Spaces:
Running
Running
| import os | |
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| from dotenv import load_dotenv | |
| from tavily import TavilyClient | |
| # Load environment variables | |
| load_dotenv() | |
| # Initialize clients | |
| client = InferenceClient( | |
| provider="novita", | |
| api_key=os.getenv("HF_TOKEN"), | |
| bill_to="huggingface" | |
| ) | |
| tavily_client = TavilyClient(api_key=os.getenv("TAVILY_API_KEY")) | |
| def get_web_context(query): | |
| """ | |
| Get relevant web search results using Tavily | |
| """ | |
| try: | |
| response = tavily_client.search( | |
| query=query, | |
| search_depth="advanced", | |
| max_results=3 | |
| ) | |
| # Format the search results | |
| context = "Web Search Results:\n\n" | |
| for result in response['results']: | |
| context += f"Title: {result['title']}\n" | |
| context += f"URL: {result['url']}\n" | |
| context += f"Content: {result['content']}\n\n" | |
| return context | |
| except Exception as e: | |
| return f"Error getting web context: {str(e)}" | |
| def chat(message, history): | |
| """ | |
| Process chat messages using Hugging Face's Inference Provider with web context | |
| """ | |
| try: | |
| # Get web context | |
| web_context = get_web_context(message) | |
| # Format the conversation history | |
| messages = [] | |
| for human, assistant in history: | |
| messages.append({"role": "user", "content": human}) | |
| messages.append({"role": "assistant", "content": assistant}) | |
| # Add system message with web context | |
| messages.append({ | |
| "role": "system", | |
| "content": f"You are a helpful AI assistant. Use the following web search results to inform your response:\n\n{web_context}" | |
| }) | |
| # Add user message | |
| messages.append({"role": "user", "content": message}) | |
| # Get streaming response from the model | |
| stream = client.chat.completions.create( | |
| model="deepseek-ai/DeepSeek-V3-0324", | |
| messages=messages, | |
| temperature=0.7, | |
| max_tokens=1000, | |
| stream=True | |
| ) | |
| # Stream the response | |
| partial_message = "" | |
| for chunk in stream: | |
| if chunk.choices[0].delta.content is not None: | |
| partial_message += chunk.choices[0].delta.content | |
| yield partial_message | |
| except Exception as e: | |
| yield f"Error: {str(e)}" | |
| # Create Gradio interface | |
| with gr.Blocks(title="DeepSearch - AI Search Assistant") as demo: | |
| chatbot = gr.ChatInterface( | |
| fn=chat, | |
| examples=[ | |
| "What is the capital of France?", | |
| "Explain quantum computing in simple terms", | |
| "Write a short poem about artificial intelligence" | |
| ], | |
| title="DeepSearch", | |
| description="Ask me anything, powered by Hugging Face Inference Providers", | |
| theme=gr.themes.Soft() | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(share=True) |