| 36 |
+
df = pd.read_sql_table("candidate_submissions", con=engine)
|
reccomendation.py
ADDED
|
@@ -0,0 +1,949 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import requests
|
| 3 |
+
from pydantic import BaseModel, Field
|
| 4 |
+
from typing import List, Tuple, Optional
|
| 5 |
+
from langchain_openai import ChatOpenAI
|
| 6 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 7 |
+
import os
|
| 8 |
+
from fastapi import FastAPI, UploadFile, File, Form, HTTPException, Depends, Header, Request
|
| 9 |
+
from fastapi.responses import JSONResponse
|
| 10 |
+
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
| 11 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 12 |
+
import json
|
| 13 |
+
import tempfile
|
| 14 |
+
import shutil
|
| 15 |
+
import PyPDF2
|
| 16 |
+
from dotenv import load_dotenv
|
| 17 |
+
import pdfplumber
|
| 18 |
+
import re
|
| 19 |
+
from db import *
|
| 20 |
+
import time
|
| 21 |
+
import asyncio
|
| 22 |
+
from contextlib import asynccontextmanager
|
| 23 |
+
import logging
|
| 24 |
+
from sqlalchemy.pool import NullPool
|
| 25 |
+
|
| 26 |
+
# Load environment variables
|
| 27 |
+
load_dotenv()
|
| 28 |
+
|
| 29 |
+
# Configure logging for Cloud Run
|
| 30 |
+
logging.basicConfig(
|
| 31 |
+
level=logging.INFO,
|
| 32 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 33 |
+
)
|
| 34 |
+
logger = logging.getLogger(__name__)
|
| 35 |
+
|
| 36 |
+
# Global variable to store access token
|
| 37 |
+
access_token = None
|
| 38 |
+
|
| 39 |
+
# Startup/shutdown events
|
| 40 |
+
@asynccontextmanager
|
| 41 |
+
async def lifespan(app: FastAPI):
|
| 42 |
+
# Startup
|
| 43 |
+
logger.info("Starting up Job Recommendation API...")
|
| 44 |
+
# You can initialize connection pools here if needed
|
| 45 |
+
yield
|
| 46 |
+
# Shutdown
|
| 47 |
+
logger.info("Shutting down Job Recommendation API...")
|
| 48 |
+
# Close any open connections here
|
| 49 |
+
|
| 50 |
+
# Initialize FastAPI app with lifespan
|
| 51 |
+
app = FastAPI(
|
| 52 |
+
title="Job Recommendation API",
|
| 53 |
+
description="API for processing resumes and recommending jobs",
|
| 54 |
+
lifespan=lifespan
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
# Add CORS middleware for cloud deployment
|
| 58 |
+
app.add_middleware(
|
| 59 |
+
CORSMiddleware,
|
| 60 |
+
allow_origins=["*"], # Configure based on your needs
|
| 61 |
+
allow_credentials=True,
|
| 62 |
+
allow_methods=["*"],
|
| 63 |
+
allow_headers=["*"],
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
# Add request ID middleware for better tracing
|
| 67 |
+
@app.middleware("http")
|
| 68 |
+
async def add_request_id(request: Request, call_next):
|
| 69 |
+
request_id = f"{time.time()}-{request.client.host}"
|
| 70 |
+
request.state.request_id = request_id
|
| 71 |
+
|
| 72 |
+
# Log the request
|
| 73 |
+
logger.info(f"Request ID: {request_id} - {request.method} {request.url.path}")
|
| 74 |
+
|
| 75 |
+
try:
|
| 76 |
+
response = await call_next(request)
|
| 77 |
+
response.headers["X-Request-ID"] = request_id
|
| 78 |
+
return response
|
| 79 |
+
except Exception as e:
|
| 80 |
+
logger.error(f"Request ID: {request_id} - Error: {str(e)}")
|
| 81 |
+
raise
|
| 82 |
+
|
| 83 |
+
# Security configuration
|
| 84 |
+
API_KEY = os.getenv("API_KEY")
|
| 85 |
+
security = HTTPBearer()
|
| 86 |
+
|
| 87 |
+
def verify_api_key(credentials: HTTPAuthorizationCredentials = Depends(security)):
|
| 88 |
+
"""
|
| 89 |
+
Verify the API key from the Authorization header
|
| 90 |
+
"""
|
| 91 |
+
if not API_KEY:
|
| 92 |
+
logger.error("API key not configured")
|
| 93 |
+
raise HTTPException(
|
| 94 |
+
status_code=500,
|
| 95 |
+
detail="API key not configured",
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
if credentials.credentials != API_KEY:
|
| 99 |
+
logger.warning("Invalid API key attempt")
|
| 100 |
+
raise HTTPException(
|
| 101 |
+
status_code=401,
|
| 102 |
+
detail="Invalid API key",
|
| 103 |
+
headers={"WWW-Authenticate": "Bearer"},
|
| 104 |
+
)
|
| 105 |
+
return credentials.credentials
|
| 106 |
+
|
| 107 |
+
# Initialize OpenAI client with error handling
|
| 108 |
+
try:
|
| 109 |
+
llm = ChatOpenAI(
|
| 110 |
+
model="gpt-4o-mini",
|
| 111 |
+
temperature=0,
|
| 112 |
+
api_key=os.getenv("OPENAI_API_KEY")
|
| 113 |
+
)
|
| 114 |
+
logger.info("OpenAI client initialized successfully")
|
| 115 |
+
except Exception as e:
|
| 116 |
+
logger.error(f"Failed to initialize OpenAI client: {e}")
|
| 117 |
+
raise
|
| 118 |
+
|
| 119 |
+
# Initialize database engine with connection pooling suitable for Cloud Run
|
| 120 |
+
def get_engine():
|
| 121 |
+
"""
|
| 122 |
+
Get database engine with NullPool for Cloud Run
|
| 123 |
+
"""
|
| 124 |
+
try:
|
| 125 |
+
conn_string = f"postgresql://{DB_PARAMS['user']}:{DB_PARAMS['password']}@{DB_PARAMS['host']}:{DB_PARAMS['port']}/{DB_PARAMS['dbname']}"
|
| 126 |
+
# Use NullPool for Cloud Run to avoid connection issues
|
| 127 |
+
engine = create_engine(conn_string, poolclass=NullPool, pool_pre_ping=True)
|
| 128 |
+
logger.info("Database engine created successfully")
|
| 129 |
+
return engine
|
| 130 |
+
except Exception as e:
|
| 131 |
+
logger.error(f"Failed to create database engine: {e}")
|
| 132 |
+
raise
|
| 133 |
+
|
| 134 |
+
# Initialize database engine
|
| 135 |
+
engine = get_engine()
|
| 136 |
+
|
| 137 |
+
def get_access_token():
|
| 138 |
+
"""
|
| 139 |
+
Get access token for the external API with better error handling
|
| 140 |
+
"""
|
| 141 |
+
global access_token
|
| 142 |
+
|
| 143 |
+
# If we already have a token, return it
|
| 144 |
+
if access_token:
|
| 145 |
+
return access_token
|
| 146 |
+
|
| 147 |
+
try:
|
| 148 |
+
login_url = "https://fitscore-agent-535960463668.us-central1.run.app/auth/login"
|
| 149 |
+
login_data = {
|
| 150 |
+
"email": "johnrecruiter@example.com",
|
| 151 |
+
"password": "Password@123"
|
| 152 |
+
}
|
| 153 |
+
login_headers = {
|
| 154 |
+
'accept': 'application/json',
|
| 155 |
+
'Content-Type': 'application/json'
|
| 156 |
+
}
|
| 157 |
+
|
| 158 |
+
# Add timeout to prevent hanging
|
| 159 |
+
login_response = requests.post(login_url, headers=login_headers, json=login_data, timeout=30)
|
| 160 |
+
|
| 161 |
+
if login_response.status_code == 200:
|
| 162 |
+
login_result = login_response.json()
|
| 163 |
+
access_token = login_result.get('data', {}).get('tokens', {}).get('accessToken')
|
| 164 |
+
if access_token:
|
| 165 |
+
logger.info("Successfully obtained access token")
|
| 166 |
+
return access_token
|
| 167 |
+
else:
|
| 168 |
+
logger.error("Login successful but no access token found in response")
|
| 169 |
+
return None
|
| 170 |
+
else:
|
| 171 |
+
logger.error(f"Login failed with status {login_response.status_code}: {login_response.text}")
|
| 172 |
+
return None
|
| 173 |
+
except requests.exceptions.Timeout:
|
| 174 |
+
logger.error("Login request timed out")
|
| 175 |
+
return None
|
| 176 |
+
except requests.exceptions.RequestException as e:
|
| 177 |
+
logger.error(f"Network error during login: {e}")
|
| 178 |
+
return None
|
| 179 |
+
except Exception as e:
|
| 180 |
+
logger.error(f"Unexpected error getting access token: {e}")
|
| 181 |
+
return None
|
| 182 |
+
|
| 183 |
+
class structure(BaseModel):
|
| 184 |
+
name: str = Field(description="Name of the candidate")
|
| 185 |
+
location: str = Field(description="The location of the candidate. Extract city and state if possible.")
|
| 186 |
+
skills: List[str] = Field(description="List of individual skills of the candidate")
|
| 187 |
+
ideal_jobs: str = Field(description="List of ideal jobs for the candidate based on past experience.")
|
| 188 |
+
email: str = Field(description="The email of the candidate")
|
| 189 |
+
yoe: str = Field(description="Years of experience of the candidate.")
|
| 190 |
+
experience: str = Field(description="A brief summary of the candidate's past experience.")
|
| 191 |
+
industry: str = Field(description="The industry the candidate has experience in.(Tech,Legal,Finance/Accounting,Healthcare,Industrial,Logistics,Telecom,Admin,Other)")
|
| 192 |
+
|
| 193 |
+
class JobAnalysis(BaseModel):
|
| 194 |
+
job_title: str
|
| 195 |
+
company_name: str
|
| 196 |
+
analysis: dict
|
| 197 |
+
|
| 198 |
+
def extract_text_from_pdf(pdf_file_path: str) -> str:
|
| 199 |
+
"""
|
| 200 |
+
Extract text from PDF file using multiple methods for better accuracy
|
| 201 |
+
"""
|
| 202 |
+
text = ""
|
| 203 |
+
|
| 204 |
+
# Method 1: Try pdfplumber (better for complex layouts)
|
| 205 |
+
try:
|
| 206 |
+
with pdfplumber.open(pdf_file_path) as pdf:
|
| 207 |
+
for page in pdf.pages:
|
| 208 |
+
page_text = page.extract_text()
|
| 209 |
+
if page_text:
|
| 210 |
+
text += page_text + "\n"
|
| 211 |
+
if text.strip():
|
| 212 |
+
logger.info(f"Successfully extracted text using pdfplumber: {len(text)} characters")
|
| 213 |
+
return text.strip()
|
| 214 |
+
except Exception as e:
|
| 215 |
+
logger.warning(f"pdfplumber failed: {e}")
|
| 216 |
+
|
| 217 |
+
# Method 2: Try PyPDF2 (fallback)
|
| 218 |
+
try:
|
| 219 |
+
with open(pdf_file_path, 'rb') as file:
|
| 220 |
+
pdf_reader = PyPDF2.PdfReader(file)
|
| 221 |
+
for page in pdf_reader.pages:
|
| 222 |
+
page_text = page.extract_text()
|
| 223 |
+
if page_text:
|
| 224 |
+
text += page_text + "\n"
|
| 225 |
+
if text.strip():
|
| 226 |
+
logger.info(f"Successfully extracted text using PyPDF2: {len(text)} characters")
|
| 227 |
+
return text.strip()
|
| 228 |
+
except Exception as e:
|
| 229 |
+
logger.error(f"PyPDF2 failed: {e}")
|
| 230 |
+
|
| 231 |
+
# If both methods fail, return empty string
|
| 232 |
+
logger.error("Failed to extract text from PDF")
|
| 233 |
+
return ""
|
| 234 |
+
|
| 235 |
+
def extract_resume_info(resume_text: str) -> structure:
|
| 236 |
+
"""
|
| 237 |
+
Extract structured information from resume using LLM
|
| 238 |
+
"""
|
| 239 |
+
prompt = ChatPromptTemplate.from_template("""
|
| 240 |
+
You are an expert resume parser. Extract the following information from the resume text provided and return it in a structured JSON format.
|
| 241 |
+
|
| 242 |
+
Resume Text:
|
| 243 |
+
{resume_text}
|
| 244 |
+
|
| 245 |
+
Please extract and structure the information according to the following schema:
|
| 246 |
+
- name: Full name of the candidate
|
| 247 |
+
- location: City and state if available, otherwise general location
|
| 248 |
+
- skills: List of technical skills, tools, technologies, programming languages, etc.
|
| 249 |
+
- ideal_jobs: Based on their experience, what types of jobs would be ideal for this candidate
|
| 250 |
+
- email: Email address of the candidate (if found in resume)
|
| 251 |
+
- yoe: Years of experience (extract from work history)
|
| 252 |
+
- experience: Brief summary of their work experience and background
|
| 253 |
+
- industry: Categorize into one of these industries: Tech, Legal, Finance/Accounting, Healthcare, Industrial, Logistics, Telecom, Admin, Other
|
| 254 |
+
|
| 255 |
+
Return ONLY a valid JSON object with these fields. Do not include any other text or explanations.
|
| 256 |
+
""")
|
| 257 |
+
|
| 258 |
+
try:
|
| 259 |
+
str_llm = llm.with_structured_output(structure)
|
| 260 |
+
chain = prompt | str_llm
|
| 261 |
+
response = chain.invoke({"resume_text": resume_text})
|
| 262 |
+
|
| 263 |
+
validated_data = {
|
| 264 |
+
'name': response.name,
|
| 265 |
+
'location': response.location,
|
| 266 |
+
'email': response.email,
|
| 267 |
+
'skills': response.skills,
|
| 268 |
+
'ideal_jobs': response.ideal_jobs,
|
| 269 |
+
'yoe': response.yoe,
|
| 270 |
+
'experience': response.experience,
|
| 271 |
+
'industry': response.industry
|
| 272 |
+
}
|
| 273 |
+
|
| 274 |
+
logger.info(f"Successfully extracted resume info for: {validated_data['name']}")
|
| 275 |
+
return validated_data
|
| 276 |
+
|
| 277 |
+
except Exception as e:
|
| 278 |
+
logger.error(f"Failed to extract resume info: {e}")
|
| 279 |
+
return {
|
| 280 |
+
'name': "Unknown",
|
| 281 |
+
'location': "Unknown",
|
| 282 |
+
'email': "",
|
| 283 |
+
'skills': [],
|
| 284 |
+
'ideal_jobs': "Software Engineer",
|
| 285 |
+
'yoe': "0",
|
| 286 |
+
'experience': "No experience listed",
|
| 287 |
+
'industry': "Tech"
|
| 288 |
+
}
|
| 289 |
+
|
| 290 |
+
def filter_jobs_by_industry(jobs_df: pd.DataFrame, target_industry: str) -> pd.DataFrame:
|
| 291 |
+
"""
|
| 292 |
+
Filter jobs by industry
|
| 293 |
+
"""
|
| 294 |
+
# Map the extracted industry to database industry values
|
| 295 |
+
industry_mapping = {
|
| 296 |
+
'Tech': ['technology', 'VC Tech'],
|
| 297 |
+
'Legal': ['Legal'],
|
| 298 |
+
'Finance/Accounting': ['finance/Accounting'],
|
| 299 |
+
'Healthcare': ['healthcare'],
|
| 300 |
+
'Industrial': ['industrial'],
|
| 301 |
+
'Logistics': ['logistics'],
|
| 302 |
+
'Telecom': ['telecom'],
|
| 303 |
+
'Admin': ['admin'],
|
| 304 |
+
'Other': ['Other']
|
| 305 |
+
}
|
| 306 |
+
|
| 307 |
+
target_industries = industry_mapping.get(target_industry, ['Tech'])
|
| 308 |
+
|
| 309 |
+
# Filter jobs by industry (using database column name 'industry')
|
| 310 |
+
filtered_jobs = jobs_df[jobs_df['industry'].isin(target_industries)]
|
| 311 |
+
|
| 312 |
+
logger.info(f"Filtered {len(filtered_jobs)} jobs for industry: {target_industry}")
|
| 313 |
+
return filtered_jobs
|
| 314 |
+
|
| 315 |
+
def filter_jobs_by_location(jobs_df: pd.DataFrame, candidate_location: str) -> pd.DataFrame:
|
| 316 |
+
"""
|
| 317 |
+
Filter jobs by location matching the candidate's location
|
| 318 |
+
"""
|
| 319 |
+
if not candidate_location or candidate_location.lower() in ['unknown', 'n/a', '']:
|
| 320 |
+
logger.info(f"No location info provided, returning all {len(jobs_df)} jobs")
|
| 321 |
+
return jobs_df # Return all jobs if no location info
|
| 322 |
+
|
| 323 |
+
# Clean and normalize candidate location
|
| 324 |
+
candidate_location = candidate_location.lower().strip()
|
| 325 |
+
logger.info(f"Filtering jobs for candidate location: {candidate_location}")
|
| 326 |
+
|
| 327 |
+
# Extract state abbreviations and full names
|
| 328 |
+
state_mapping = {
|
| 329 |
+
'alabama': 'al', 'alaska': 'ak', 'arizona': 'az', 'arkansas': 'ar', 'california': 'ca',
|
| 330 |
+
'colorado': 'co', 'connecticut': 'ct', 'delaware': 'de', 'district of columbia': 'dc', 'florida': 'fl', 'georgia': 'ga',
|
| 331 |
+
'hawaii': 'hi', 'idaho': 'id', 'illinois': 'il', 'indiana': 'in', 'iowa': 'ia',
|
| 332 |
+
'kansas': 'ks', 'kentucky': 'ky', 'louisiana': 'la', 'maine': 'me', 'maryland': 'md',
|
| 333 |
+
'massachusetts': 'ma', 'michigan': 'mi', 'minnesota': 'mn', 'mississippi': 'ms', 'missouri': 'mo',
|
| 334 |
+
'montana': 'mt', 'nebraska': 'ne', 'nevada': 'nv', 'new hampshire': 'nh', 'new jersey': 'nj',
|
| 335 |
+
'new mexico': 'nm', 'new york': 'ny', 'north carolina': 'nc', 'north dakota': 'nd', 'ohio': 'oh',
|
| 336 |
+
'oklahoma': 'ok', 'oregon': 'or', 'pennsylvania': 'pa', 'rhode island': 'ri', 'south carolina': 'sc',
|
| 337 |
+
'south dakota': 'sd', 'tennessee': 'tn', 'texas': 'tx', 'utah': 'ut', 'vermont': 'vt',
|
| 338 |
+
'virginia': 'va', 'washington': 'wa', 'west virginia': 'wv', 'wisconsin': 'wi', 'wyoming': 'wy'
|
| 339 |
+
}
|
| 340 |
+
|
| 341 |
+
# Create location patterns to match
|
| 342 |
+
location_patterns = []
|
| 343 |
+
|
| 344 |
+
# Add the original location
|
| 345 |
+
location_patterns.append(candidate_location)
|
| 346 |
+
|
| 347 |
+
# Add state variations
|
| 348 |
+
for state_name, state_abbr in state_mapping.items():
|
| 349 |
+
if state_name in candidate_location or state_abbr in candidate_location:
|
| 350 |
+
location_patterns.extend([state_name, state_abbr])
|
| 351 |
+
|
| 352 |
+
# Add common city variations (extract city name)
|
| 353 |
+
city_match = re.search(r'^([^,]+)', candidate_location)
|
| 354 |
+
if city_match:
|
| 355 |
+
city_name = city_match.group(1).strip()
|
| 356 |
+
location_patterns.append(city_name)
|
| 357 |
+
|
| 358 |
+
# Add remote/anywhere patterns if location is remote
|
| 359 |
+
if 'remote' in candidate_location or 'anywhere' in candidate_location:
|
| 360 |
+
location_patterns.extend(['remote', 'anywhere', 'work from home', 'wfh'])
|
| 361 |
+
|
| 362 |
+
logger.info(f"Location patterns to match: {location_patterns}")
|
| 363 |
+
|
| 364 |
+
# Filter jobs by location
|
| 365 |
+
matching_jobs = []
|
| 366 |
+
|
| 367 |
+
for _, job_row in jobs_df.iterrows():
|
| 368 |
+
job_location = str(job_row.get('job_location', '')).lower()
|
| 369 |
+
|
| 370 |
+
# Check if any location pattern matches
|
| 371 |
+
location_matches = any(pattern in job_location for pattern in location_patterns)
|
| 372 |
+
|
| 373 |
+
# Also check for remote jobs if candidate location includes remote
|
| 374 |
+
if 'remote' in candidate_location and any(remote_term in job_location for remote_term in ['remote', 'anywhere', 'work from home', 'wfh']):
|
| 375 |
+
location_matches = True
|
| 376 |
+
|
| 377 |
+
# Check for exact city/state matches
|
| 378 |
+
if candidate_location in job_location or job_location in candidate_location:
|
| 379 |
+
location_matches = True
|
| 380 |
+
|
| 381 |
+
if location_matches:
|
| 382 |
+
matching_jobs.append(job_row)
|
| 383 |
+
|
| 384 |
+
result_df = pd.DataFrame(matching_jobs) if matching_jobs else jobs_df
|
| 385 |
+
logger.info(f"Found {len(matching_jobs)} jobs matching location out of {len(jobs_df)} total jobs")
|
| 386 |
+
|
| 387 |
+
return result_df
|
| 388 |
+
|
| 389 |
+
def extract_experience_requirement(requirements_text: str) -> dict:
|
| 390 |
+
"""
|
| 391 |
+
Extract experience requirements from job requirements text
|
| 392 |
+
Returns a dictionary with min_years, max_years, and level
|
| 393 |
+
"""
|
| 394 |
+
if not requirements_text or pd.isna(requirements_text):
|
| 395 |
+
return {'min_years': 0, 'max_years': 999, 'level': 'any'}
|
| 396 |
+
|
| 397 |
+
requirements_text = str(requirements_text).lower()
|
| 398 |
+
|
| 399 |
+
# Common experience patterns
|
| 400 |
+
experience_patterns = [
|
| 401 |
+
# Specific year ranges
|
| 402 |
+
r'(\d+)[\-\+]\s*(\d+)\s*years?\s*experience',
|
| 403 |
+
r'(\d+)\s*to\s*(\d+)\s*years?\s*experience',
|
| 404 |
+
r'(\d+)\s*-\s*(\d+)\s*years?\s*experience',
|
| 405 |
+
|
| 406 |
+
# Minimum years
|
| 407 |
+
r'(\d+)\+?\s*years?\s*experience',
|
| 408 |
+
r'minimum\s*(\d+)\s*years?\s*experience',
|
| 409 |
+
r'at\s*least\s*(\d+)\s*years?\s*experience',
|
| 410 |
+
|
| 411 |
+
# Level-based patterns
|
| 412 |
+
r'(entry\s*level|junior|associate)',
|
| 413 |
+
r'(mid\s*level|intermediate|mid\s*senior)',
|
| 414 |
+
r'(senior|lead|principal|staff)',
|
| 415 |
+
r'(executive|director|vp|chief|c\s*level)',
|
| 416 |
+
|
| 417 |
+
# Specific year mentions
|
| 418 |
+
r'(\d+)\s*years?\s*in\s*the\s*field',
|
| 419 |
+
r'(\d+)\s*years?\s*of\s*professional\s*experience',
|
| 420 |
+
r'(\d+)\s*years?\s*of\s*relevant\s*experience'
|
| 421 |
+
]
|
| 422 |
+
|
| 423 |
+
min_years = 0
|
| 424 |
+
max_years = 999
|
| 425 |
+
level = 'any'
|
| 426 |
+
|
| 427 |
+
# Check for specific year ranges
|
| 428 |
+
for pattern in experience_patterns[:3]: # First 3 patterns are for ranges
|
| 429 |
+
matches = re.findall(pattern, requirements_text)
|
| 430 |
+
if matches:
|
| 431 |
+
try:
|
| 432 |
+
min_years = int(matches[0][0])
|
| 433 |
+
max_years = int(matches[0][1])
|
| 434 |
+
break
|
| 435 |
+
except (ValueError, IndexError):
|
| 436 |
+
continue
|
| 437 |
+
|
| 438 |
+
# Check for minimum years if no range found
|
| 439 |
+
if min_years == 0:
|
| 440 |
+
for pattern in experience_patterns[3:6]: # Minimum year patterns
|
| 441 |
+
matches = re.findall(pattern, requirements_text)
|
| 442 |
+
if matches:
|
| 443 |
+
try:
|
| 444 |
+
min_years = int(matches[0])
|
| 445 |
+
break
|
| 446 |
+
except (ValueError, IndexError):
|
| 447 |
+
continue
|
| 448 |
+
|
| 449 |
+
# Check for level-based requirements
|
| 450 |
+
for pattern in experience_patterns[6:10]: # Level patterns
|
| 451 |
+
matches = re.findall(pattern, requirements_text)
|
| 452 |
+
if matches:
|
| 453 |
+
level_match = matches[0].lower()
|
| 454 |
+
if 'entry' in level_match or 'junior' in level_match or 'associate' in level_match:
|
| 455 |
+
level = 'entry'
|
| 456 |
+
if min_years == 0:
|
| 457 |
+
min_years = 0
|
| 458 |
+
max_years = 2
|
| 459 |
+
elif 'mid' in level_match or 'intermediate' in level_match:
|
| 460 |
+
level = 'mid'
|
| 461 |
+
if min_years == 0:
|
| 462 |
+
min_years = 2
|
| 463 |
+
max_years = 5
|
| 464 |
+
elif 'senior' in level_match or 'lead' in level_match or 'principal' in level_match or 'staff' in level_match:
|
| 465 |
+
level = 'senior'
|
| 466 |
+
if min_years == 0:
|
| 467 |
+
min_years = 5
|
| 468 |
+
max_years = 10
|
| 469 |
+
elif 'executive' in level_match or 'director' in level_match or 'vp' in level_match or 'chief' in level_match:
|
| 470 |
+
level = 'executive'
|
| 471 |
+
if min_years == 0:
|
| 472 |
+
min_years = 10
|
| 473 |
+
max_years = 999
|
| 474 |
+
break
|
| 475 |
+
|
| 476 |
+
# Check for specific year mentions if still no match
|
| 477 |
+
if min_years == 0:
|
| 478 |
+
for pattern in experience_patterns[10:]: # Specific year mention patterns
|
| 479 |
+
matches = re.findall(pattern, requirements_text)
|
| 480 |
+
if matches:
|
| 481 |
+
try:
|
| 482 |
+
min_years = int(matches[0])
|
| 483 |
+
max_years = min_years + 2 # Add buffer
|
| 484 |
+
break
|
| 485 |
+
except (ValueError, IndexError):
|
| 486 |
+
continue
|
| 487 |
+
|
| 488 |
+
return {
|
| 489 |
+
'min_years': min_years,
|
| 490 |
+
'max_years': max_years,
|
| 491 |
+
'level': level
|
| 492 |
+
}
|
| 493 |
+
|
| 494 |
+
def filter_jobs_by_experience(jobs_df: pd.DataFrame, candidate_yoe: str) -> pd.DataFrame:
|
| 495 |
+
"""
|
| 496 |
+
Filter jobs by experience level matching the candidate's years of experience
|
| 497 |
+
"""
|
| 498 |
+
if not candidate_yoe or candidate_yoe.lower() in ['unknown', 'n/a', '']:
|
| 499 |
+
logger.info(f"No experience info provided, returning all {len(jobs_df)} jobs")
|
| 500 |
+
return jobs_df
|
| 501 |
+
|
| 502 |
+
# Extract numeric years from candidate experience
|
| 503 |
+
try:
|
| 504 |
+
# Handle various formats like "5 years", "5+ years", "5-7 years", etc.
|
| 505 |
+
yoe_match = re.search(r'(\d+(?:\.\d+)?)', str(candidate_yoe))
|
| 506 |
+
if yoe_match:
|
| 507 |
+
candidate_years = float(yoe_match.group(1))
|
| 508 |
+
else:
|
| 509 |
+
logger.warning(f"Could not extract years from: {candidate_yoe}")
|
| 510 |
+
return jobs_df
|
| 511 |
+
except (ValueError, TypeError):
|
| 512 |
+
logger.error(f"Invalid experience format: {candidate_yoe}")
|
| 513 |
+
return jobs_df
|
| 514 |
+
|
| 515 |
+
logger.info(f"Filtering jobs for candidate with {candidate_years} years of experience")
|
| 516 |
+
|
| 517 |
+
# Filter jobs by experience requirements
|
| 518 |
+
matching_jobs = []
|
| 519 |
+
|
| 520 |
+
for _, job_row in jobs_df.iterrows():
|
| 521 |
+
requirements_text = str(job_row.get('requirements', ''))
|
| 522 |
+
experience_req = extract_experience_requirement(requirements_text)
|
| 523 |
+
|
| 524 |
+
# Check if candidate's experience matches the job requirements
|
| 525 |
+
if (candidate_years >= experience_req['min_years'] and
|
| 526 |
+
candidate_years <= experience_req['max_years']):
|
| 527 |
+
matching_jobs.append(job_row)
|
| 528 |
+
|
| 529 |
+
result_df = pd.DataFrame(matching_jobs) if matching_jobs else jobs_df
|
| 530 |
+
logger.info(f"Found {len(matching_jobs)} jobs matching experience out of {len(jobs_df)} total jobs")
|
| 531 |
+
|
| 532 |
+
return result_df
|
| 533 |
+
|
| 534 |
+
def filter_jobs_by_priority(jobs_df: pd.DataFrame) -> pd.DataFrame:
|
| 535 |
+
"""
|
| 536 |
+
Filter jobs to only include high priority jobs
|
| 537 |
+
"""
|
| 538 |
+
if jobs_df.empty:
|
| 539 |
+
logger.info("No jobs to filter by priority")
|
| 540 |
+
return jobs_df
|
| 541 |
+
|
| 542 |
+
# Filter jobs by priority - only include high priority jobs
|
| 543 |
+
priority_filtered_jobs = jobs_df[jobs_df['priority'].str.lower() == 'high']
|
| 544 |
+
|
| 545 |
+
logger.info(f"Found {len(priority_filtered_jobs)} high priority jobs out of {len(jobs_df)} total jobs")
|
| 546 |
+
|
| 547 |
+
return priority_filtered_jobs
|
| 548 |
+
|
| 549 |
+
def create_job_description(job_row: pd.Series) -> str:
|
| 550 |
+
"""
|
| 551 |
+
Create a comprehensive job description from job data
|
| 552 |
+
"""
|
| 553 |
+
description_parts = []
|
| 554 |
+
|
| 555 |
+
if pd.notna(job_row.get('company_blurb')):
|
| 556 |
+
description_parts.append(f"Company: {job_row['company_blurb']}")
|
| 557 |
+
|
| 558 |
+
if pd.notna(job_row.get('company_culture')):
|
| 559 |
+
description_parts.append(f"Company Culture: {job_row['company_culture']}")
|
| 560 |
+
|
| 561 |
+
if pd.notna(job_row.get('requirements')):
|
| 562 |
+
description_parts.append(f"Requirements: {job_row['requirements']}")
|
| 563 |
+
|
| 564 |
+
if pd.notna(job_row.get('role_responsibilities')):
|
| 565 |
+
description_parts.append(f"Role Responsibilities: {job_row['role_responsibilities']}")
|
| 566 |
+
|
| 567 |
+
if pd.notna(job_row.get('job_location')):
|
| 568 |
+
description_parts.append(f"Location: {job_row['job_location']}")
|
| 569 |
+
|
| 570 |
+
return "\n\n".join(description_parts)
|
| 571 |
+
|
| 572 |
+
def clean_analysis_result(analysis_result: dict) -> dict:
|
| 573 |
+
"""
|
| 574 |
+
Clean up the analysis result to only include final_score and summary
|
| 575 |
+
"""
|
| 576 |
+
if not isinstance(analysis_result, dict):
|
| 577 |
+
return analysis_result
|
| 578 |
+
|
| 579 |
+
# Remove user_context if present
|
| 580 |
+
if 'user_context' in analysis_result:
|
| 581 |
+
del analysis_result['user_context']
|
| 582 |
+
|
| 583 |
+
# Clean up final_response if present
|
| 584 |
+
if 'final_response' in analysis_result:
|
| 585 |
+
try:
|
| 586 |
+
# Handle both string and dict formats
|
| 587 |
+
if isinstance(analysis_result['final_response'], str):
|
| 588 |
+
final_response = json.loads(analysis_result['final_response'])
|
| 589 |
+
else:
|
| 590 |
+
final_response = analysis_result['final_response']
|
| 591 |
+
|
| 592 |
+
# Extract and format the evaluation data
|
| 593 |
+
if 'evaluation' in final_response and len(final_response['evaluation']) > 0:
|
| 594 |
+
evaluation = final_response['evaluation'][0]
|
| 595 |
+
|
| 596 |
+
# Create a minimal structure with only final_score and summary
|
| 597 |
+
cleaned_response = {
|
| 598 |
+
'final_score': evaluation.get('final_score', 0),
|
| 599 |
+
'summary': {}
|
| 600 |
+
}
|
| 601 |
+
|
| 602 |
+
# Extract summary information
|
| 603 |
+
if 'summary' in evaluation and len(evaluation['summary']) > 0:
|
| 604 |
+
summary = evaluation['summary'][0]
|
| 605 |
+
cleaned_response['summary'] = {
|
| 606 |
+
'strengths': summary.get('strengths', []),
|
| 607 |
+
'weaknesses': summary.get('weaknesses', []),
|
| 608 |
+
'opportunities': summary.get('opportunities', []),
|
| 609 |
+
'recommendations': summary.get('recommendations', [])
|
| 610 |
+
}
|
| 611 |
+
|
| 612 |
+
analysis_result['final_response'] = cleaned_response
|
| 613 |
+
|
| 614 |
+
except (json.JSONDecodeError, KeyError, IndexError) as e:
|
| 615 |
+
logger.error(f"Error cleaning analysis result: {e}")
|
| 616 |
+
# Keep original if cleaning fails
|
| 617 |
+
pass
|
| 618 |
+
|
| 619 |
+
return analysis_result
|
| 620 |
+
|
| 621 |
+
def sort_jobs_by_score(job_analyses: list) -> list:
|
| 622 |
+
"""
|
| 623 |
+
Sort jobs by final_score in descending order (highest scores first)
|
| 624 |
+
"""
|
| 625 |
+
def extract_score(job_analysis):
|
| 626 |
+
try:
|
| 627 |
+
analysis = job_analysis.get('analysis', {})
|
| 628 |
+
if 'final_response' in analysis and isinstance(analysis['final_response'], dict):
|
| 629 |
+
return analysis['final_response'].get('final_score', 0)
|
| 630 |
+
return 0
|
| 631 |
+
except:
|
| 632 |
+
return 0
|
| 633 |
+
|
| 634 |
+
return sorted(job_analyses, key=extract_score, reverse=True)
|
| 635 |
+
|
| 636 |
+
async def analyze_job_fit_with_retry(job_description: str, resume_file_path: str, max_retries: int = 3) -> dict:
|
| 637 |
+
"""
|
| 638 |
+
Analyze job-candidate fit with retry logic for resilience
|
| 639 |
+
"""
|
| 640 |
+
for attempt in range(max_retries):
|
| 641 |
+
try:
|
| 642 |
+
result = analyze_job_fit(job_description, resume_file_path)
|
| 643 |
+
if "error" not in result:
|
| 644 |
+
return result
|
| 645 |
+
|
| 646 |
+
# If authentication error and not last attempt, retry
|
| 647 |
+
if "Authentication failed" in result.get("error", "") and attempt < max_retries - 1:
|
| 648 |
+
logger.warning(f"Authentication failed, retrying... (attempt {attempt + 1}/{max_retries})")
|
| 649 |
+
global access_token
|
| 650 |
+
access_token = None # Reset token to force refresh
|
| 651 |
+
await asyncio.sleep(2 ** attempt) # Exponential backoff
|
| 652 |
+
continue
|
| 653 |
+
|
| 654 |
+
return result
|
| 655 |
+
except Exception as e:
|
| 656 |
+
logger.error(f"Attempt {attempt + 1}/{max_retries} failed: {str(e)}")
|
| 657 |
+
if attempt == max_retries - 1:
|
| 658 |
+
return {"error": f"Failed after {max_retries} attempts: {str(e)}"}
|
| 659 |
+
await asyncio.sleep(2 ** attempt)
|
| 660 |
+
|
| 661 |
+
def analyze_job_fit(job_description: str, resume_file_path: str) -> dict:
|
| 662 |
+
"""
|
| 663 |
+
Analyze job-candidate fit using the external API
|
| 664 |
+
"""
|
| 665 |
+
|
| 666 |
+
url = "https://fitscore-agent-535960463668.us-central1.run.app/analyze"
|
| 667 |
+
|
| 668 |
+
# Check if resume file exists
|
| 669 |
+
if not os.path.exists(resume_file_path):
|
| 670 |
+
logger.error(f"Resume file not found: {resume_file_path}")
|
| 671 |
+
return {"error": f"Resume file not found: {resume_file_path}"}
|
| 672 |
+
|
| 673 |
+
|
| 674 |
+
# Prepare headers with authentication
|
| 675 |
+
headers = {
|
| 676 |
+
'accept': 'application/json',
|
| 677 |
+
'Authorization': f'Bearer {get_access_token()}'
|
| 678 |
+
}
|
| 679 |
+
|
| 680 |
+
# Prepare form data
|
| 681 |
+
files = {
|
| 682 |
+
'resume': (os.path.basename(resume_file_path), open(resume_file_path, 'rb'), 'application/pdf')
|
| 683 |
+
}
|
| 684 |
+
|
| 685 |
+
data = {
|
| 686 |
+
'jd_text': job_description
|
| 687 |
+
}
|
| 688 |
+
|
| 689 |
+
try:
|
| 690 |
+
# Make the API request with longer timeout for cloud environments
|
| 691 |
+
response = requests.post(url, headers=headers, files=files, data=data, timeout=60)
|
| 692 |
+
|
| 693 |
+
# If we get an authentication error, try to get a fresh token and retry once
|
| 694 |
+
if response.status_code == 401:
|
| 695 |
+
logger.warning("Authentication failed, getting fresh token...")
|
| 696 |
+
global access_token
|
| 697 |
+
access_token = None # Reset the token
|
| 698 |
+
new_token = get_access_token()
|
| 699 |
+
if new_token:
|
| 700 |
+
headers['Authorization'] = f'Bearer {new_token}'
|
| 701 |
+
# Close the previous file and reopen
|
| 702 |
+
files['resume'][1].close()
|
| 703 |
+
files['resume'] = (os.path.basename(resume_file_path), open(resume_file_path, 'rb'), 'application/pdf')
|
| 704 |
+
response = requests.post(url, headers=headers, files=files, data=data, timeout=60)
|
| 705 |
+
else:
|
| 706 |
+
# If we can't get a fresh token, return error
|
| 707 |
+
return {"error": "Authentication failed and could not obtain fresh token"}
|
| 708 |
+
|
| 709 |
+
if response.status_code == 200:
|
| 710 |
+
logger.info("Job fit analysis completed successfully")
|
| 711 |
+
return response.json()
|
| 712 |
+
elif response.status_code == 401:
|
| 713 |
+
# If we still get 401 after fresh token, return error
|
| 714 |
+
return {"error": "Authentication failed even with fresh token"}
|
| 715 |
+
else:
|
| 716 |
+
logger.error(f"API call failed with status {response.status_code}")
|
| 717 |
+
return {"error": f"API call failed with status {response.status_code}", "details": response.text}
|
| 718 |
+
|
| 719 |
+
except requests.exceptions.Timeout:
|
| 720 |
+
logger.error("API request timed out")
|
| 721 |
+
return {"error": "API request timed out"}
|
| 722 |
+
except Exception as e:
|
| 723 |
+
logger.error(f"Exception occurred: {str(e)}")
|
| 724 |
+
return {"error": f"Exception occurred: {str(e)}"}
|
| 725 |
+
finally:
|
| 726 |
+
# Ensure the file is closed
|
| 727 |
+
if 'resume' in files:
|
| 728 |
+
try:
|
| 729 |
+
files['resume'][1].close()
|
| 730 |
+
except:
|
| 731 |
+
pass
|
| 732 |
+
|
| 733 |
+
@app.post("/process_resume_and_recommend_jobs")
|
| 734 |
+
async def process_resume_and_recommend_jobs(
|
| 735 |
+
resume: UploadFile = File(...),
|
| 736 |
+
resume_text: str = Form(""),
|
| 737 |
+
api_key: str = Depends(verify_api_key)
|
| 738 |
+
):
|
| 739 |
+
"""
|
| 740 |
+
Process resume, extract information, filter jobs by industry, and analyze fit
|
| 741 |
+
"""
|
| 742 |
+
request_start_time = time.time()
|
| 743 |
+
|
| 744 |
+
try:
|
| 745 |
+
logger.info(f"Processing resume: {resume.filename}")
|
| 746 |
+
|
| 747 |
+
# Save uploaded file temporarily
|
| 748 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file:
|
| 749 |
+
shutil.copyfileobj(resume.file, tmp_file)
|
| 750 |
+
tmp_file_path = tmp_file.name
|
| 751 |
+
|
| 752 |
+
try:
|
| 753 |
+
# Extract text from PDF if no resume_text provided
|
| 754 |
+
if not resume_text:
|
| 755 |
+
resume_text = extract_text_from_pdf(tmp_file_path)
|
| 756 |
+
if not resume_text:
|
| 757 |
+
logger.error("Could not extract text from PDF file")
|
| 758 |
+
return JSONResponse(
|
| 759 |
+
status_code=400,
|
| 760 |
+
content={"error": "Could not extract text from PDF file"}
|
| 761 |
+
)
|
| 762 |
+
|
| 763 |
+
# Extract resume information using LLM
|
| 764 |
+
resume_info = extract_resume_info(resume_text)
|
| 765 |
+
|
| 766 |
+
# Load jobs data from PostgreSQL database
|
| 767 |
+
try:
|
| 768 |
+
jobs_df = pd.read_sql_table("jobs", con=engine)
|
| 769 |
+
candidates_df = pd.read_sql_table("candidates", con=engine)
|
| 770 |
+
submissions_df = pd.read_sql_table("candidate_submissions", con=engine)
|
| 771 |
+
logger.info(f"Loaded {len(jobs_df)} jobs, {len(candidates_df)} candidates, {len(submissions_df)} submissions")
|
| 772 |
+
except Exception as db_error:
|
| 773 |
+
logger.error(f"Database error: {db_error}")
|
| 774 |
+
return JSONResponse(
|
| 775 |
+
status_code=500,
|
| 776 |
+
content={"error": "Database connection error"}
|
| 777 |
+
)
|
| 778 |
+
|
| 779 |
+
# Filter jobs by industry
|
| 780 |
+
filtered_jobs = filter_jobs_by_industry(jobs_df, resume_info['industry'])
|
| 781 |
+
|
| 782 |
+
if filtered_jobs.empty:
|
| 783 |
+
logger.warning(f"No jobs found for industry: {resume_info['industry']}")
|
| 784 |
+
return JSONResponse(
|
| 785 |
+
status_code=404,
|
| 786 |
+
content={"message": f"No jobs found for industry: {resume_info['industry']}"}
|
| 787 |
+
)
|
| 788 |
+
|
| 789 |
+
# Filter jobs by location
|
| 790 |
+
location_filtered_jobs = filter_jobs_by_location(filtered_jobs, resume_info['location'])
|
| 791 |
+
|
| 792 |
+
# Filter jobs by experience level
|
| 793 |
+
experience_filtered_jobs = filter_jobs_by_experience(location_filtered_jobs, resume_info['yoe'])
|
| 794 |
+
|
| 795 |
+
# Filter jobs by priority
|
| 796 |
+
priority_filtered_jobs = filter_jobs_by_priority(experience_filtered_jobs)
|
| 797 |
+
|
| 798 |
+
# Use priority filtered jobs if available, otherwise fall back to experience filtered jobs, then location filtered jobs
|
| 799 |
+
if not priority_filtered_jobs.empty:
|
| 800 |
+
jobs_to_analyze = priority_filtered_jobs
|
| 801 |
+
elif not experience_filtered_jobs.empty:
|
| 802 |
+
jobs_to_analyze = experience_filtered_jobs
|
| 803 |
+
else:
|
| 804 |
+
jobs_to_analyze = location_filtered_jobs
|
| 805 |
+
|
| 806 |
+
# Create filtered_submission_df with job_ids from jobs_to_analyze
|
| 807 |
+
job_ids_to_analyze = jobs_to_analyze['id'].tolist()
|
| 808 |
+
filtered_submission_df = submissions_df[submissions_df['jobId'].isin(job_ids_to_analyze)]
|
| 809 |
+
|
| 810 |
+
# Check if candidate email exists in candidates_df
|
| 811 |
+
candidate_id = None
|
| 812 |
+
if resume_info.get('email'):
|
| 813 |
+
candidate_match = candidates_df[candidates_df['email'] == resume_info['email']]
|
| 814 |
+
if not candidate_match.empty:
|
| 815 |
+
candidate_id = candidate_match.iloc[0]['id']
|
| 816 |
+
logger.info(f"Found existing candidate with ID: {candidate_id}")
|
| 817 |
+
|
| 818 |
+
# Analyze job fit for each filtered job
|
| 819 |
+
job_analyses = []
|
| 820 |
+
|
| 821 |
+
for _, job_row in jobs_to_analyze.head(20).iterrows(): # Analyze top 20 jobs
|
| 822 |
+
job_id = job_row.get('id')
|
| 823 |
+
|
| 824 |
+
# Check if we have an existing submission for this candidate and job
|
| 825 |
+
existing_submission = None
|
| 826 |
+
if candidate_id and job_id:
|
| 827 |
+
submission_match = filtered_submission_df[
|
| 828 |
+
(filtered_submission_df['candidate_id'] == candidate_id) &
|
| 829 |
+
(filtered_submission_df['jobId'] == job_id)
|
| 830 |
+
]
|
| 831 |
+
if not submission_match.empty:
|
| 832 |
+
existing_submission = submission_match.iloc[0]
|
| 833 |
+
logger.info(f"Found existing submission for job_id: {job_id}, candidate_id: {candidate_id}")
|
| 834 |
+
|
| 835 |
+
if existing_submission is not None:
|
| 836 |
+
# Use existing fit score from submission
|
| 837 |
+
fit_score = existing_submission.get('fit_score', 0)
|
| 838 |
+
existing_analysis = {
|
| 839 |
+
'final_response': {
|
| 840 |
+
'final_score': fit_score,
|
| 841 |
+
'summary': {
|
| 842 |
+
'strengths': [],
|
| 843 |
+
'weaknesses': [],
|
| 844 |
+
'opportunities': [],
|
| 845 |
+
'recommendations': []
|
| 846 |
+
}
|
| 847 |
+
},
|
| 848 |
+
'source': 'existing_submission'
|
| 849 |
+
}
|
| 850 |
+
analysis_result = existing_analysis
|
| 851 |
+
else:
|
| 852 |
+
# Call API for new analysis with retry logic
|
| 853 |
+
job_description = create_job_description(job_row)
|
| 854 |
+
analysis_result = await analyze_job_fit_with_retry(job_description, tmp_file_path)
|
| 855 |
+
analysis_result['source'] = 'api_call'
|
| 856 |
+
|
| 857 |
+
# Clean up the analysis result
|
| 858 |
+
cleaned_analysis = clean_analysis_result(analysis_result)
|
| 859 |
+
|
| 860 |
+
job_analysis = JobAnalysis(
|
| 861 |
+
job_title=job_row.get('job_title', 'Unknown'),
|
| 862 |
+
company_name=job_row.get('company_name', 'Unknown'),
|
| 863 |
+
analysis=cleaned_analysis
|
| 864 |
+
)
|
| 865 |
+
job_analyses.append(job_analysis.dict())
|
| 866 |
+
|
| 867 |
+
# Sort jobs by final_score in descending order (highest scores first)
|
| 868 |
+
job_analyses = sort_jobs_by_score(job_analyses)
|
| 869 |
+
|
| 870 |
+
# Count existing submissions vs API calls
|
| 871 |
+
existing_submissions_count = sum(1 for analysis in job_analyses if analysis.get('analysis', {}).get('source') == 'existing_submission')
|
| 872 |
+
api_calls_count = sum(1 for analysis in job_analyses if analysis.get('analysis', {}).get('source') == 'api_call')
|
| 873 |
+
|
| 874 |
+
# Clean up temporary file
|
| 875 |
+
os.unlink(tmp_file_path)
|
| 876 |
+
|
| 877 |
+
# Calculate processing time
|
| 878 |
+
processing_time = time.time() - request_start_time
|
| 879 |
+
logger.info(f"Request completed in {processing_time:.2f} seconds")
|
| 880 |
+
|
| 881 |
+
return {
|
| 882 |
+
"resume_info": resume_info,
|
| 883 |
+
"industry": resume_info['industry'],
|
| 884 |
+
"location": resume_info['location'],
|
| 885 |
+
"experience_years": resume_info['yoe'],
|
| 886 |
+
"jobs_analyzed": len(job_analyses),
|
| 887 |
+
"location_filtered": not location_filtered_jobs.empty,
|
| 888 |
+
"experience_filtered": not experience_filtered_jobs.empty,
|
| 889 |
+
"priority_filtered": not priority_filtered_jobs.empty,
|
| 890 |
+
"existing_submissions_used": existing_submissions_count,
|
| 891 |
+
"api_calls_made": api_calls_count,
|
| 892 |
+
"candidate_found": candidate_id is not None,
|
| 893 |
+
"processing_time_seconds": round(processing_time, 2),
|
| 894 |
+
"job_analyses": job_analyses
|
| 895 |
+
}
|
| 896 |
+
|
| 897 |
+
except Exception as e:
|
| 898 |
+
# Clean up temporary file in case of error
|
| 899 |
+
if os.path.exists(tmp_file_path):
|
| 900 |
+
os.unlink(tmp_file_path)
|
| 901 |
+
raise e
|
| 902 |
+
|
| 903 |
+
except Exception as e:
|
| 904 |
+
logger.error(f"Processing failed: {str(e)}", exc_info=True)
|
| 905 |
+
return JSONResponse(
|
| 906 |
+
status_code=500,
|
| 907 |
+
content={"error": f"Processing failed: {str(e)}"}
|
| 908 |
+
)
|
| 909 |
+
|
| 910 |
+
@app.get("/health")
|
| 911 |
+
async def health_check(api_key: str = Depends(verify_api_key)):
|
| 912 |
+
"""
|
| 913 |
+
Health check endpoint with database connectivity check
|
| 914 |
+
"""
|
| 915 |
+
health_status = {
|
| 916 |
+
"status": "healthy",
|
| 917 |
+
"message": "Job Recommendation API is running",
|
| 918 |
+
"timestamp": time.time()
|
| 919 |
+
}
|
| 920 |
+
|
| 921 |
+
# Check database connectivity
|
| 922 |
+
try:
|
| 923 |
+
with engine.connect() as conn:
|
| 924 |
+
result = conn.execute(text("SELECT 1"))
|
| 925 |
+
health_status["database"] = "connected"
|
| 926 |
+
except Exception as e:
|
| 927 |
+
logger.error(f"Database health check failed: {e}")
|
| 928 |
+
health_status["database"] = "disconnected"
|
| 929 |
+
health_status["status"] = "degraded"
|
| 930 |
+
|
| 931 |
+
return health_status
|
| 932 |
+
|
| 933 |
+
@app.get("/")
|
| 934 |
+
async def root():
|
| 935 |
+
"""
|
| 936 |
+
Root endpoint
|
| 937 |
+
"""
|
| 938 |
+
return {
|
| 939 |
+
"message": "Job Recommendation API",
|
| 940 |
+
"version": "1.0.0",
|
| 941 |
+
"docs": "/docs",
|
| 942 |
+
"health": "/health"
|
| 943 |
+
}
|
| 944 |
+
|
| 945 |
+
if __name__ == "__main__":
|
| 946 |
+
import uvicorn
|
| 947 |
+
port = int(os.getenv("PORT", 8080))
|
| 948 |
+
logger.info(f"Starting server on port {port}")
|
| 949 |
+
uvicorn.run(app, host="0.0.0.0", port=port)
|
requirements.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn[standard]
|
| 3 |
+
pandas
|
| 4 |
+
requests
|
| 5 |
+
pydantic
|
| 6 |
+
langchain-openai
|
| 7 |
+
langchain-core
|
| 8 |
+
python-multipart
|
| 9 |
+
python-dotenv
|
| 10 |
+
PyPDF2
|
| 11 |
+
pdfplumber
|
| 12 |
+
reportlab
|
| 13 |
+
psycopg2-binary
|
| 14 |
+
sqlalchemy
|