Spaces:
Sleeping
Sleeping
| from fastapi import FastAPI | |
| from transformers import pipeline | |
| # Create a new FastAPI app instance | |
| app = FastAPI(docs_url="/") | |
| # Initialize text generation pipeline - to generate text given an input. | |
| pipe = pipeline( | |
| "text2text-generation", | |
| model = "google/flan-t5-small" | |
| ) | |
| # Endpoint route: GET request at `/generate` | |
| def generate(text: str) -> dict: | |
| """ | |
| Using the text2text-generation pipeline from `transformers`, generate text | |
| from the given input text. The model used is `google/flan-t5-small`, which | |
| can be found [here](<https://huggingface.co/google/flan-t5-small>). | |
| generates text based on the # input using the pipeline() object | |
| returns a JSON response containing the gneerated text under the key 'output' | |
| """ | |
| # Use the pipeline to generate text from the given input text | |
| output = pipe(text) | |
| # Return the generated text in a JSON response | |
| return {"output": output[0]["generated_text"]} | |