import gradio as gr import torch from transformers import AutoModel, AutoTokenizer from PIL import Image import os import spaces import tempfile import sys from io import StringIO from contextlib import contextmanager # Set CUDA device os.environ["CUDA_VISIBLE_DEVICES"] = '0' # Load model and tokenizer model_name = "deepseek-ai/DeepSeek-OCR" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModel.from_pretrained( model_name, _attn_implementation="flash_attention_2", trust_remote_code=True, use_safetensors=True, ) model = model.eval() @contextmanager def capture_stdout(): """Capture stdout to get printed output from model""" old_stdout = sys.stdout sys.stdout = StringIO() try: yield sys.stdout finally: sys.stdout = old_stdout @spaces.GPU(duration=120) def ocr_process( image_input: Image.Image, task_type: str = "ocr", preset: str = "gundam", ) -> str: """ Process image and extract text using DeepSeek-OCR model. Args: image_input: Input image task_type: Type of task - "ocr" for text extraction or "markdown" for document conversion preset: Preset configuration for model parameters Returns: Extracted text or markdown content """ if image_input is None: return "Please upload an image first." # Move model to GPU and set dtype model.cuda().to(torch.bfloat16) # Create temp directory for this session with tempfile.TemporaryDirectory() as temp_dir: # Save image with proper format temp_image_path = os.path.join(temp_dir, "input_image.jpg") # Convert RGBA to RGB if necessary if image_input.mode in ('RGBA', 'LA', 'P'): rgb_image = Image.new('RGB', image_input.size, (255, 255, 255)) # Handle different image modes if image_input.mode == 'RGBA': rgb_image.paste(image_input, mask=image_input.split()[3]) else: rgb_image.paste(image_input) rgb_image.save(temp_image_path, 'JPEG', quality=95) else: image_input.save(temp_image_path, 'JPEG', quality=95) # Set parameters based on preset presets = { "tiny": {"base_size": 512, "image_size": 512, "crop_mode": False}, "small": {"base_size": 640, "image_size": 640, "crop_mode": False}, "base": {"base_size": 1024, "image_size": 1024, "crop_mode": False}, "large": {"base_size": 1280, "image_size": 1280, "crop_mode": False}, "gundam": {"base_size": 1024, "image_size": 640, "crop_mode": True}, } config = presets[preset] # Set prompt based on task type if task_type == "markdown": prompt = "\n<|grounding|>Convert the document to markdown. " else: prompt = "\nFree OCR. " # Capture stdout while running inference captured_output = "" with capture_stdout() as output: result = model.infer( tokenizer, prompt=prompt, image_file=temp_image_path, output_path=temp_dir, base_size=config["base_size"], image_size=config["image_size"], crop_mode=config["crop_mode"], save_results=True, test_compress=True, ) captured_output = output.getvalue() # Extract the text from captured output extracted_text = "" # Look for the actual OCR result in the captured output # The model prints the extracted text between certain markers lines = captured_output.split('\n') capture_text = False text_lines = [] for line in lines: # Start capturing after seeing certain patterns if "# " in line or line.strip().startswith("**"): capture_text = True if capture_text: # Stop at the separator lines if line.startswith("====") or line.startswith("---") and len(line) > 10: if text_lines: # Only stop if we've captured something break # Add non-empty lines that aren't debug output elif line.strip() and not line.startswith("image size:") and not line.startswith("valid image") and not line.startswith("output texts") and not line.startswith("compression"): text_lines.append(line) if text_lines: extracted_text = '\n'.join(text_lines) # If we didn't get text from stdout, check if result contains text if not extracted_text and result is not None: if isinstance(result, str): extracted_text = result elif isinstance(result, (list, tuple)) and len(result) > 0: # Try to extract text from the result if isinstance(result[0], str): extracted_text = result[0] elif hasattr(result[0], 'text'): extracted_text = result[0].text # Clean up any remaining markers from the text if extracted_text: # Remove any remaining debug output patterns clean_lines = [] for line in extracted_text.split('\n'): if not any(pattern in line.lower() for pattern in ['image size:', 'valid image', 'compression ratio', 'save results:', 'output texts']): clean_lines.append(line) extracted_text = '\n'.join(clean_lines).strip() # Move model back to CPU to free GPU memory model.to("cpu") torch.cuda.empty_cache() # Return the extracted text return extracted_text if extracted_text else "No text could be extracted from the image. Please try a different preset or check if the image contains readable text." # Create Gradio interface with gr.Blocks(title="DeepSeek OCR", theme=gr.themes.Soft()) as demo: gr.HTML( """

🔍 DeepSeek OCR

Extract text and convert documents to markdown using DeepSeek-OCR

Built with anycoder

""" ) with gr.Row(): with gr.Column(scale=1): gr.Markdown("### 📤 Upload Image") image_input = gr.Image( label="Input Image", type="pil", sources=["upload", "webcam", "clipboard"], height=300, ) gr.Markdown("### âš™ī¸ Settings") task_type = gr.Radio( choices=["ocr", "markdown"], value="ocr", label="Task Type", info="OCR: Extract plain text | Markdown: Convert to formatted markdown", ) preset = gr.Radio( choices=["gundam", "base", "large", "small", "tiny"], value="gundam", label="Model Preset", info="Start with 'gundam' - it's optimized for most documents", ) with gr.Accordion("â„šī¸ Preset Details", open=False): gr.Markdown(""" - **Gundam** (Recommended): Balanced performance with crop mode - **Base**: Standard quality without cropping - **Large**: Highest quality for complex documents - **Small**: Faster processing, good for simple text - **Tiny**: Fastest, suitable for clear printed text """) submit_btn = gr.Button("🚀 Extract Text", variant="primary", size="lg") clear_btn = gr.ClearButton([image_input], value="đŸ—‘ī¸ Clear") with gr.Column(scale=1): gr.Markdown("### 📝 Extracted Text") output_text = gr.Textbox( label="Output", lines=15, max_lines=30, interactive=False, placeholder="Extracted text will appear here...", show_copy_button=True, ) # Event handlers submit_btn.click( fn=ocr_process, inputs=[image_input, task_type, preset], outputs=output_text, ) # Example section with receipt image gr.Markdown("### 📚 Example") gr.Examples( examples=[ ["https://upload.wikimedia.org/wikipedia/commons/thumb/0/0b/ReceiptSwiss.jpg/800px-ReceiptSwiss.jpg", "ocr", "gundam"], ], inputs=[image_input, task_type, preset], label="Try this receipt example", ) gr.Markdown(""" ### 💡 Tips for Best Results - **For receipts**: Use "ocr" mode with "gundam" or "base" preset - **For documents with tables**: Use "markdown" mode with "large" preset - **If text is not detected**: Try different presets in this order: gundam → base → large - **For handwritten text**: Use "large" preset for better accuracy - Ensure images are clear and well-lit for optimal results """) if __name__ == "__main__": demo.launch(share=False)