Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| import datetime | |
| import operator | |
| import pandas as pd | |
| import tqdm.auto | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| from huggingface_hub import HfApi | |
| from ragatouille import RAGPretrainedModel | |
| import gradio as gr | |
| from gradio_calendar import Calendar | |
| import datasets | |
| # --- Data Loading and Processing --- | |
| api = HfApi() | |
| INDEX_REPO_ID = "hysts-bot-data/daily-papers-abstract-index" | |
| INDEX_DIR_PATH = ".ragatouille/colbert/indexes/daily-papers-abstract-index/" | |
| api.snapshot_download( | |
| repo_id=INDEX_REPO_ID, | |
| repo_type="dataset", | |
| local_dir=INDEX_DIR_PATH, | |
| ) | |
| abstract_retriever = RAGPretrainedModel.from_index(INDEX_DIR_PATH) | |
| # Run once to initialize the retriever | |
| abstract_retriever.search("LLM") | |
| def update_abstract_index() -> None: | |
| global abstract_retriever | |
| api.snapshot_download( | |
| repo_id=INDEX_REPO_ID, | |
| repo_type="dataset", | |
| local_dir=INDEX_DIR_PATH, | |
| ) | |
| abstract_retriever = RAGPretrainedModel.from_index(INDEX_DIR_PATH) | |
| abstract_retriever.search("LLM") | |
| scheduler_abstract = BackgroundScheduler() | |
| scheduler_abstract.add_job( | |
| func=update_abstract_index, | |
| trigger="cron", | |
| minute=0, # Every hour at minute 0 | |
| timezone="UTC", | |
| misfire_grace_time=3 * 60, | |
| ) | |
| scheduler_abstract.start() | |
| def get_df() -> pd.DataFrame: | |
| df = pd.merge( | |
| left=datasets.load_dataset("hysts-bot-data/daily-papers", split="train").to_pandas(), | |
| right=datasets.load_dataset("hysts-bot-data/daily-papers-stats", split="train").to_pandas(), | |
| on="arxiv_id", | |
| ) | |
| df = df[::-1].reset_index(drop=True) | |
| df["date"] = df["date"].dt.strftime("%Y-%m-%d") | |
| paper_info = [] | |
| for _, row in tqdm.auto.tqdm(df.iterrows(), total=len(df)): | |
| info = row.copy() | |
| del info["abstract"] | |
| info["paper_page"] = f"https://huggingface.co/papers/{row.arxiv_id}" | |
| paper_info.append(info) | |
| return pd.DataFrame(paper_info) | |
| class Prettifier: | |
| def get_github_link(link: str) -> str: | |
| if not link: | |
| return "" | |
| return Prettifier.create_link("github", link) | |
| def create_link(text: str, url: str) -> str: | |
| return f'<a href="{url}" target="_blank">{text}</a>' | |
| def to_div(text: str | None, category_name: str) -> str: | |
| if text is None: | |
| text = "" | |
| class_name = f"{category_name}-{text.lower()}" | |
| return f'<div class="{class_name}">{text}</div>' | |
| def __call__(self, df: pd.DataFrame) -> pd.DataFrame: | |
| new_rows = [] | |
| for _, row in df.iterrows(): | |
| new_row = { | |
| "date": Prettifier.create_link(row.date, f"https://huggingface.co/papers?date={row.date}"), | |
| "paper_page": Prettifier.create_link(row.arxiv_id, row.paper_page), | |
| "title": row["title"], | |
| "github": self.get_github_link(row.github), | |
| "๐": row["upvotes"], | |
| "๐ฌ": row["num_comments"], | |
| } | |
| new_rows.append(new_row) | |
| return pd.DataFrame(new_rows) | |
| class PaperList: | |
| COLUMN_INFO = [ | |
| ["date", "markdown"], | |
| ["paper_page", "markdown"], | |
| ["title", "str"], | |
| ["github", "markdown"], | |
| ["๐", "number"], | |
| ["๐ฌ", "number"], | |
| ] | |
| def __init__(self, df: pd.DataFrame): | |
| self.df_raw = df | |
| self._prettifier = Prettifier() | |
| self.df_prettified = self._prettifier(df).loc[:, self.column_names] | |
| def column_names(self): | |
| return list(map(operator.itemgetter(0), self.COLUMN_INFO)) | |
| def column_datatype(self): | |
| return list(map(operator.itemgetter(1), self.COLUMN_INFO)) | |
| def search( | |
| self, | |
| start_date: datetime.datetime, | |
| end_date: datetime.datetime, | |
| title_search_query: str, | |
| abstract_search_query: str, | |
| max_num_to_retrieve: int, | |
| ) -> pd.DataFrame: | |
| df = self.df_raw.copy() | |
| df["date"] = pd.to_datetime(df["date"]) | |
| # Filter by date | |
| df = df[(df["date"] >= start_date) & (df["date"] <= end_date)] | |
| df["date"] = df["date"].dt.strftime("%Y-%m-%d") | |
| # Filter by title | |
| if title_search_query: | |
| df = df[df["title"].str.contains(title_search_query, case=False)] | |
| # Filter by abstract | |
| if abstract_search_query: | |
| results = abstract_retriever.search(abstract_search_query, k=max_num_to_retrieve) | |
| remaining_ids = set(df["arxiv_id"]) | |
| found_id_set = set() | |
| found_ids = [] | |
| for x in results: | |
| arxiv_id = x["document_id"] | |
| if arxiv_id not in remaining_ids: | |
| continue | |
| if arxiv_id in found_id_set: | |
| continue | |
| found_id_set.add(arxiv_id) | |
| found_ids.append(arxiv_id) | |
| df = df[df["arxiv_id"].isin(found_ids)].set_index("arxiv_id").reindex(index=found_ids).reset_index() | |
| df_prettified = self._prettifier(df).loc[:, self.column_names] | |
| return df_prettified | |
| paper_list = PaperList(get_df()) | |
| def update_paper_list() -> None: | |
| global paper_list | |
| paper_list = PaperList(get_df()) | |
| scheduler_data = BackgroundScheduler() | |
| scheduler_data.add_job( | |
| func=update_paper_list, | |
| trigger="cron", | |
| minute=0, # Every hour at minute 0 | |
| timezone="UTC", | |
| misfire_grace_time=60, | |
| ) | |
| scheduler_data.start() | |
| # --- Gradio App --- | |
| DESCRIPTION = "# [Daily Papers](https://huggingface.co/papers)" | |
| FOOT_NOTE = """\ | |
| Related useful Spaces: | |
| - [Semantic Scholar Paper Recommender](https://huggingface.co/spaces/librarian-bots/recommend_similar_papers) by [davanstrien](https://huggingface.co/davanstrien) | |
| - [ArXiv CS RAG](https://huggingface.co/spaces/bishmoy/Arxiv-CS-RAG) by [bishmoy](https://huggingface.co/bishmoy) | |
| - [Paper Q&A](https://huggingface.co/spaces/chansung/paper_qa) by [chansung](https://huggingface.co/chansung) | |
| """ | |
| def update_df() -> pd.DataFrame: | |
| return paper_list.df_prettified | |
| def update_num_papers(df: pd.DataFrame) -> str: | |
| return f"{len(df)} / {len(paper_list.df_raw)}" | |
| def search( | |
| start_date: datetime.datetime, | |
| end_date: datetime.datetime, | |
| search_title: str, | |
| search_abstract: str, | |
| max_num_to_retrieve: int, | |
| ) -> pd.DataFrame: | |
| return paper_list.search(start_date, end_date, search_title, search_abstract, max_num_to_retrieve) | |
| with gr.Blocks(css="style.css") as demo: | |
| gr.Markdown(DESCRIPTION) | |
| with gr.Group(): | |
| search_title = gr.Textbox(label="Search title") | |
| with gr.Row(): | |
| with gr.Column(scale=4): | |
| search_abstract = gr.Textbox( | |
| label="Search abstract", | |
| info="The result may not be accurate as the abstract does not contain all the information.", | |
| ) | |
| with gr.Column(scale=1): | |
| max_num_to_retrieve = gr.Slider( | |
| label="Max number to retrieve", | |
| info="This is used only for search on abstracts.", | |
| minimum=1, | |
| maximum=len(paper_list.df_raw), | |
| step=1, | |
| value=100, | |
| ) | |
| with gr.Row(): | |
| start_date = Calendar(label="Start date", type="date", value="2023-05-05") | |
| end_date = Calendar(label="End date", type="date", value=datetime.datetime.utcnow().strftime("%Y-%m-%d")) | |
| num_papers = gr.Textbox(label="Number of papers", value=update_num_papers(paper_list.df_raw), interactive=False) | |
| df = gr.Dataframe( | |
| value=paper_list.df_prettified, | |
| datatype=paper_list.column_datatype, | |
| type="pandas", | |
| interactive=False, | |
| height=1000, | |
| elem_id="table", | |
| column_widths=["10%", "10%", "60%", "10%", "5%", "5%"], | |
| wrap=True, | |
| ) | |
| gr.Markdown(FOOT_NOTE) | |
| # Define the triggers and corresponding functions | |
| search_event = gr.Button("Search") | |
| search_event.click( | |
| fn=search, | |
| inputs=[start_date, end_date, search_title, search_abstract, max_num_to_retrieve], | |
| outputs=df, | |
| ).then( | |
| fn=update_num_papers, | |
| inputs=df, | |
| outputs=num_papers, | |
| queue=False, | |
| ) | |
| # Automatically trigger search when inputs change | |
| for trigger in [start_date, end_date, search_title, search_abstract, max_num_to_retrieve]: | |
| trigger.change( | |
| fn=search, | |
| inputs=[start_date, end_date, search_title, search_abstract, max_num_to_retrieve], | |
| outputs=df, | |
| ).then( | |
| fn=update_num_papers, | |
| inputs=df, | |
| outputs=num_papers, | |
| queue=False, | |
| ) | |
| # Load the initial dataframe and number of papers | |
| demo.load( | |
| fn=update_df, | |
| outputs=df, | |
| queue=False, | |
| ).then( | |
| fn=update_num_papers, | |
| inputs=df, | |
| outputs=num_papers, | |
| queue=False, | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(api_open=False).launch(show_api=False) |