Spaces:
Running
on
Zero
Running
on
Zero
Update Gradio app with multiple files
Browse files
app.py
CHANGED
|
@@ -50,12 +50,20 @@ def ocr_process(
|
|
| 50 |
# Save image with proper format
|
| 51 |
temp_image_path = os.path.join(temp_dir, "input_image.jpg")
|
| 52 |
# Convert RGBA to RGB if necessary
|
| 53 |
-
if image_input.mode
|
| 54 |
rgb_image = Image.new('RGB', image_input.size, (255, 255, 255))
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
else:
|
| 58 |
-
image_input.save(temp_image_path, 'JPEG')
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
# Set parameters based on preset
|
| 61 |
presets = {
|
|
@@ -74,12 +82,12 @@ def ocr_process(
|
|
| 74 |
else:
|
| 75 |
prompt = "<image>\nFree OCR. "
|
| 76 |
|
| 77 |
-
# Run inference
|
| 78 |
result = model.infer(
|
| 79 |
tokenizer,
|
| 80 |
prompt=prompt,
|
| 81 |
image_file=temp_image_path,
|
| 82 |
-
output_path=temp_dir,
|
| 83 |
base_size=config["base_size"],
|
| 84 |
image_size=config["image_size"],
|
| 85 |
crop_mode=config["crop_mode"],
|
|
@@ -91,17 +99,31 @@ def ocr_process(
|
|
| 91 |
model.to("cpu")
|
| 92 |
torch.cuda.empty_cache()
|
| 93 |
|
| 94 |
-
#
|
| 95 |
-
if result:
|
| 96 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
else:
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
except Exception as e:
|
| 101 |
# Ensure model is moved back to CPU on error
|
| 102 |
model.to("cpu")
|
| 103 |
torch.cuda.empty_cache()
|
| 104 |
-
return f"Error processing image: {str(e)}"
|
| 105 |
|
| 106 |
|
| 107 |
# Create Gradio interface
|
|
@@ -131,32 +153,32 @@ with gr.Blocks(title="DeepSeek OCR", theme=gr.themes.Soft()) as demo:
|
|
| 131 |
choices=["ocr", "markdown"],
|
| 132 |
value="ocr",
|
| 133 |
label="Task Type",
|
| 134 |
-
info="OCR: Extract text | Markdown: Convert
|
| 135 |
)
|
| 136 |
|
| 137 |
preset = gr.Radio(
|
| 138 |
-
choices=["gundam", "
|
| 139 |
value="gundam",
|
| 140 |
label="Model Preset",
|
| 141 |
-
info="
|
| 142 |
)
|
| 143 |
|
| 144 |
-
with gr.Accordion("Preset Details", open=False):
|
| 145 |
gr.Markdown("""
|
| 146 |
-
- **Gundam
|
| 147 |
-
- **
|
| 148 |
-
- **
|
| 149 |
-
- **
|
| 150 |
-
- **
|
| 151 |
""")
|
| 152 |
|
| 153 |
submit_btn = gr.Button("π Extract Text", variant="primary", size="lg")
|
| 154 |
clear_btn = gr.ClearButton([image_input], value="ποΈ Clear")
|
| 155 |
|
| 156 |
with gr.Column(scale=1):
|
| 157 |
-
gr.Markdown("### π
|
| 158 |
output_text = gr.Textbox(
|
| 159 |
-
label="
|
| 160 |
lines=15,
|
| 161 |
max_lines=30,
|
| 162 |
interactive=False,
|
|
@@ -171,24 +193,23 @@ with gr.Blocks(title="DeepSeek OCR", theme=gr.themes.Soft()) as demo:
|
|
| 171 |
outputs=output_text,
|
| 172 |
)
|
| 173 |
|
| 174 |
-
#
|
| 175 |
-
gr.Markdown("### π
|
| 176 |
gr.Examples(
|
| 177 |
examples=[
|
| 178 |
-
["
|
| 179 |
-
["example2.jpg", "markdown", "gundam"],
|
| 180 |
],
|
| 181 |
inputs=[image_input, task_type, preset],
|
| 182 |
-
label="Try
|
| 183 |
)
|
| 184 |
|
| 185 |
gr.Markdown("""
|
| 186 |
-
### π‘ Tips
|
| 187 |
-
- For
|
| 188 |
-
- For
|
| 189 |
-
-
|
| 190 |
-
- Use "
|
| 191 |
-
-
|
| 192 |
""")
|
| 193 |
|
| 194 |
|
|
|
|
| 50 |
# Save image with proper format
|
| 51 |
temp_image_path = os.path.join(temp_dir, "input_image.jpg")
|
| 52 |
# Convert RGBA to RGB if necessary
|
| 53 |
+
if image_input.mode in ('RGBA', 'LA', 'P'):
|
| 54 |
rgb_image = Image.new('RGB', image_input.size, (255, 255, 255))
|
| 55 |
+
# Handle different image modes
|
| 56 |
+
if image_input.mode == 'RGBA':
|
| 57 |
+
rgb_image.paste(image_input, mask=image_input.split()[3])
|
| 58 |
+
else:
|
| 59 |
+
rgb_image.paste(image_input)
|
| 60 |
+
rgb_image.save(temp_image_path, 'JPEG', quality=95)
|
| 61 |
else:
|
| 62 |
+
image_input.save(temp_image_path, 'JPEG', quality=95)
|
| 63 |
+
|
| 64 |
+
# Verify image was saved
|
| 65 |
+
if not os.path.exists(temp_image_path):
|
| 66 |
+
return "Error: Failed to save image for processing."
|
| 67 |
|
| 68 |
# Set parameters based on preset
|
| 69 |
presets = {
|
|
|
|
| 82 |
else:
|
| 83 |
prompt = "<image>\nFree OCR. "
|
| 84 |
|
| 85 |
+
# Run inference - the model returns the text directly
|
| 86 |
result = model.infer(
|
| 87 |
tokenizer,
|
| 88 |
prompt=prompt,
|
| 89 |
image_file=temp_image_path,
|
| 90 |
+
output_path=temp_dir,
|
| 91 |
base_size=config["base_size"],
|
| 92 |
image_size=config["image_size"],
|
| 93 |
crop_mode=config["crop_mode"],
|
|
|
|
| 99 |
model.to("cpu")
|
| 100 |
torch.cuda.empty_cache()
|
| 101 |
|
| 102 |
+
# Process the result
|
| 103 |
+
if result is None:
|
| 104 |
+
return "No text could be extracted. The image might be too blurry or contain no readable text."
|
| 105 |
+
|
| 106 |
+
# Handle different result types
|
| 107 |
+
if isinstance(result, str):
|
| 108 |
+
output_text = result.strip()
|
| 109 |
+
elif isinstance(result, (list, tuple)) and len(result) > 0:
|
| 110 |
+
output_text = str(result[0]).strip()
|
| 111 |
+
elif isinstance(result, dict):
|
| 112 |
+
# Try to get text from common keys
|
| 113 |
+
output_text = result.get('text', result.get('output', result.get('result', str(result))))
|
| 114 |
else:
|
| 115 |
+
output_text = str(result).strip()
|
| 116 |
+
|
| 117 |
+
if not output_text or output_text == "None":
|
| 118 |
+
return "No text detected. Try adjusting the preset or uploading a clearer image."
|
| 119 |
+
|
| 120 |
+
return output_text
|
| 121 |
|
| 122 |
except Exception as e:
|
| 123 |
# Ensure model is moved back to CPU on error
|
| 124 |
model.to("cpu")
|
| 125 |
torch.cuda.empty_cache()
|
| 126 |
+
return f"Error processing image: {str(e)}\n\nPlease try a different preset or check if the image is valid."
|
| 127 |
|
| 128 |
|
| 129 |
# Create Gradio interface
|
|
|
|
| 153 |
choices=["ocr", "markdown"],
|
| 154 |
value="ocr",
|
| 155 |
label="Task Type",
|
| 156 |
+
info="OCR: Extract plain text | Markdown: Convert to formatted markdown",
|
| 157 |
)
|
| 158 |
|
| 159 |
preset = gr.Radio(
|
| 160 |
+
choices=["gundam", "base", "large", "small", "tiny"],
|
| 161 |
value="gundam",
|
| 162 |
label="Model Preset",
|
| 163 |
+
info="Start with 'gundam' - it's optimized for most documents",
|
| 164 |
)
|
| 165 |
|
| 166 |
+
with gr.Accordion("βΉοΈ Preset Details", open=False):
|
| 167 |
gr.Markdown("""
|
| 168 |
+
- **Gundam** (Recommended): Balanced performance with crop mode
|
| 169 |
+
- **Base**: Standard quality without cropping
|
| 170 |
+
- **Large**: Highest quality for complex documents
|
| 171 |
+
- **Small**: Faster processing, good for simple text
|
| 172 |
+
- **Tiny**: Fastest, suitable for clear printed text
|
| 173 |
""")
|
| 174 |
|
| 175 |
submit_btn = gr.Button("π Extract Text", variant="primary", size="lg")
|
| 176 |
clear_btn = gr.ClearButton([image_input], value="ποΈ Clear")
|
| 177 |
|
| 178 |
with gr.Column(scale=1):
|
| 179 |
+
gr.Markdown("### π Extracted Text")
|
| 180 |
output_text = gr.Textbox(
|
| 181 |
+
label="Output",
|
| 182 |
lines=15,
|
| 183 |
max_lines=30,
|
| 184 |
interactive=False,
|
|
|
|
| 193 |
outputs=output_text,
|
| 194 |
)
|
| 195 |
|
| 196 |
+
# Example section with receipt image
|
| 197 |
+
gr.Markdown("### π Example")
|
| 198 |
gr.Examples(
|
| 199 |
examples=[
|
| 200 |
+
["https://upload.wikimedia.org/wikipedia/commons/thumb/0/0b/ReceiptSwiss.jpg/800px-ReceiptSwiss.jpg", "ocr", "gundam"],
|
|
|
|
| 201 |
],
|
| 202 |
inputs=[image_input, task_type, preset],
|
| 203 |
+
label="Try this receipt example",
|
| 204 |
)
|
| 205 |
|
| 206 |
gr.Markdown("""
|
| 207 |
+
### π‘ Tips for Best Results
|
| 208 |
+
- **For receipts**: Use "ocr" mode with "gundam" or "base" preset
|
| 209 |
+
- **For documents with tables**: Use "markdown" mode with "large" preset
|
| 210 |
+
- **If text is not detected**: Try different presets in this order: gundam β base β large
|
| 211 |
+
- **For handwritten text**: Use "large" preset for better accuracy
|
| 212 |
+
- Ensure images are clear and well-lit for optimal results
|
| 213 |
""")
|
| 214 |
|
| 215 |
|