Spaces:
Running
on
Zero
Running
on
Zero
Deploy Gradio app with multiple files
Browse files- app.py +180 -0
- requirements.txt +7 -0
app.py
ADDED
|
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoModel, AutoTokenizer
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import io
|
| 6 |
+
import os
|
| 7 |
+
from typing import Optional
|
| 8 |
+
|
| 9 |
+
# Set device
|
| 10 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
| 11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
+
|
| 13 |
+
# Load model and tokenizer
|
| 14 |
+
model_name = "deepseek-ai/DeepSeek-OCR"
|
| 15 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 16 |
+
model = AutoModel.from_pretrained(
|
| 17 |
+
model_name,
|
| 18 |
+
_attn_implementation="flash_attention_2",
|
| 19 |
+
trust_remote_code=True,
|
| 20 |
+
use_safetensors=True,
|
| 21 |
+
)
|
| 22 |
+
model = model.eval().to(device)
|
| 23 |
+
if device == "cuda":
|
| 24 |
+
model = model.to(torch.bfloat16)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def ocr_process(
|
| 28 |
+
image_input: Image.Image,
|
| 29 |
+
task_type: str = "ocr",
|
| 30 |
+
base_size: int = 1024,
|
| 31 |
+
image_size: int = 640,
|
| 32 |
+
crop_mode: bool = True,
|
| 33 |
+
) -> str:
|
| 34 |
+
"""
|
| 35 |
+
Process image and extract text using DeepSeek-OCR model.
|
| 36 |
+
|
| 37 |
+
Args:
|
| 38 |
+
image_input: Input image
|
| 39 |
+
task_type: Type of task - "ocr" for text extraction or "markdown" for document conversion
|
| 40 |
+
base_size: Base size for model processing
|
| 41 |
+
image_size: Target image size
|
| 42 |
+
crop_mode: Whether to use crop mode
|
| 43 |
+
|
| 44 |
+
Returns:
|
| 45 |
+
Extracted text or markdown content
|
| 46 |
+
"""
|
| 47 |
+
if image_input is None:
|
| 48 |
+
return "Please upload an image first."
|
| 49 |
+
|
| 50 |
+
try:
|
| 51 |
+
# Save image temporarily
|
| 52 |
+
temp_image_path = "/tmp/temp_ocr_image.jpg"
|
| 53 |
+
image_input.save(temp_image_path)
|
| 54 |
+
|
| 55 |
+
# Set prompt based on task type
|
| 56 |
+
if task_type == "markdown":
|
| 57 |
+
prompt = "<image>\n<|grounding|>Convert the document to markdown. "
|
| 58 |
+
else:
|
| 59 |
+
prompt = "<image>\nFree OCR. "
|
| 60 |
+
|
| 61 |
+
# Run inference
|
| 62 |
+
output = model.infer(
|
| 63 |
+
tokenizer,
|
| 64 |
+
prompt=prompt,
|
| 65 |
+
image_file=temp_image_path,
|
| 66 |
+
output_path="",
|
| 67 |
+
base_size=base_size,
|
| 68 |
+
image_size=image_size,
|
| 69 |
+
crop_mode=crop_mode,
|
| 70 |
+
save_results=False,
|
| 71 |
+
test_compress=False,
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
# Clean up temp file
|
| 75 |
+
if os.path.exists(temp_image_path):
|
| 76 |
+
os.remove(temp_image_path)
|
| 77 |
+
|
| 78 |
+
return output if output else "No text detected in image."
|
| 79 |
+
|
| 80 |
+
except Exception as e:
|
| 81 |
+
return f"Error processing image: {str(e)}"
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
# Create Gradio interface
|
| 85 |
+
with gr.Blocks(title="DeepSeek OCR") as demo:
|
| 86 |
+
gr.HTML(
|
| 87 |
+
"""
|
| 88 |
+
<div style="text-align: center; margin-bottom: 20px;">
|
| 89 |
+
<h1>π DeepSeek OCR</h1>
|
| 90 |
+
<p>Extract text and convert documents to markdown using DeepSeek-OCR</p>
|
| 91 |
+
<p>Built with <a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" style="color: #0066cc; text-decoration: none;">anycoder</a></p>
|
| 92 |
+
</div>
|
| 93 |
+
"""
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
with gr.Row():
|
| 97 |
+
with gr.Column(scale=1):
|
| 98 |
+
gr.Markdown("### Upload Image")
|
| 99 |
+
image_input = gr.Image(
|
| 100 |
+
label="Input Image",
|
| 101 |
+
type="pil",
|
| 102 |
+
sources=["upload", "webcam", "clipboard"],
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
gr.Markdown("### Settings")
|
| 106 |
+
task_type = gr.Radio(
|
| 107 |
+
choices=["ocr", "markdown"],
|
| 108 |
+
value="ocr",
|
| 109 |
+
label="Task Type",
|
| 110 |
+
info="OCR: Extract text | Markdown: Convert document to markdown",
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
base_size = gr.Slider(
|
| 114 |
+
minimum=512,
|
| 115 |
+
maximum=1280,
|
| 116 |
+
step=128,
|
| 117 |
+
value=1024,
|
| 118 |
+
label="Base Size",
|
| 119 |
+
info="Model processing size (larger = better quality, slower)",
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
image_size = gr.Slider(
|
| 123 |
+
minimum=512,
|
| 124 |
+
maximum=1280,
|
| 125 |
+
step=128,
|
| 126 |
+
value=640,
|
| 127 |
+
label="Image Size",
|
| 128 |
+
info="Target image size",
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
crop_mode = gr.Checkbox(
|
| 132 |
+
value=True,
|
| 133 |
+
label="Crop Mode",
|
| 134 |
+
info="Enable crop mode for better processing",
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
submit_btn = gr.Button("π Extract Text", variant="primary", size="lg")
|
| 138 |
+
|
| 139 |
+
with gr.Column(scale=1):
|
| 140 |
+
gr.Markdown("### Output")
|
| 141 |
+
output_text = gr.Textbox(
|
| 142 |
+
label="Extracted Text",
|
| 143 |
+
lines=10,
|
| 144 |
+
interactive=False,
|
| 145 |
+
placeholder="Text will appear here...",
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
copy_btn = gr.Button("π Copy Output")
|
| 149 |
+
|
| 150 |
+
# Event handlers
|
| 151 |
+
submit_btn.click(
|
| 152 |
+
fn=ocr_process,
|
| 153 |
+
inputs=[image_input, task_type, base_size, image_size, crop_mode],
|
| 154 |
+
outputs=output_text,
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
copy_btn.click(
|
| 158 |
+
fn=lambda text: text,
|
| 159 |
+
inputs=output_text,
|
| 160 |
+
outputs=output_text,
|
| 161 |
+
js="(text) => { navigator.clipboard.writeText(text); alert('Copied to clipboard!'); return text; }",
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
# Examples section
|
| 165 |
+
gr.Markdown("### Examples")
|
| 166 |
+
gr.Examples(
|
| 167 |
+
examples=[
|
| 168 |
+
["https://images.unsplash.com/photo-1507003211169-0a1dd7228f2d?w=500", "ocr"],
|
| 169 |
+
[
|
| 170 |
+
"https://images.unsplash.com/photo-1481627834876-b7833e8f5570?w=500",
|
| 171 |
+
"markdown",
|
| 172 |
+
],
|
| 173 |
+
],
|
| 174 |
+
inputs=[image_input, task_type],
|
| 175 |
+
label="Try these examples",
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
if __name__ == "__main__":
|
| 180 |
+
demo.launch(share=False)
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=4.0.0
|
| 2 |
+
torch>=2.0.0
|
| 3 |
+
transformers>=4.40.0
|
| 4 |
+
Pillow>=10.0.0
|
| 5 |
+
deepseek-ai
|
| 6 |
+
safetensors>=0.4.0
|
| 7 |
+
flash-attn>=2.5.0
|