Spaces:
Running
on
Zero
Running
on
Zero
Update Gradio app with multiple files
Browse files
app.py
CHANGED
|
@@ -5,8 +5,9 @@ from PIL import Image
|
|
| 5 |
import os
|
| 6 |
import spaces
|
| 7 |
import tempfile
|
| 8 |
-
import
|
| 9 |
-
from
|
|
|
|
| 10 |
|
| 11 |
# Set CUDA device
|
| 12 |
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
|
|
@@ -23,6 +24,17 @@ model = AutoModel.from_pretrained(
|
|
| 23 |
model = model.eval()
|
| 24 |
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
@spaces.GPU(duration=120)
|
| 27 |
def ocr_process(
|
| 28 |
image_input: Image.Image,
|
|
@@ -79,81 +91,67 @@ def ocr_process(
|
|
| 79 |
else:
|
| 80 |
prompt = "<image>\nFree OCR. "
|
| 81 |
|
| 82 |
-
#
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
-
#
|
| 96 |
extracted_text = ""
|
| 97 |
|
| 98 |
-
#
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
data = json.load(f)
|
| 104 |
-
# Extract text from the JSON structure
|
| 105 |
-
if isinstance(data, dict):
|
| 106 |
-
if 'text' in data:
|
| 107 |
-
extracted_text = data['text']
|
| 108 |
-
elif 'output' in data:
|
| 109 |
-
extracted_text = data['output']
|
| 110 |
-
elif 'result' in data:
|
| 111 |
-
extracted_text = data['result']
|
| 112 |
-
else:
|
| 113 |
-
# If the structure is different, try to get the first string value
|
| 114 |
-
for key, value in data.items():
|
| 115 |
-
if isinstance(value, str) and len(value) > 10:
|
| 116 |
-
extracted_text = value
|
| 117 |
-
break
|
| 118 |
-
elif isinstance(data, list) and len(data) > 0:
|
| 119 |
-
extracted_text = str(data[0])
|
| 120 |
-
else:
|
| 121 |
-
extracted_text = str(data)
|
| 122 |
-
except Exception as e:
|
| 123 |
-
print(f"Error reading JSON: {e}")
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
output_files = list(Path(temp_dir).glob("*output*"))
|
| 138 |
-
for file_path in output_files:
|
| 139 |
-
if file_path.suffix in ['.txt', '.json', '.md']:
|
| 140 |
-
try:
|
| 141 |
-
with open(file_path, 'r', encoding='utf-8') as f:
|
| 142 |
-
content = f.read()
|
| 143 |
-
if content.strip():
|
| 144 |
-
extracted_text = content
|
| 145 |
-
break
|
| 146 |
-
except Exception as e:
|
| 147 |
-
print(f"Error reading {file_path}: {e}")
|
| 148 |
|
| 149 |
-
# If we
|
| 150 |
if not extracted_text and result is not None:
|
| 151 |
if isinstance(result, str):
|
| 152 |
extracted_text = result
|
| 153 |
elif isinstance(result, (list, tuple)) and len(result) > 0:
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
# Move model back to CPU to free GPU memory
|
| 159 |
model.to("cpu")
|
|
|
|
| 5 |
import os
|
| 6 |
import spaces
|
| 7 |
import tempfile
|
| 8 |
+
import sys
|
| 9 |
+
from io import StringIO
|
| 10 |
+
from contextlib import contextmanager
|
| 11 |
|
| 12 |
# Set CUDA device
|
| 13 |
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
|
|
|
|
| 24 |
model = model.eval()
|
| 25 |
|
| 26 |
|
| 27 |
+
@contextmanager
|
| 28 |
+
def capture_stdout():
|
| 29 |
+
"""Capture stdout to get printed output from model"""
|
| 30 |
+
old_stdout = sys.stdout
|
| 31 |
+
sys.stdout = StringIO()
|
| 32 |
+
try:
|
| 33 |
+
yield sys.stdout
|
| 34 |
+
finally:
|
| 35 |
+
sys.stdout = old_stdout
|
| 36 |
+
|
| 37 |
+
|
| 38 |
@spaces.GPU(duration=120)
|
| 39 |
def ocr_process(
|
| 40 |
image_input: Image.Image,
|
|
|
|
| 91 |
else:
|
| 92 |
prompt = "<image>\nFree OCR. "
|
| 93 |
|
| 94 |
+
# Capture stdout while running inference
|
| 95 |
+
captured_output = ""
|
| 96 |
+
with capture_stdout() as output:
|
| 97 |
+
result = model.infer(
|
| 98 |
+
tokenizer,
|
| 99 |
+
prompt=prompt,
|
| 100 |
+
image_file=temp_image_path,
|
| 101 |
+
output_path=temp_dir,
|
| 102 |
+
base_size=config["base_size"],
|
| 103 |
+
image_size=config["image_size"],
|
| 104 |
+
crop_mode=config["crop_mode"],
|
| 105 |
+
save_results=True,
|
| 106 |
+
test_compress=True,
|
| 107 |
+
)
|
| 108 |
+
captured_output = output.getvalue()
|
| 109 |
|
| 110 |
+
# Extract the text from captured output
|
| 111 |
extracted_text = ""
|
| 112 |
|
| 113 |
+
# Look for the actual OCR result in the captured output
|
| 114 |
+
# The model prints the extracted text between certain markers
|
| 115 |
+
lines = captured_output.split('\n')
|
| 116 |
+
capture_text = False
|
| 117 |
+
text_lines = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
+
for line in lines:
|
| 120 |
+
# Start capturing after seeing certain patterns
|
| 121 |
+
if "# " in line or line.strip().startswith("**"):
|
| 122 |
+
capture_text = True
|
| 123 |
+
|
| 124 |
+
if capture_text:
|
| 125 |
+
# Stop at the separator lines
|
| 126 |
+
if line.startswith("====") or line.startswith("---") and len(line) > 10:
|
| 127 |
+
if text_lines: # Only stop if we've captured something
|
| 128 |
+
break
|
| 129 |
+
# Add non-empty lines that aren't debug output
|
| 130 |
+
elif line.strip() and not line.startswith("image size:") and not line.startswith("valid image") and not line.startswith("output texts") and not line.startswith("compression"):
|
| 131 |
+
text_lines.append(line)
|
| 132 |
|
| 133 |
+
if text_lines:
|
| 134 |
+
extracted_text = '\n'.join(text_lines)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
+
# If we didn't get text from stdout, check if result contains text
|
| 137 |
if not extracted_text and result is not None:
|
| 138 |
if isinstance(result, str):
|
| 139 |
extracted_text = result
|
| 140 |
elif isinstance(result, (list, tuple)) and len(result) > 0:
|
| 141 |
+
# Try to extract text from the result
|
| 142 |
+
if isinstance(result[0], str):
|
| 143 |
+
extracted_text = result[0]
|
| 144 |
+
elif hasattr(result[0], 'text'):
|
| 145 |
+
extracted_text = result[0].text
|
| 146 |
+
|
| 147 |
+
# Clean up any remaining markers from the text
|
| 148 |
+
if extracted_text:
|
| 149 |
+
# Remove any remaining debug output patterns
|
| 150 |
+
clean_lines = []
|
| 151 |
+
for line in extracted_text.split('\n'):
|
| 152 |
+
if not any(pattern in line.lower() for pattern in ['image size:', 'valid image', 'compression ratio', 'save results:', 'output texts']):
|
| 153 |
+
clean_lines.append(line)
|
| 154 |
+
extracted_text = '\n'.join(clean_lines).strip()
|
| 155 |
|
| 156 |
# Move model back to CPU to free GPU memory
|
| 157 |
model.to("cpu")
|