Upload app.py with huggingface_hub
Browse files
app.py
ADDED
|
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import torch
|
| 4 |
+
from PIL import Image as PILImage
|
| 5 |
+
from PIL import ImageDraw, ImageFont
|
| 6 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, AutoProcessor
|
| 7 |
+
from loguru import logger
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import spaces
|
| 10 |
+
|
| 11 |
+
# Prefer local repo package over any site-installed "perceptron" (adjust if needed)
|
| 12 |
+
REPO_ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
| 13 |
+
if REPO_ROOT not in sys.path:
|
| 14 |
+
sys.path.insert(0, REPO_ROOT)
|
| 15 |
+
|
| 16 |
+
from perceptron.tensorstream import VisionType
|
| 17 |
+
from perceptron.tensorstream.ops import tensor_stream_token_view, modality_mask
|
| 18 |
+
from perceptron.pointing.parser import extract_points
|
| 19 |
+
|
| 20 |
+
# Global model and processor
|
| 21 |
+
model = None
|
| 22 |
+
processor = None
|
| 23 |
+
device = None
|
| 24 |
+
dtype = None
|
| 25 |
+
config = None
|
| 26 |
+
|
| 27 |
+
def load_model():
|
| 28 |
+
global model, processor, device, dtype, config
|
| 29 |
+
hf_path = "PerceptronAI/Isaac-0.1"
|
| 30 |
+
logger.info(f"Loading processor and config from HF checkpoint: {hf_path}")
|
| 31 |
+
config = AutoConfig.from_pretrained(hf_path, trust_remote_code=True)
|
| 32 |
+
tokenizer = AutoTokenizer.from_pretrained(hf_path, trust_remote_code=True, use_fast=False)
|
| 33 |
+
processor = AutoProcessor.from_pretrained(hf_path, trust_remote_code=True)
|
| 34 |
+
processor.tokenizer = tokenizer # Ensure tokenizer is set
|
| 35 |
+
|
| 36 |
+
logger.info(f"Loading AutoModelForCausalLM from HF checkpoint: {hf_path}")
|
| 37 |
+
model = AutoModelForCausalLM.from_pretrained(hf_path, trust_remote_code=True)
|
| 38 |
+
|
| 39 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 40 |
+
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
| 41 |
+
model = model.to(device=device, dtype=dtype)
|
| 42 |
+
model.eval()
|
| 43 |
+
|
| 44 |
+
logger.info(f"Model loaded on {device} with dtype {dtype}")
|
| 45 |
+
|
| 46 |
+
@spaces.GPU(duration=120)
|
| 47 |
+
def init():
|
| 48 |
+
if model is None:
|
| 49 |
+
load_model()
|
| 50 |
+
return "Model loaded successfully"
|
| 51 |
+
|
| 52 |
+
def document_to_messages(document, vision_token="<image>"):
|
| 53 |
+
messages = []
|
| 54 |
+
images = []
|
| 55 |
+
for item in document:
|
| 56 |
+
itype = item.get("type")
|
| 57 |
+
if itype == "text":
|
| 58 |
+
content = item.get("content")
|
| 59 |
+
if content:
|
| 60 |
+
messages.append({"role": item.get("role", "user"), "content": content})
|
| 61 |
+
elif itype == "image":
|
| 62 |
+
if "content" in item and item["content"] is not None:
|
| 63 |
+
img = PILImage.open(item["content"]).convert("RGB")
|
| 64 |
+
images.append(img)
|
| 65 |
+
messages.append({"role": item.get("role", "user"), "content": vision_token})
|
| 66 |
+
return messages, images
|
| 67 |
+
|
| 68 |
+
def decode_tensor_stream(tensor_stream, tokenizer):
|
| 69 |
+
token_view = tensor_stream_token_view(tensor_stream)
|
| 70 |
+
mod = modality_mask(tensor_stream)
|
| 71 |
+
text_tokens = token_view[(mod != VisionType.image.value)]
|
| 72 |
+
decoded = tokenizer.decode(text_tokens[0] if len(text_tokens.shape) > 1 else text_tokens)
|
| 73 |
+
return decoded
|
| 74 |
+
|
| 75 |
+
def visualize_predictions(generated_text, image, output_path="prediction.jpeg"):
|
| 76 |
+
boxes = extract_points(generated_text, expected="box")
|
| 77 |
+
if not boxes:
|
| 78 |
+
logger.info("No bounding boxes found in the generated text")
|
| 79 |
+
image.save(output_path)
|
| 80 |
+
return output_path
|
| 81 |
+
|
| 82 |
+
img_width, img_height = image.size
|
| 83 |
+
img_with_boxes = image.copy()
|
| 84 |
+
draw = ImageDraw.Draw(img_with_boxes)
|
| 85 |
+
|
| 86 |
+
try:
|
| 87 |
+
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 16)
|
| 88 |
+
except:
|
| 89 |
+
font = ImageFont.load_default()
|
| 90 |
+
|
| 91 |
+
colors = ["red", "green", "blue", "yellow", "magenta", "cyan", "orange", "purple"]
|
| 92 |
+
|
| 93 |
+
for idx, box in enumerate(boxes):
|
| 94 |
+
color = colors[idx % len(colors)]
|
| 95 |
+
norm_x1, norm_y1 = box.top_left.x, box.top_left.y
|
| 96 |
+
norm_x2, norm_y2 = box.bottom_right.x, box.bottom_right.y
|
| 97 |
+
x1 = int((norm_x1 / 1000.0) * img_width)
|
| 98 |
+
y1 = int((norm_y1 / 1000.0) * img_height)
|
| 99 |
+
x2 = int((norm_x2 / 1000.0) * img_width)
|
| 100 |
+
y2 = int((norm_y2 / 1000.0) * img_height)
|
| 101 |
+
|
| 102 |
+
x1 = max(0, min(x1, img_width - 1))
|
| 103 |
+
y1 = max(0, min(y1, img_height - 1))
|
| 104 |
+
x2 = max(0, min(x2, img_width - 1))
|
| 105 |
+
y2 = max(0, min(y2, img_height - 1))
|
| 106 |
+
|
| 107 |
+
draw.rectangle([x1, y1, x2, y2], outline=color, width=3)
|
| 108 |
+
|
| 109 |
+
if box.mention:
|
| 110 |
+
text_y = max(y1 - 20, 5)
|
| 111 |
+
text_bbox = draw.textbbox((x1, text_y), box.mention, font=font)
|
| 112 |
+
draw.rectangle(text_bbox, fill=color)
|
| 113 |
+
draw.text((x1, text_y), box.mention, fill="white", font=font)
|
| 114 |
+
|
| 115 |
+
img_with_boxes.save(output_path, "JPEG")
|
| 116 |
+
return output_path
|
| 117 |
+
|
| 118 |
+
@spaces.GPU(duration=120)
|
| 119 |
+
def generate_response(image, prompt):
|
| 120 |
+
if model is None:
|
| 121 |
+
return "Model not loaded. Click 'Load Model' first.", None
|
| 122 |
+
|
| 123 |
+
document = [
|
| 124 |
+
{"type": "text", "content": "<hint>BOX</hint>", "role": "user"},
|
| 125 |
+
{"type": "image", "content": image, "role": "user"},
|
| 126 |
+
{"type": "text", "content": prompt, "role": "user"},
|
| 127 |
+
]
|
| 128 |
+
|
| 129 |
+
messages, images = document_to_messages(document, vision_token=config.vision_token)
|
| 130 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 131 |
+
inputs = processor(text=text, images=images, return_tensors="pt")
|
| 132 |
+
tensor_stream = inputs["tensor_stream"].to(device)
|
| 133 |
+
input_ids = inputs["input_ids"].to(device)
|
| 134 |
+
|
| 135 |
+
decoded_content = decode_tensor_stream(tensor_stream, processor.tokenizer)
|
| 136 |
+
|
| 137 |
+
with torch.no_grad():
|
| 138 |
+
generated_ids = model.generate(
|
| 139 |
+
tensor_stream=tensor_stream,
|
| 140 |
+
max_new_tokens=256,
|
| 141 |
+
do_sample=False,
|
| 142 |
+
pad_token_id=processor.tokenizer.eos_token_id,
|
| 143 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
generated_text = processor.tokenizer.decode(generated_ids[0], skip_special_tokens=False)
|
| 147 |
+
|
| 148 |
+
if images:
|
| 149 |
+
vis_path = visualize_predictions(generated_text, images[0])
|
| 150 |
+
return generated_text, vis_path
|
| 151 |
+
else:
|
| 152 |
+
return generated_text, None
|
| 153 |
+
|
| 154 |
+
with gr.Blocks(title="HuggingFace Perceptron Demo") as demo:
|
| 155 |
+
gr.Markdown("# HuggingFace Perceptron Pipeline Demo")
|
| 156 |
+
gr.Markdown("Built with [anycoder](https://huggingface.co/spaces/akhaliq/anycoder)")
|
| 157 |
+
gr.Markdown("""
|
| 158 |
+
This demo shows how to use the Perceptron Isaac model for multimodal generation with text and images.
|
| 159 |
+
Upload an image and provide a prompt to generate responses with bounding box visualizations.
|
| 160 |
+
""")
|
| 161 |
+
|
| 162 |
+
with gr.Row():
|
| 163 |
+
load_btn = gr.Button("Load Model", variant="primary")
|
| 164 |
+
|
| 165 |
+
image_input = gr.Image(type="filepath", label="Upload Image", sources=["upload", "webcam"])
|
| 166 |
+
prompt_input = gr.Textbox(
|
| 167 |
+
label="Prompt",
|
| 168 |
+
value="Determine whether it is safe to cross the street. Look for signage and moving traffic.",
|
| 169 |
+
lines=3,
|
| 170 |
+
placeholder="Enter your prompt here..."
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
with gr.Row():
|
| 174 |
+
generate_btn = gr.Button("Generate Response", variant="primary")
|
| 175 |
+
|
| 176 |
+
generated_text = gr.Textbox(label="Generated Text", lines=10)
|
| 177 |
+
visualized_image = gr.Image(label="Visualized Predictions (with Bounding Boxes)")
|
| 178 |
+
|
| 179 |
+
load_btn.click(init, outputs=gr.Textbox(value="Loading...", visible=False))
|
| 180 |
+
generate_btn.click(generate_response, inputs=[image_input, prompt_input], outputs=[generated_text, visualized_image])
|
| 181 |
+
|
| 182 |
+
if __name__ == "__main__":
|
| 183 |
+
demo.launch()
|