Update app.py
Browse files
app.py
CHANGED
|
@@ -1,306 +1,192 @@
|
|
| 1 |
-
import spaces
|
| 2 |
-
import gradio as gr
|
| 3 |
-
import torch
|
| 4 |
-
from PIL import Image
|
| 5 |
-
from transformers import AutoConfig, AutoModelForCausalLM, AutoProcessor
|
| 6 |
import os
|
| 7 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
#
|
| 10 |
-
|
| 11 |
-
from perceptron.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
#
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
def document_to_messages(document, vision_token="<image>"):
|
| 18 |
-
"""Convert a Document to messages format compatible with chat templates."""
|
| 19 |
messages = []
|
| 20 |
images = []
|
| 21 |
-
|
| 22 |
for item in document:
|
| 23 |
itype = item.get("type")
|
| 24 |
if itype == "text":
|
| 25 |
content = item.get("content")
|
| 26 |
if content:
|
| 27 |
-
messages.append({
|
| 28 |
-
"role": item.get("role", "user"),
|
| 29 |
-
"content": content,
|
| 30 |
-
})
|
| 31 |
elif itype == "image":
|
| 32 |
-
content
|
| 33 |
-
|
| 34 |
-
if isinstance(content, str) and os.path.exists(content):
|
| 35 |
-
img = Image.open(content)
|
| 36 |
-
elif hasattr(content, 'read'): # Gradio file object
|
| 37 |
-
img = Image.open(content)
|
| 38 |
-
else:
|
| 39 |
-
continue
|
| 40 |
images.append(img)
|
| 41 |
-
messages.append({
|
| 42 |
-
"role": item.get("role", "user"),
|
| 43 |
-
"content": vision_token,
|
| 44 |
-
})
|
| 45 |
-
|
| 46 |
return messages, images
|
| 47 |
|
| 48 |
def decode_tensor_stream(tensor_stream, tokenizer):
|
| 49 |
-
"""Decode a TensorStream to see its text content."""
|
| 50 |
token_view = tensor_stream_token_view(tensor_stream)
|
| 51 |
mod = modality_mask(tensor_stream)
|
| 52 |
-
|
| 53 |
-
# Get text tokens (excluding vision tokens)
|
| 54 |
-
text_tokens = token_view[(mod != VisionType.image)]
|
| 55 |
decoded = tokenizer.decode(text_tokens[0] if len(text_tokens.shape) > 1 else text_tokens)
|
| 56 |
return decoded
|
| 57 |
|
| 58 |
-
def visualize_predictions(generated_text, image, output_path):
|
| 59 |
-
"""Extract bounding boxes from generated text and render them on the input image."""
|
| 60 |
-
from PIL import ImageDraw, ImageFont
|
| 61 |
-
|
| 62 |
-
# Extract bounding boxes from the generated text
|
| 63 |
boxes = extract_points(generated_text, expected="box")
|
| 64 |
-
|
| 65 |
if not boxes:
|
|
|
|
| 66 |
image.save(output_path)
|
| 67 |
return output_path
|
| 68 |
-
|
| 69 |
-
# Get image dimensions
|
| 70 |
img_width, img_height = image.size
|
| 71 |
-
|
| 72 |
-
# Create a copy of the image to draw on
|
| 73 |
img_with_boxes = image.copy()
|
| 74 |
draw = ImageDraw.Draw(img_with_boxes)
|
| 75 |
-
|
| 76 |
-
# Try to use a basic font, fall back to default if not available
|
| 77 |
try:
|
| 78 |
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 16)
|
| 79 |
except:
|
| 80 |
font = ImageFont.load_default()
|
| 81 |
-
|
| 82 |
-
# Define colors for different boxes
|
| 83 |
colors = ["red", "green", "blue", "yellow", "magenta", "cyan", "orange", "purple"]
|
| 84 |
-
|
| 85 |
for idx, box in enumerate(boxes):
|
| 86 |
color = colors[idx % len(colors)]
|
| 87 |
-
|
| 88 |
-
# Extract normalized coordinates (0-1000 range)
|
| 89 |
norm_x1, norm_y1 = box.top_left.x, box.top_left.y
|
| 90 |
norm_x2, norm_y2 = box.bottom_right.x, box.bottom_right.y
|
| 91 |
-
|
| 92 |
-
# Scale coordinates from 0-1000 range to actual image dimensions
|
| 93 |
x1 = int((norm_x1 / 1000.0) * img_width)
|
| 94 |
y1 = int((norm_y1 / 1000.0) * img_height)
|
| 95 |
x2 = int((norm_x2 / 1000.0) * img_width)
|
| 96 |
y2 = int((norm_y2 / 1000.0) * img_height)
|
| 97 |
-
|
| 98 |
-
# Ensure coordinates are within image bounds
|
| 99 |
x1 = max(0, min(x1, img_width - 1))
|
| 100 |
y1 = max(0, min(y1, img_height - 1))
|
| 101 |
x2 = max(0, min(x2, img_width - 1))
|
| 102 |
y2 = max(0, min(y2, img_height - 1))
|
| 103 |
-
|
| 104 |
-
# Draw the bounding box
|
| 105 |
draw.rectangle([x1, y1, x2, y2], outline=color, width=3)
|
| 106 |
-
|
| 107 |
-
# Add label if mention exists
|
| 108 |
if box.mention:
|
| 109 |
-
# Calculate text position (above the box if possible)
|
| 110 |
text_y = max(y1 - 20, 5)
|
| 111 |
-
|
| 112 |
-
# Draw text background for better visibility
|
| 113 |
text_bbox = draw.textbbox((x1, text_y), box.mention, font=font)
|
| 114 |
draw.rectangle(text_bbox, fill=color)
|
| 115 |
draw.text((x1, text_y), box.mention, fill="white", font=font)
|
| 116 |
-
|
| 117 |
-
# Save the image with bounding boxes
|
| 118 |
img_with_boxes.save(output_path, "JPEG")
|
| 119 |
return output_path
|
| 120 |
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
# Move to appropriate device and dtype
|
| 135 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 136 |
-
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
| 137 |
-
model = model.to(device=device, dtype=dtype)
|
| 138 |
-
model.eval()
|
| 139 |
-
|
| 140 |
-
print(f"Model loaded on {device} with dtype {dtype}")
|
| 141 |
-
return model, processor, config, device
|
| 142 |
|
| 143 |
-
|
| 144 |
-
model, processor, config, device = load_model()
|
| 145 |
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
"role": "user",
|
| 161 |
-
},
|
| 162 |
-
{
|
| 163 |
-
"type": "text",
|
| 164 |
-
"content": text_prompt,
|
| 165 |
-
"role": "user",
|
| 166 |
-
},
|
| 167 |
-
]
|
| 168 |
-
|
| 169 |
-
# Convert document to messages format
|
| 170 |
-
messages, images = document_to_messages(document, vision_token=config.vision_token)
|
| 171 |
-
|
| 172 |
-
# Apply chat template
|
| 173 |
-
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 174 |
-
|
| 175 |
-
# Process with IsaacProcessor
|
| 176 |
-
inputs = processor(text=text, images=images, return_tensors="pt")
|
| 177 |
-
tensor_stream = inputs["tensor_stream"].to(device)
|
| 178 |
-
input_ids = inputs["input_ids"].to(device)
|
| 179 |
-
|
| 180 |
-
# Generate text using the model
|
| 181 |
-
with torch.no_grad():
|
| 182 |
-
generated_ids = model.generate(
|
| 183 |
-
tensor_stream=tensor_stream,
|
| 184 |
-
max_new_tokens=max_tokens,
|
| 185 |
-
do_sample=False,
|
| 186 |
-
pad_token_id=processor.tokenizer.eos_token_id,
|
| 187 |
-
eos_token_id=processor.tokenizer.eos_token_id,
|
| 188 |
-
)
|
| 189 |
-
|
| 190 |
-
# Decode the generated text
|
| 191 |
-
generated_text = processor.tokenizer.decode(generated_ids[0], skip_special_tokens=False)
|
| 192 |
-
|
| 193 |
-
# Extract new tokens only
|
| 194 |
-
if generated_ids.shape[1] > input_ids.shape[1]:
|
| 195 |
-
new_tokens = generated_ids[0, input_ids.shape[1]:]
|
| 196 |
-
new_text = processor.tokenizer.decode(new_tokens, skip_special_tokens=True)
|
| 197 |
-
else:
|
| 198 |
-
new_text = "No new tokens generated"
|
| 199 |
-
|
| 200 |
-
# Create visualization
|
| 201 |
-
if images and len(images) > 0:
|
| 202 |
-
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmp_file:
|
| 203 |
-
viz_path = tmp_file.name
|
| 204 |
-
viz_path = visualize_predictions(generated_text, images[0], viz_path)
|
| 205 |
else:
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
|
| 213 |
-
|
| 214 |
-
|
|
|
|
| 215 |
gr.Markdown("""
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
This demo showcases the PerceptronAI/Isaac-0.1 model for multimodal understanding and generation.
|
| 219 |
-
Upload an image and provide a text prompt to see the model's response with bounding box visualizations.
|
| 220 |
-
|
| 221 |
-
**Built with [anycoder](https://huggingface.co/spaces/akhaliq/anycoder)**
|
| 222 |
""")
|
| 223 |
-
|
| 224 |
with gr.Row():
|
| 225 |
-
with gr.Column():
|
| 226 |
image_input = gr.Image(
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
sources=["upload"],
|
| 230 |
-
height=
|
| 231 |
-
)
|
| 232 |
-
text_input = gr.Textbox(
|
| 233 |
-
label="Text Prompt",
|
| 234 |
-
placeholder="Describe what you want to analyze in the image...",
|
| 235 |
-
lines=3
|
| 236 |
)
|
| 237 |
-
|
| 238 |
-
label="
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
step=50
|
| 243 |
)
|
| 244 |
-
generate_btn = gr.Button("Generate Response", variant="primary")
|
| 245 |
-
|
| 246 |
-
with gr.Column():
|
| 247 |
-
|
| 248 |
-
label="
|
| 249 |
-
|
| 250 |
-
interactive=False
|
| 251 |
-
)
|
| 252 |
-
full_output = gr.Textbox(
|
| 253 |
-
label="Full Generated Text",
|
| 254 |
-
lines=6,
|
| 255 |
-
interactive=False,
|
| 256 |
-
visible=False
|
| 257 |
)
|
| 258 |
-
|
| 259 |
-
label="
|
| 260 |
-
|
| 261 |
-
|
| 262 |
)
|
| 263 |
-
|
| 264 |
-
with gr.Accordion("Advanced Options", open=False):
|
| 265 |
-
gr.Markdown("""
|
| 266 |
-
- The model processes both text and images using TensorStream technology
|
| 267 |
-
- Bounding boxes are automatically extracted from the generated text
|
| 268 |
-
- Supports complex multimodal reasoning tasks
|
| 269 |
-
""")
|
| 270 |
-
show_full_checkbox = gr.Checkbox(label="Show Full Generated Text", value=False)
|
| 271 |
-
|
| 272 |
-
# Event handlers
|
| 273 |
-
show_full_checkbox.change(
|
| 274 |
-
lambda x: gr.Textbox(visible=x),
|
| 275 |
-
inputs=show_full_checkbox,
|
| 276 |
-
outputs=full_output
|
| 277 |
-
)
|
| 278 |
-
|
| 279 |
-
generate_btn.click(
|
| 280 |
-
fn=generate_response,
|
| 281 |
-
inputs=[image_input, text_input, max_tokens_slider],
|
| 282 |
-
outputs=[new_text_output, full_output, visualization_output]
|
| 283 |
-
)
|
| 284 |
-
|
| 285 |
-
# Examples
|
| 286 |
gr.Examples(
|
| 287 |
-
examples=
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
"Identify all vehicles in the image and describe their positions.",
|
| 291 |
-
200
|
| 292 |
-
],
|
| 293 |
-
[
|
| 294 |
-
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/street.jpg",
|
| 295 |
-
"Analyze the street scene and identify any potential safety concerns.",
|
| 296 |
-
256
|
| 297 |
-
]
|
| 298 |
-
],
|
| 299 |
-
inputs=[image_input, text_input, max_tokens_slider],
|
| 300 |
-
outputs=[new_text_output, full_output, visualization_output],
|
| 301 |
fn=generate_response,
|
| 302 |
-
cache_examples=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 303 |
)
|
| 304 |
|
| 305 |
if __name__ == "__main__":
|
| 306 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import sys
|
| 3 |
+
import torch
|
| 4 |
+
from PIL import Image as PILImage
|
| 5 |
+
from PIL import ImageDraw, ImageFont
|
| 6 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, AutoProcessor
|
| 7 |
+
from loguru import logger
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import spaces
|
| 10 |
|
| 11 |
+
# Note: The perceptron package needs to be installed or included in the Space
|
| 12 |
+
try:
|
| 13 |
+
from perceptron.tensorstream import VisionType
|
| 14 |
+
from perceptron.tensorstream.ops import tensor_stream_token_view, modality_mask
|
| 15 |
+
from perceptron.pointing.parser import extract_points
|
| 16 |
+
except ImportError:
|
| 17 |
+
logger.error("perceptron package not found. Please ensure it's installed in your Hugging Face Space.")
|
| 18 |
+
raise
|
| 19 |
|
| 20 |
+
# Load model at startup
|
| 21 |
+
hf_path = "PerceptronAI/Isaac-0.1"
|
| 22 |
+
logger.info(f"Loading processor and config from HF checkpoint: {hf_path}")
|
| 23 |
+
config = AutoConfig.from_pretrained(hf_path, trust_remote_code=True)
|
| 24 |
+
tokenizer = AutoTokenizer.from_pretrained(hf_path, trust_remote_code=True, use_fast=False)
|
| 25 |
+
processor = AutoProcessor.from_pretrained(hf_path, trust_remote_code=True)
|
| 26 |
+
processor.tokenizer = tokenizer # Ensure tokenizer is set
|
| 27 |
+
|
| 28 |
+
logger.info(f"Loading AutoModelForCausalLM from HF checkpoint: {hf_path}")
|
| 29 |
+
model = AutoModelForCausalLM.from_pretrained(hf_path, trust_remote_code=True)
|
| 30 |
+
|
| 31 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 32 |
+
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
| 33 |
+
model = model.to(device=device, dtype=dtype)
|
| 34 |
+
model.eval()
|
| 35 |
+
|
| 36 |
+
logger.info(f"Model loaded on {device} with dtype {dtype}")
|
| 37 |
|
| 38 |
def document_to_messages(document, vision_token="<image>"):
|
|
|
|
| 39 |
messages = []
|
| 40 |
images = []
|
|
|
|
| 41 |
for item in document:
|
| 42 |
itype = item.get("type")
|
| 43 |
if itype == "text":
|
| 44 |
content = item.get("content")
|
| 45 |
if content:
|
| 46 |
+
messages.append({"role": item.get("role", "user"), "content": content})
|
|
|
|
|
|
|
|
|
|
| 47 |
elif itype == "image":
|
| 48 |
+
if "content" in item and item["content"] is not None:
|
| 49 |
+
img = PILImage.open(item["content"]).convert("RGB")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
images.append(img)
|
| 51 |
+
messages.append({"role": item.get("role", "user"), "content": vision_token})
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
return messages, images
|
| 53 |
|
| 54 |
def decode_tensor_stream(tensor_stream, tokenizer):
|
|
|
|
| 55 |
token_view = tensor_stream_token_view(tensor_stream)
|
| 56 |
mod = modality_mask(tensor_stream)
|
| 57 |
+
text_tokens = token_view[(mod != VisionType.image.value)]
|
|
|
|
|
|
|
| 58 |
decoded = tokenizer.decode(text_tokens[0] if len(text_tokens.shape) > 1 else text_tokens)
|
| 59 |
return decoded
|
| 60 |
|
| 61 |
+
def visualize_predictions(generated_text, image, output_path="prediction.jpeg"):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
boxes = extract_points(generated_text, expected="box")
|
|
|
|
| 63 |
if not boxes:
|
| 64 |
+
logger.info("No bounding boxes found in the generated text")
|
| 65 |
image.save(output_path)
|
| 66 |
return output_path
|
| 67 |
+
|
|
|
|
| 68 |
img_width, img_height = image.size
|
|
|
|
|
|
|
| 69 |
img_with_boxes = image.copy()
|
| 70 |
draw = ImageDraw.Draw(img_with_boxes)
|
| 71 |
+
|
|
|
|
| 72 |
try:
|
| 73 |
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 16)
|
| 74 |
except:
|
| 75 |
font = ImageFont.load_default()
|
| 76 |
+
|
|
|
|
| 77 |
colors = ["red", "green", "blue", "yellow", "magenta", "cyan", "orange", "purple"]
|
| 78 |
+
|
| 79 |
for idx, box in enumerate(boxes):
|
| 80 |
color = colors[idx % len(colors)]
|
|
|
|
|
|
|
| 81 |
norm_x1, norm_y1 = box.top_left.x, box.top_left.y
|
| 82 |
norm_x2, norm_y2 = box.bottom_right.x, box.bottom_right.y
|
|
|
|
|
|
|
| 83 |
x1 = int((norm_x1 / 1000.0) * img_width)
|
| 84 |
y1 = int((norm_y1 / 1000.0) * img_height)
|
| 85 |
x2 = int((norm_x2 / 1000.0) * img_width)
|
| 86 |
y2 = int((norm_y2 / 1000.0) * img_height)
|
| 87 |
+
|
|
|
|
| 88 |
x1 = max(0, min(x1, img_width - 1))
|
| 89 |
y1 = max(0, min(y1, img_height - 1))
|
| 90 |
x2 = max(0, min(x2, img_width - 1))
|
| 91 |
y2 = max(0, min(y2, img_height - 1))
|
| 92 |
+
|
|
|
|
| 93 |
draw.rectangle([x1, y1, x2, y2], outline=color, width=3)
|
| 94 |
+
|
|
|
|
| 95 |
if box.mention:
|
|
|
|
| 96 |
text_y = max(y1 - 20, 5)
|
|
|
|
|
|
|
| 97 |
text_bbox = draw.textbbox((x1, text_y), box.mention, font=font)
|
| 98 |
draw.rectangle(text_bbox, fill=color)
|
| 99 |
draw.text((x1, text_y), box.mention, fill="white", font=font)
|
| 100 |
+
|
|
|
|
| 101 |
img_with_boxes.save(output_path, "JPEG")
|
| 102 |
return output_path
|
| 103 |
|
| 104 |
+
@spaces.GPU(duration=120)
|
| 105 |
+
def generate_response(image, prompt):
|
| 106 |
+
document = [
|
| 107 |
+
{"type": "text", "content": "<hint>BOX</hint>", "role": "user"},
|
| 108 |
+
{"type": "image", "content": image, "role": "user"},
|
| 109 |
+
{"type": "text", "content": prompt, "role": "user"},
|
| 110 |
+
]
|
| 111 |
+
|
| 112 |
+
messages, images = document_to_messages(document, vision_token=config.vision_token)
|
| 113 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 114 |
+
inputs = processor(text=text, images=images, return_tensors="pt")
|
| 115 |
+
tensor_stream = inputs["tensor_stream"].to(device)
|
| 116 |
+
input_ids = inputs["input_ids"].to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
+
decoded_content = decode_tensor_stream(tensor_stream, processor.tokenizer)
|
|
|
|
| 119 |
|
| 120 |
+
with torch.no_grad():
|
| 121 |
+
generated_ids = model.generate(
|
| 122 |
+
tensor_stream=tensor_stream,
|
| 123 |
+
max_new_tokens=256,
|
| 124 |
+
do_sample=False,
|
| 125 |
+
pad_token_id=processor.tokenizer.eos_token_id,
|
| 126 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
generated_text = processor.tokenizer.decode(generated_ids[0], skip_special_tokens=False)
|
| 130 |
+
|
| 131 |
+
if images:
|
| 132 |
+
vis_path = visualize_predictions(generated_text, images[0])
|
| 133 |
+
return generated_text, vis_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
else:
|
| 135 |
+
return generated_text, None
|
| 136 |
+
|
| 137 |
+
# Example images and prompts
|
| 138 |
+
examples = [
|
| 139 |
+
["example.webp", "Determine whether it is safe to cross the street. Look for signage and moving traffic."],
|
| 140 |
+
]
|
| 141 |
|
| 142 |
+
with gr.Blocks(title="Perceptron Isaac Vision Model", theme=gr.themes.Soft()) as demo:
|
| 143 |
+
gr.Markdown("# π Perceptron Isaac Vision Model")
|
| 144 |
+
gr.Markdown("Built with [anycoder](https://huggingface.co/spaces/akhaliq/anycoder)")
|
| 145 |
gr.Markdown("""
|
| 146 |
+
This demo showcases the Perceptron Isaac-0.1 model for multimodal understanding with bounding box visualization.
|
| 147 |
+
Upload an image and provide a prompt to analyze the image and see detected objects with bounding boxes.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
""")
|
| 149 |
+
|
| 150 |
with gr.Row():
|
| 151 |
+
with gr.Column(scale=1):
|
| 152 |
image_input = gr.Image(
|
| 153 |
+
type="filepath",
|
| 154 |
+
label="Upload Image",
|
| 155 |
+
sources=["upload", "webcam", "clipboard"],
|
| 156 |
+
height=400
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
)
|
| 158 |
+
prompt_input = gr.Textbox(
|
| 159 |
+
label="Prompt",
|
| 160 |
+
value="Determine whether it is safe to cross the street. Look for signage and moving traffic.",
|
| 161 |
+
lines=3,
|
| 162 |
+
placeholder="Enter your prompt here..."
|
|
|
|
| 163 |
)
|
| 164 |
+
generate_btn = gr.Button("π Generate Response", variant="primary", size="lg")
|
| 165 |
+
|
| 166 |
+
with gr.Column(scale=1):
|
| 167 |
+
visualized_image = gr.Image(
|
| 168 |
+
label="Visualized Predictions (with Bounding Boxes)",
|
| 169 |
+
height=400
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
)
|
| 171 |
+
generated_text = gr.Textbox(
|
| 172 |
+
label="Generated Text",
|
| 173 |
+
lines=10,
|
| 174 |
+
max_lines=20
|
| 175 |
)
|
| 176 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
gr.Examples(
|
| 178 |
+
examples=examples,
|
| 179 |
+
inputs=[image_input, prompt_input],
|
| 180 |
+
outputs=[generated_text, visualized_image],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
fn=generate_response,
|
| 182 |
+
cache_examples=False
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
generate_btn.click(
|
| 186 |
+
generate_response,
|
| 187 |
+
inputs=[image_input, prompt_input],
|
| 188 |
+
outputs=[generated_text, visualized_image]
|
| 189 |
)
|
| 190 |
|
| 191 |
if __name__ == "__main__":
|
| 192 |
+
demo.launch()
|