Spaces:
Sleeping
Sleeping
Ara Yeroyan
commited on
Commit
Β·
aafcd0d
1
Parent(s):
85f1ebc
add single smart chatbot
Browse files- smart_chatbot.py +1098 -0
smart_chatbot.py
ADDED
|
@@ -0,0 +1,1098 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Intelligent RAG Chatbot with Smart Query Analysis and Conversation Management
|
| 3 |
+
|
| 4 |
+
This chatbot provides intelligent conversation flow with:
|
| 5 |
+
- Smart query analysis and expansion
|
| 6 |
+
- Single LangSmith conversation traces
|
| 7 |
+
- Local conversation logging
|
| 8 |
+
- Context-aware RAG retrieval
|
| 9 |
+
- Natural conversation without technical jargon
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
+
import os
|
| 13 |
+
import json
|
| 14 |
+
import time
|
| 15 |
+
import logging
|
| 16 |
+
from pathlib import Path
|
| 17 |
+
from dataclasses import dataclass
|
| 18 |
+
from datetime import datetime, timedelta
|
| 19 |
+
from typing import Dict, List, Any, Optional, TypedDict
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
import re
|
| 23 |
+
from langgraph.graph import StateGraph, END
|
| 24 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 25 |
+
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage
|
| 26 |
+
|
| 27 |
+
from src.pipeline import PipelineManager
|
| 28 |
+
from src.config.loader import load_config
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
@dataclass
|
| 32 |
+
class QueryAnalysis:
|
| 33 |
+
"""Analysis result of a user query"""
|
| 34 |
+
has_district: bool
|
| 35 |
+
has_source: bool
|
| 36 |
+
has_year: bool
|
| 37 |
+
extracted_district: Optional[str]
|
| 38 |
+
extracted_source: Optional[str]
|
| 39 |
+
extracted_year: Optional[str]
|
| 40 |
+
confidence_score: float
|
| 41 |
+
can_answer_directly: bool
|
| 42 |
+
missing_filters: List[str]
|
| 43 |
+
suggested_follow_up: Optional[str]
|
| 44 |
+
expanded_query: Optional[str] = None # Query expansion for better RAG
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class ConversationState(TypedDict):
|
| 48 |
+
"""State for the conversation flow"""
|
| 49 |
+
conversation_id: str
|
| 50 |
+
messages: List[Any]
|
| 51 |
+
current_query: str
|
| 52 |
+
query_analysis: Optional[QueryAnalysis]
|
| 53 |
+
rag_query: Optional[str]
|
| 54 |
+
rag_result: Optional[Any]
|
| 55 |
+
final_response: Optional[str]
|
| 56 |
+
conversation_context: Dict[str, Any] # Store conversation context
|
| 57 |
+
session_start_time: float
|
| 58 |
+
last_ai_message_time: float
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class IntelligentRAGChatbot:
|
| 62 |
+
"""Intelligent chatbot with smart query analysis and conversation management"""
|
| 63 |
+
|
| 64 |
+
def __init__(self, suppress_logs=False):
|
| 65 |
+
"""Initialize the intelligent chatbot"""
|
| 66 |
+
# Setup logger to avoid cluttering UI
|
| 67 |
+
self.logger = logging.getLogger(__name__)
|
| 68 |
+
if suppress_logs:
|
| 69 |
+
self.logger.setLevel(logging.CRITICAL) # Suppress all logs
|
| 70 |
+
else:
|
| 71 |
+
self.logger.setLevel(logging.INFO)
|
| 72 |
+
if not self.logger.handlers:
|
| 73 |
+
handler = logging.StreamHandler()
|
| 74 |
+
formatter = logging.Formatter('%(message)s')
|
| 75 |
+
handler.setFormatter(formatter)
|
| 76 |
+
self.logger.addHandler(handler)
|
| 77 |
+
|
| 78 |
+
self.logger.info("π€ INITIALIZING: Intelligent RAG Chatbot")
|
| 79 |
+
|
| 80 |
+
# Load configuration first
|
| 81 |
+
self.config = load_config()
|
| 82 |
+
|
| 83 |
+
# Use the same LLM configuration as the existing system
|
| 84 |
+
from auditqa.llm.adapters import get_llm_client
|
| 85 |
+
|
| 86 |
+
# Get LLM client using the same configuration
|
| 87 |
+
reader_config = self.config.get("reader", {})
|
| 88 |
+
default_type = reader_config.get("default_type", "INF_PROVIDERS")
|
| 89 |
+
|
| 90 |
+
# Convert to lowercase as that's how it's registered
|
| 91 |
+
provider_name = default_type.lower()
|
| 92 |
+
|
| 93 |
+
self.llm_adapter = get_llm_client(provider_name, self.config)
|
| 94 |
+
|
| 95 |
+
# Create a simple wrapper for LangChain compatibility
|
| 96 |
+
class LLMWrapper:
|
| 97 |
+
def __init__(self, adapter):
|
| 98 |
+
self.adapter = adapter
|
| 99 |
+
|
| 100 |
+
def invoke(self, messages):
|
| 101 |
+
# Convert LangChain messages to the format expected by the adapter
|
| 102 |
+
if isinstance(messages, list):
|
| 103 |
+
# Convert LangChain messages to dict format
|
| 104 |
+
message_dicts = []
|
| 105 |
+
for msg in messages:
|
| 106 |
+
if hasattr(msg, 'content'):
|
| 107 |
+
role = "user" if isinstance(msg, HumanMessage) else "assistant"
|
| 108 |
+
message_dicts.append({"role": role, "content": msg.content})
|
| 109 |
+
else:
|
| 110 |
+
message_dicts.append({"role": "user", "content": str(msg)})
|
| 111 |
+
else:
|
| 112 |
+
# Single message
|
| 113 |
+
message_dicts = [{"role": "user", "content": str(messages)}]
|
| 114 |
+
|
| 115 |
+
# Use the adapter to generate response
|
| 116 |
+
llm_response = self.adapter.generate(message_dicts)
|
| 117 |
+
|
| 118 |
+
# Return in LangChain format
|
| 119 |
+
class MockResponse:
|
| 120 |
+
def __init__(self, content):
|
| 121 |
+
self.content = content
|
| 122 |
+
|
| 123 |
+
return MockResponse(llm_response.content)
|
| 124 |
+
|
| 125 |
+
self.llm = LLMWrapper(self.llm_adapter)
|
| 126 |
+
|
| 127 |
+
# Initialize pipeline manager for RAG
|
| 128 |
+
self.logger.info("π§ PIPELINE: Initializing PipelineManager...")
|
| 129 |
+
self.pipeline_manager = PipelineManager(self.config)
|
| 130 |
+
|
| 131 |
+
# Ensure vectorstore is connected
|
| 132 |
+
self.logger.info("π VECTORSTORE: Connecting to Qdrant...")
|
| 133 |
+
try:
|
| 134 |
+
vectorstore = self.pipeline_manager.vectorstore_manager.connect_to_existing()
|
| 135 |
+
self.logger.info("β
VECTORSTORE: Connected successfully")
|
| 136 |
+
except Exception as e:
|
| 137 |
+
self.logger.error(f"β VECTORSTORE: Connection failed: {e}")
|
| 138 |
+
|
| 139 |
+
# Fix LLM client to use the same provider as chatbot
|
| 140 |
+
self.logger.info("π§ LLM: Fixing PipelineManager LLM client...")
|
| 141 |
+
self.pipeline_manager.llm_client = self.llm_adapter
|
| 142 |
+
self.logger.info("β
LLM: PipelineManager now uses same LLM as chatbot")
|
| 143 |
+
|
| 144 |
+
self.logger.info("β
PIPELINE: PipelineManager initialized")
|
| 145 |
+
|
| 146 |
+
# Available metadata for filtering
|
| 147 |
+
self.available_metadata = {
|
| 148 |
+
'sources': [
|
| 149 |
+
'KCCA', 'MAAIF', 'MWTS', 'Gulu DLG', 'Kalangala DLG', 'Namutumba DLG',
|
| 150 |
+
'Lwengo DLG', 'Kiboga DLG', 'Annual Consolidated OAG', 'Consolidated',
|
| 151 |
+
'Hospital', 'Local Government', 'Ministry, Department and Agency',
|
| 152 |
+
'Project', 'Thematic', 'Value for Money'
|
| 153 |
+
],
|
| 154 |
+
'years': ['2018', '2019', '2020', '2021', '2022', '2023', '2024', '2025'],
|
| 155 |
+
'districts': [
|
| 156 |
+
'Gulu', 'Kalangala', 'Kampala', 'Namutumba', 'Lwengo', 'Kiboga',
|
| 157 |
+
'Fort Portal', 'Arua', 'Kasese', 'Kabale', 'Masindi', 'Mbale', 'Jinja', 'Masaka', 'Mbarara',
|
| 158 |
+
'KCCA'
|
| 159 |
+
]
|
| 160 |
+
}
|
| 161 |
+
|
| 162 |
+
# Try to load district whitelist from filter_options.json
|
| 163 |
+
try:
|
| 164 |
+
fo = Path("filter_options.json")
|
| 165 |
+
if fo.exists():
|
| 166 |
+
with open(fo) as f:
|
| 167 |
+
data = json.load(f)
|
| 168 |
+
if isinstance(data, dict) and data.get("districts"):
|
| 169 |
+
self.district_whitelist = [d.strip() for d in data["districts"] if d]
|
| 170 |
+
else:
|
| 171 |
+
self.district_whitelist = self.available_metadata['districts']
|
| 172 |
+
else:
|
| 173 |
+
self.district_whitelist = self.available_metadata['districts']
|
| 174 |
+
except Exception:
|
| 175 |
+
self.district_whitelist = self.available_metadata['districts']
|
| 176 |
+
|
| 177 |
+
# Enrich whitelist from add_district_metadata.py if available
|
| 178 |
+
try:
|
| 179 |
+
from add_district_metadata import DistrictMetadataProcessor
|
| 180 |
+
proc = DistrictMetadataProcessor()
|
| 181 |
+
names = set()
|
| 182 |
+
for key, mapping in proc.district_mappings.items():
|
| 183 |
+
if getattr(mapping, 'is_district', True):
|
| 184 |
+
names.add(mapping.name)
|
| 185 |
+
if names:
|
| 186 |
+
# Merge while preserving order: existing first, then new ones not present
|
| 187 |
+
merged = list(self.district_whitelist)
|
| 188 |
+
for n in sorted(names):
|
| 189 |
+
if n not in merged:
|
| 190 |
+
merged.append(n)
|
| 191 |
+
self.district_whitelist = merged
|
| 192 |
+
self.logger.info(f"π§ District whitelist enriched: {len(self.district_whitelist)} entries")
|
| 193 |
+
except Exception as e:
|
| 194 |
+
self.logger.info(f"βΉοΈ Could not enrich districts from add_district_metadata: {e}")
|
| 195 |
+
|
| 196 |
+
# Get dynamic year list from filter_options.json
|
| 197 |
+
try:
|
| 198 |
+
fo = Path("filter_options.json")
|
| 199 |
+
if fo.exists():
|
| 200 |
+
with open(fo) as f:
|
| 201 |
+
data = json.load(f)
|
| 202 |
+
if isinstance(data, dict) and data.get("years"):
|
| 203 |
+
self.year_whitelist = [str(y).strip() for y in data["years"] if y]
|
| 204 |
+
else:
|
| 205 |
+
self.year_whitelist = self.available_metadata['years']
|
| 206 |
+
else:
|
| 207 |
+
self.year_whitelist = self.available_metadata['years']
|
| 208 |
+
except Exception:
|
| 209 |
+
self.year_whitelist = self.available_metadata['years']
|
| 210 |
+
|
| 211 |
+
# Calculate current year dynamically
|
| 212 |
+
from datetime import datetime
|
| 213 |
+
self.current_year = str(datetime.now().year)
|
| 214 |
+
self.previous_year = str(datetime.now().year - 1)
|
| 215 |
+
|
| 216 |
+
# Data context for system prompt
|
| 217 |
+
self.data_context = self._load_data_context()
|
| 218 |
+
|
| 219 |
+
# Build the LangGraph
|
| 220 |
+
self.graph = self._build_graph()
|
| 221 |
+
|
| 222 |
+
# Conversation logging
|
| 223 |
+
self.conversations_dir = Path("conversations")
|
| 224 |
+
self.conversations_dir.mkdir(exist_ok=True)
|
| 225 |
+
|
| 226 |
+
def _load_data_context(self) -> str:
|
| 227 |
+
"""Load and analyze data context for system prompt"""
|
| 228 |
+
try:
|
| 229 |
+
# Try to load from generated context file
|
| 230 |
+
context_file = Path("data_context.md")
|
| 231 |
+
if context_file.exists():
|
| 232 |
+
with open(context_file) as f:
|
| 233 |
+
return f.read()
|
| 234 |
+
|
| 235 |
+
# Fallback to basic analysis
|
| 236 |
+
reports_dir = Path("reports")
|
| 237 |
+
testset_dir = Path("outputs/datasets/testset")
|
| 238 |
+
|
| 239 |
+
context_parts = []
|
| 240 |
+
|
| 241 |
+
# Report analysis
|
| 242 |
+
if reports_dir.exists():
|
| 243 |
+
report_folders = [d for d in reports_dir.iterdir() if d.is_dir()]
|
| 244 |
+
context_parts.append(f"π Available Reports: {len(report_folders)} audit report folders")
|
| 245 |
+
|
| 246 |
+
# Get year range
|
| 247 |
+
years = []
|
| 248 |
+
for folder in report_folders:
|
| 249 |
+
if "2018" in folder.name:
|
| 250 |
+
years.append("2018")
|
| 251 |
+
elif "2019" in folder.name:
|
| 252 |
+
years.append("2019")
|
| 253 |
+
elif "2020" in folder.name:
|
| 254 |
+
years.append("2020")
|
| 255 |
+
elif "2021" in folder.name:
|
| 256 |
+
years.append("2021")
|
| 257 |
+
elif "2022" in folder.name:
|
| 258 |
+
years.append("2022")
|
| 259 |
+
elif "2023" in folder.name:
|
| 260 |
+
years.append("2023")
|
| 261 |
+
|
| 262 |
+
if years:
|
| 263 |
+
context_parts.append(f"π
Years covered: {', '.join(sorted(set(years)))}")
|
| 264 |
+
|
| 265 |
+
# Test dataset analysis
|
| 266 |
+
if testset_dir.exists():
|
| 267 |
+
test_files = list(testset_dir.glob("*.json"))
|
| 268 |
+
context_parts.append(f"π§ͺ Test dataset: {len(test_files)} files with sample questions")
|
| 269 |
+
|
| 270 |
+
return "\n".join(context_parts) if context_parts else "π Audit report database with comprehensive coverage"
|
| 271 |
+
|
| 272 |
+
except Exception as e:
|
| 273 |
+
self.logger.warning(f"β οΈ Could not load data context: {e}")
|
| 274 |
+
return "π Comprehensive audit report database"
|
| 275 |
+
|
| 276 |
+
def _build_graph(self) -> StateGraph:
|
| 277 |
+
"""Build the LangGraph for intelligent conversation flow"""
|
| 278 |
+
|
| 279 |
+
# Define the graph
|
| 280 |
+
workflow = StateGraph(ConversationState)
|
| 281 |
+
|
| 282 |
+
# Add nodes
|
| 283 |
+
workflow.add_node("analyze_query", self._analyze_query)
|
| 284 |
+
workflow.add_node("decide_action", self._decide_action)
|
| 285 |
+
workflow.add_node("perform_rag", self._perform_rag)
|
| 286 |
+
workflow.add_node("ask_follow_up", self._ask_follow_up)
|
| 287 |
+
workflow.add_node("generate_response", self._generate_response)
|
| 288 |
+
|
| 289 |
+
# Add edges
|
| 290 |
+
workflow.add_edge("analyze_query", "decide_action")
|
| 291 |
+
|
| 292 |
+
# Conditional edges from decide_action
|
| 293 |
+
workflow.add_conditional_edges(
|
| 294 |
+
"decide_action",
|
| 295 |
+
self._should_perform_rag,
|
| 296 |
+
{
|
| 297 |
+
"rag": "perform_rag",
|
| 298 |
+
"follow_up": "ask_follow_up"
|
| 299 |
+
}
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
# From perform_rag, go to generate_response
|
| 303 |
+
workflow.add_edge("perform_rag", "generate_response")
|
| 304 |
+
|
| 305 |
+
# From ask_follow_up, end
|
| 306 |
+
workflow.add_edge("ask_follow_up", END)
|
| 307 |
+
|
| 308 |
+
# From generate_response, end
|
| 309 |
+
workflow.add_edge("generate_response", END)
|
| 310 |
+
|
| 311 |
+
# Set entry point
|
| 312 |
+
workflow.set_entry_point("analyze_query")
|
| 313 |
+
|
| 314 |
+
return workflow.compile()
|
| 315 |
+
|
| 316 |
+
def _extract_districts_list(self, text: str) -> List[str]:
|
| 317 |
+
"""Extract one or more districts from free text using whitelist matching.
|
| 318 |
+
- Case-insensitive substring match for each known district name
|
| 319 |
+
- Handles multi-district inputs like "Lwengo Kiboga District & Namutumba"
|
| 320 |
+
"""
|
| 321 |
+
if not text:
|
| 322 |
+
return []
|
| 323 |
+
q = text.lower()
|
| 324 |
+
found: List[str] = []
|
| 325 |
+
for name in self.district_whitelist:
|
| 326 |
+
n = name.lower()
|
| 327 |
+
if n in q:
|
| 328 |
+
# Map Kampala -> KCCA canonical
|
| 329 |
+
canonical = 'KCCA' if name.lower() == 'kampala' else name
|
| 330 |
+
if canonical not in found:
|
| 331 |
+
found.append(canonical)
|
| 332 |
+
return found
|
| 333 |
+
|
| 334 |
+
def _extract_years_list(self, text: str) -> List[str]:
|
| 335 |
+
"""Extract year list from text, supporting forms like '2022 / 23', '2022-2023', '2022β23'."""
|
| 336 |
+
if not text:
|
| 337 |
+
return []
|
| 338 |
+
years: List[str] = []
|
| 339 |
+
q = text
|
| 340 |
+
# Full 4-digit years
|
| 341 |
+
for y in re.findall(r"\b(20\d{2})\b", q):
|
| 342 |
+
if y not in years:
|
| 343 |
+
years.append(y)
|
| 344 |
+
# Shorthand like 2022/23 or 2022-23
|
| 345 |
+
for m in re.finditer(r"\b(20\d{2})\s*[\-/β]\s*(\d{2})\b", q):
|
| 346 |
+
y1 = m.group(1)
|
| 347 |
+
y2_short = int(m.group(2))
|
| 348 |
+
y2 = f"20{y2_short:02d}"
|
| 349 |
+
for y in [y1, y2]:
|
| 350 |
+
if y not in years:
|
| 351 |
+
years.append(y)
|
| 352 |
+
return years
|
| 353 |
+
|
| 354 |
+
def _analyze_query(self, state: ConversationState) -> ConversationState:
|
| 355 |
+
"""Analyze the user query with conversation context"""
|
| 356 |
+
|
| 357 |
+
query = state["current_query"]
|
| 358 |
+
conversation_context = state.get("conversation_context", {})
|
| 359 |
+
|
| 360 |
+
self.logger.info(f"π§ QUERY ANALYSIS: Starting analysis for: '{query[:50]}...'")
|
| 361 |
+
|
| 362 |
+
# Build conversation context for analysis
|
| 363 |
+
context_info = ""
|
| 364 |
+
if conversation_context:
|
| 365 |
+
context_info = f"\n\nConversation context:\n"
|
| 366 |
+
for key, value in conversation_context.items():
|
| 367 |
+
if value:
|
| 368 |
+
context_info += f"- {key}: {value}\n"
|
| 369 |
+
|
| 370 |
+
# Also include recent conversation messages for better context
|
| 371 |
+
recent_messages = state.get("messages", [])
|
| 372 |
+
if recent_messages and len(recent_messages) > 1:
|
| 373 |
+
context_info += f"\nRecent conversation:\n"
|
| 374 |
+
# Get last 3 messages for context
|
| 375 |
+
for msg in recent_messages[-3:]:
|
| 376 |
+
if hasattr(msg, 'content'):
|
| 377 |
+
role = "User" if isinstance(msg, HumanMessage) else "Assistant"
|
| 378 |
+
context_info += f"- {role}: {msg.content[:100]}...\n"
|
| 379 |
+
|
| 380 |
+
# Create analysis prompt with data context
|
| 381 |
+
analysis_prompt = ChatPromptTemplate.from_messages([
|
| 382 |
+
SystemMessage(content=f"""You are an expert at analyzing audit report queries. Your job is to extract specific information and determine if a query can be answered directly.
|
| 383 |
+
|
| 384 |
+
{self.data_context}
|
| 385 |
+
|
| 386 |
+
DISTRICT RECOGNITION RULES:
|
| 387 |
+
- Kampala = KCCA (Kampala Capital City Authority)
|
| 388 |
+
- Available districts: {', '.join(self.district_whitelist[:15])}... (and {len(self.district_whitelist)-15} more)
|
| 389 |
+
- DLG = District Local Government
|
| 390 |
+
- Uganda has {len(self.district_whitelist)} districts - recognize common ones
|
| 391 |
+
|
| 392 |
+
SOURCE RECOGNITION RULES:
|
| 393 |
+
- KCCA = Kampala Capital City Authority
|
| 394 |
+
- MAAIF = Ministry of Agriculture, Animal Industry and Fisheries
|
| 395 |
+
- MWTS = Ministry of Works and Transport
|
| 396 |
+
- OAG = Office of the Auditor General
|
| 397 |
+
- Consolidated = Annual Consolidated reports
|
| 398 |
+
|
| 399 |
+
YEAR RECOGNITION RULES:
|
| 400 |
+
- Available years: {', '.join(self.year_whitelist)}
|
| 401 |
+
- Current year is {self.current_year} - use this to reason about relative years
|
| 402 |
+
- If user mentions "last year", "previous year" - infer {self.previous_year}
|
| 403 |
+
- If user mentions "this year", "current year" - infer {self.current_year}
|
| 404 |
+
|
| 405 |
+
Analysis rules:
|
| 406 |
+
1. Be SMART - if you have enough context to search, do it
|
| 407 |
+
2. Use conversation context to fill in missing information
|
| 408 |
+
3. For budget/expenditure queries, try to infer missing details from context
|
| 409 |
+
4. Current year is {self.current_year} - use this to reason about relative years
|
| 410 |
+
5. If user mentions "last year", "previous year" - infer {self.previous_year}
|
| 411 |
+
6. If user mentions "this year", "current year" - infer {self.current_year}
|
| 412 |
+
7. If user mentions a department/ministry, infer the source
|
| 413 |
+
8. If user is getting frustrated or asking for results, proceed with RAG even if not perfect
|
| 414 |
+
9. Recognize Kampala as a district (KCCA)
|
| 415 |
+
|
| 416 |
+
IMPORTANT: You must respond with ONLY valid JSON. No additional text.
|
| 417 |
+
|
| 418 |
+
Return your analysis as JSON with these exact fields:
|
| 419 |
+
{{
|
| 420 |
+
"has_district": boolean,
|
| 421 |
+
"has_source": boolean,
|
| 422 |
+
"has_year": boolean,
|
| 423 |
+
"extracted_district": "string or null",
|
| 424 |
+
"extracted_source": "string or null",
|
| 425 |
+
"extracted_year": "string or null",
|
| 426 |
+
"confidence_score": 0.0-1.0,
|
| 427 |
+
"can_answer_directly": boolean,
|
| 428 |
+
"missing_filters": ["list", "of", "missing", "filters"],
|
| 429 |
+
"suggested_follow_up": "string or null",
|
| 430 |
+
"expanded_query": "string or null"
|
| 431 |
+
}}
|
| 432 |
+
|
| 433 |
+
The expanded_query should be a natural language query that combines the original question with any inferred context for better RAG retrieval."""),
|
| 434 |
+
HumanMessage(content=f"Analyze this query: '{query}'{context_info}")
|
| 435 |
+
])
|
| 436 |
+
|
| 437 |
+
# Get analysis from LLM
|
| 438 |
+
response = self.llm.invoke(analysis_prompt.format_messages())
|
| 439 |
+
|
| 440 |
+
try:
|
| 441 |
+
# Clean the response content to extract JSON
|
| 442 |
+
content = response.content.strip()
|
| 443 |
+
|
| 444 |
+
# Try to find JSON in the response
|
| 445 |
+
if content.startswith('{') and content.endswith('}'):
|
| 446 |
+
json_content = content
|
| 447 |
+
else:
|
| 448 |
+
# Try to extract JSON from the response
|
| 449 |
+
import re
|
| 450 |
+
json_match = re.search(r'\{.*\}', content, re.DOTALL)
|
| 451 |
+
if json_match:
|
| 452 |
+
json_content = json_match.group()
|
| 453 |
+
else:
|
| 454 |
+
raise json.JSONDecodeError("No JSON found in response", content, 0)
|
| 455 |
+
|
| 456 |
+
# Parse JSON response
|
| 457 |
+
analysis_data = json.loads(json_content)
|
| 458 |
+
|
| 459 |
+
query_analysis = QueryAnalysis(
|
| 460 |
+
has_district=analysis_data.get("has_district", False),
|
| 461 |
+
has_source=analysis_data.get("has_source", False),
|
| 462 |
+
has_year=analysis_data.get("has_year", False),
|
| 463 |
+
extracted_district=analysis_data.get("extracted_district"),
|
| 464 |
+
extracted_source=analysis_data.get("extracted_source"),
|
| 465 |
+
extracted_year=analysis_data.get("extracted_year"),
|
| 466 |
+
confidence_score=analysis_data.get("confidence_score", 0.0),
|
| 467 |
+
can_answer_directly=analysis_data.get("can_answer_directly", False),
|
| 468 |
+
missing_filters=analysis_data.get("missing_filters", []),
|
| 469 |
+
suggested_follow_up=analysis_data.get("suggested_follow_up"),
|
| 470 |
+
expanded_query=analysis_data.get("expanded_query")
|
| 471 |
+
)
|
| 472 |
+
|
| 473 |
+
except (json.JSONDecodeError, KeyError, AttributeError) as e:
|
| 474 |
+
self.logger.info(f"β οΈ JSON parsing failed: {e}")
|
| 475 |
+
# Fallback analysis - be more permissive
|
| 476 |
+
query_lower = query.lower()
|
| 477 |
+
|
| 478 |
+
# Simple keyword matching - improved district recognition
|
| 479 |
+
has_district = any(district.lower() in query_lower for district in [
|
| 480 |
+
'gulu', 'kalangala', 'kampala', 'namutumba', 'lwengo', 'kiboga', 'kcca', 'maaif', 'mwts'
|
| 481 |
+
])
|
| 482 |
+
|
| 483 |
+
# Special case: Kampala = KCCA
|
| 484 |
+
if 'kampala' in query_lower and not has_district:
|
| 485 |
+
has_district = True
|
| 486 |
+
|
| 487 |
+
has_source = any(source.lower() in query_lower for source in [
|
| 488 |
+
'kcca', 'maaif', 'mwts', 'gulu', 'kalangala', 'consolidated', 'oag', 'government'
|
| 489 |
+
])
|
| 490 |
+
|
| 491 |
+
# Check for year mentions using dynamic year list
|
| 492 |
+
has_year = any(year in query_lower for year in self.year_whitelist)
|
| 493 |
+
|
| 494 |
+
# Also check for explicit relative year terms
|
| 495 |
+
has_year = has_year or any(term in query_lower for term in [
|
| 496 |
+
'this year', 'last year', 'previous year', 'current year'
|
| 497 |
+
])
|
| 498 |
+
|
| 499 |
+
# Extract specific values
|
| 500 |
+
extracted_district = None
|
| 501 |
+
extracted_source = None
|
| 502 |
+
extracted_year = None
|
| 503 |
+
|
| 504 |
+
# Extract districts using comprehensive whitelist
|
| 505 |
+
for district_name in self.district_whitelist:
|
| 506 |
+
if district_name.lower() in query_lower:
|
| 507 |
+
extracted_district = district_name
|
| 508 |
+
break
|
| 509 |
+
|
| 510 |
+
# Also check common aliases
|
| 511 |
+
district_aliases = {
|
| 512 |
+
'kampala': 'Kampala',
|
| 513 |
+
'kcca': 'Kampala',
|
| 514 |
+
'gulu': 'Gulu',
|
| 515 |
+
'kalangala': 'Kalangala'
|
| 516 |
+
}
|
| 517 |
+
for alias, full_name in district_aliases.items():
|
| 518 |
+
if alias in query_lower and not extracted_district:
|
| 519 |
+
extracted_district = full_name
|
| 520 |
+
break
|
| 521 |
+
|
| 522 |
+
for source in ['kcca', 'maaif', 'mwts', 'consolidated', 'oag']:
|
| 523 |
+
if source in query_lower:
|
| 524 |
+
extracted_source = source.upper()
|
| 525 |
+
break
|
| 526 |
+
|
| 527 |
+
# Extract year using dynamic year list
|
| 528 |
+
for year in self.year_whitelist:
|
| 529 |
+
if year in query_lower:
|
| 530 |
+
extracted_year = year
|
| 531 |
+
has_year = True
|
| 532 |
+
break
|
| 533 |
+
|
| 534 |
+
# Only handle relative year terms if explicitly mentioned
|
| 535 |
+
if not extracted_year:
|
| 536 |
+
if 'last year' in query_lower or 'previous year' in query_lower:
|
| 537 |
+
extracted_year = self.previous_year
|
| 538 |
+
has_year = True
|
| 539 |
+
elif 'this year' in query_lower or 'current year' in query_lower:
|
| 540 |
+
extracted_year = self.current_year
|
| 541 |
+
has_year = True
|
| 542 |
+
elif 'recent' in query_lower and 'year' in query_lower:
|
| 543 |
+
# Use the most recent year from available data
|
| 544 |
+
extracted_year = max(self.year_whitelist) if self.year_whitelist else self.previous_year
|
| 545 |
+
has_year = True
|
| 546 |
+
|
| 547 |
+
# Be more permissive - if we have some context, try to answer
|
| 548 |
+
missing_filters = []
|
| 549 |
+
if not has_district:
|
| 550 |
+
missing_filters.append("district")
|
| 551 |
+
if not has_source:
|
| 552 |
+
missing_filters.append("source")
|
| 553 |
+
if not has_year:
|
| 554 |
+
missing_filters.append("year")
|
| 555 |
+
|
| 556 |
+
# If user seems frustrated or asking for results, be more permissive
|
| 557 |
+
frustration_indicators = ['already', 'just said', 'specified', 'provided', 'crazy', 'answer']
|
| 558 |
+
is_frustrated = any(indicator in query_lower for indicator in frustration_indicators)
|
| 559 |
+
|
| 560 |
+
can_answer_directly = len(missing_filters) <= 1 or is_frustrated # More permissive
|
| 561 |
+
confidence_score = 0.8 if can_answer_directly else 0.3
|
| 562 |
+
|
| 563 |
+
# Generate follow-up suggestion
|
| 564 |
+
if missing_filters and not is_frustrated:
|
| 565 |
+
if "district" in missing_filters and "source" in missing_filters:
|
| 566 |
+
suggested_follow_up = "I'd be happy to help you with that information! Could you please specify which district and department/ministry you're asking about?"
|
| 567 |
+
elif "district" in missing_filters:
|
| 568 |
+
suggested_follow_up = "Thanks for your question! Could you please specify which district you're asking about?"
|
| 569 |
+
elif "source" in missing_filters:
|
| 570 |
+
suggested_follow_up = "I can help you with that! Could you please specify which department or ministry you're asking about?"
|
| 571 |
+
elif "year" in missing_filters:
|
| 572 |
+
suggested_follow_up = "Great question! Could you please specify which year you're interested in?"
|
| 573 |
+
else:
|
| 574 |
+
suggested_follow_up = "Could you please provide more specific details to help me give you a precise answer?"
|
| 575 |
+
else:
|
| 576 |
+
suggested_follow_up = None
|
| 577 |
+
|
| 578 |
+
# Create expanded query
|
| 579 |
+
expanded_query = query
|
| 580 |
+
if extracted_district:
|
| 581 |
+
expanded_query += f" for {extracted_district} district"
|
| 582 |
+
if extracted_source:
|
| 583 |
+
expanded_query += f" from {extracted_source}"
|
| 584 |
+
if extracted_year:
|
| 585 |
+
expanded_query += f" in {extracted_year}"
|
| 586 |
+
|
| 587 |
+
query_analysis = QueryAnalysis(
|
| 588 |
+
has_district=has_district,
|
| 589 |
+
has_source=has_source,
|
| 590 |
+
has_year=has_year,
|
| 591 |
+
extracted_district=extracted_district,
|
| 592 |
+
extracted_source=extracted_source,
|
| 593 |
+
extracted_year=extracted_year,
|
| 594 |
+
confidence_score=confidence_score,
|
| 595 |
+
can_answer_directly=can_answer_directly,
|
| 596 |
+
missing_filters=missing_filters,
|
| 597 |
+
suggested_follow_up=suggested_follow_up,
|
| 598 |
+
expanded_query=expanded_query
|
| 599 |
+
)
|
| 600 |
+
|
| 601 |
+
# Update conversation context
|
| 602 |
+
if query_analysis.extracted_district:
|
| 603 |
+
conversation_context["district"] = query_analysis.extracted_district
|
| 604 |
+
if query_analysis.extracted_source:
|
| 605 |
+
conversation_context["source"] = query_analysis.extracted_source
|
| 606 |
+
if query_analysis.extracted_year:
|
| 607 |
+
conversation_context["year"] = query_analysis.extracted_year
|
| 608 |
+
|
| 609 |
+
state["query_analysis"] = query_analysis
|
| 610 |
+
state["conversation_context"] = conversation_context
|
| 611 |
+
|
| 612 |
+
self.logger.info(f"β
ANALYSIS COMPLETE: district={query_analysis.has_district}, source={query_analysis.has_source}, year={query_analysis.has_year}")
|
| 613 |
+
self.logger.info(f"π Confidence: {query_analysis.confidence_score:.2f}, Can answer directly: {query_analysis.can_answer_directly}")
|
| 614 |
+
if query_analysis.expanded_query:
|
| 615 |
+
self.logger.info(f"π Expanded query: {query_analysis.expanded_query}")
|
| 616 |
+
|
| 617 |
+
return state
|
| 618 |
+
|
| 619 |
+
def _decide_action(self, state: ConversationState) -> ConversationState:
|
| 620 |
+
"""Decide what action to take based on query analysis"""
|
| 621 |
+
|
| 622 |
+
analysis = state["query_analysis"]
|
| 623 |
+
|
| 624 |
+
# Add decision reasoning
|
| 625 |
+
if analysis.can_answer_directly and analysis.confidence_score > 0.7:
|
| 626 |
+
self.logger.info(f"π DECISION: Query is complete, proceeding with RAG")
|
| 627 |
+
self.logger.info(f"π REASONING: Confidence={analysis.confidence_score:.2f}, Missing filters={len(analysis.missing_filters or [])}")
|
| 628 |
+
if analysis.missing_filters:
|
| 629 |
+
self.logger.info(f"π Missing: {', '.join(analysis.missing_filters)}")
|
| 630 |
+
else:
|
| 631 |
+
self.logger.info(f"β
All required information available")
|
| 632 |
+
else:
|
| 633 |
+
self.logger.info(f"β DECISION: Query incomplete, asking follow-up")
|
| 634 |
+
self.logger.info(f"π REASONING: Confidence={analysis.confidence_score:.2f}, Missing filters={len(analysis.missing_filters or [])}")
|
| 635 |
+
if analysis.missing_filters:
|
| 636 |
+
self.logger.info(f"π Missing: {', '.join(analysis.missing_filters)}")
|
| 637 |
+
self.logger.info(f"π‘ Follow-up needed: {analysis.suggested_follow_up}")
|
| 638 |
+
|
| 639 |
+
return state
|
| 640 |
+
|
| 641 |
+
def _should_perform_rag(self, state: ConversationState) -> str:
|
| 642 |
+
"""Determine whether to perform RAG or ask follow-up"""
|
| 643 |
+
|
| 644 |
+
analysis = state["query_analysis"]
|
| 645 |
+
conversation_context = state.get("conversation_context", {})
|
| 646 |
+
recent_messages = state.get("messages", [])
|
| 647 |
+
|
| 648 |
+
# Check if we have enough context from conversation history
|
| 649 |
+
has_district_context = analysis.has_district or conversation_context.get("district")
|
| 650 |
+
has_source_context = analysis.has_source or conversation_context.get("source")
|
| 651 |
+
has_year_context = analysis.has_year or conversation_context.get("year")
|
| 652 |
+
|
| 653 |
+
# Count how many context pieces we have
|
| 654 |
+
context_count = sum([bool(has_district_context), bool(has_source_context), bool(has_year_context)])
|
| 655 |
+
|
| 656 |
+
# For PDM queries, we need more specific information
|
| 657 |
+
current_query = state["current_query"].lower()
|
| 658 |
+
recent_messages = state.get("messages", [])
|
| 659 |
+
|
| 660 |
+
# Check if this is a PDM query by looking at current query OR recent conversation
|
| 661 |
+
is_pdm_query = "pdm" in current_query or "parish development" in current_query
|
| 662 |
+
|
| 663 |
+
# Also check recent messages for PDM context
|
| 664 |
+
if not is_pdm_query and recent_messages:
|
| 665 |
+
for msg in recent_messages[-3:]: # Check last 3 messages
|
| 666 |
+
if isinstance(msg, HumanMessage) and ("pdm" in msg.content.lower() or "parish development" in msg.content.lower()):
|
| 667 |
+
is_pdm_query = True
|
| 668 |
+
break
|
| 669 |
+
|
| 670 |
+
if is_pdm_query:
|
| 671 |
+
# For PDM queries, we need district AND year to be specific enough
|
| 672 |
+
# But we need them to be explicitly provided in the current conversation, not just inferred
|
| 673 |
+
if has_district_context and has_year_context:
|
| 674 |
+
# Check if both district and year are explicitly mentioned in recent messages
|
| 675 |
+
explicit_district = False
|
| 676 |
+
explicit_year = False
|
| 677 |
+
|
| 678 |
+
for msg in recent_messages[-3:]: # Check last 3 messages
|
| 679 |
+
if isinstance(msg, HumanMessage):
|
| 680 |
+
content = msg.content.lower()
|
| 681 |
+
if any(district in content for district in ["gulu", "kalangala", "kampala", "namutumba"]):
|
| 682 |
+
explicit_district = True
|
| 683 |
+
if any(year in content for year in ["2022", "2023", "2022/23", "2023/24"]):
|
| 684 |
+
explicit_year = True
|
| 685 |
+
|
| 686 |
+
if explicit_district and explicit_year:
|
| 687 |
+
self.logger.info(f"π DECISION: PDM query with explicit district and year, proceeding with RAG")
|
| 688 |
+
self.logger.info(f"π REASONING: PDM query - explicit_district={explicit_district}, explicit_year={explicit_year}")
|
| 689 |
+
return "rag"
|
| 690 |
+
else:
|
| 691 |
+
self.logger.info(f"β DECISION: PDM query needs explicit district and year, asking follow-up")
|
| 692 |
+
self.logger.info(f"π REASONING: PDM query - explicit_district={explicit_district}, explicit_year={explicit_year}")
|
| 693 |
+
return "follow_up"
|
| 694 |
+
else:
|
| 695 |
+
self.logger.info(f"β DECISION: PDM query needs more specific info, asking follow-up")
|
| 696 |
+
self.logger.info(f"π REASONING: PDM query - district={has_district_context}, year={has_year_context}")
|
| 697 |
+
return "follow_up"
|
| 698 |
+
|
| 699 |
+
# For general queries, be more conservative - need at least 2 pieces AND high confidence
|
| 700 |
+
if context_count >= 2 and analysis.confidence_score > 0.8:
|
| 701 |
+
self.logger.info(f"π DECISION: Sufficient context with high confidence, proceeding with RAG")
|
| 702 |
+
self.logger.info(f"π REASONING: Context pieces: district={has_district_context}, source={has_source_context}, year={has_year_context}, confidence={analysis.confidence_score}")
|
| 703 |
+
return "rag"
|
| 704 |
+
|
| 705 |
+
# If user seems frustrated (short responses like "no"), proceed with RAG
|
| 706 |
+
if recent_messages and len(recent_messages) >= 3: # Need more messages to detect frustration
|
| 707 |
+
last_user_message = None
|
| 708 |
+
for msg in reversed(recent_messages):
|
| 709 |
+
if isinstance(msg, HumanMessage):
|
| 710 |
+
last_user_message = msg.content.lower().strip()
|
| 711 |
+
break
|
| 712 |
+
|
| 713 |
+
if last_user_message and len(last_user_message) < 10 and any(word in last_user_message for word in ["no", "yes", "ok", "sure"]):
|
| 714 |
+
self.logger.info(f"π DECISION: User seems frustrated with short response, proceeding with RAG")
|
| 715 |
+
return "rag"
|
| 716 |
+
|
| 717 |
+
# Original logic for direct answers
|
| 718 |
+
if analysis.can_answer_directly and analysis.confidence_score > 0.7:
|
| 719 |
+
return "rag"
|
| 720 |
+
else:
|
| 721 |
+
return "follow_up"
|
| 722 |
+
|
| 723 |
+
def _ask_follow_up(self, state: ConversationState) -> ConversationState:
|
| 724 |
+
"""Generate a follow-up question to clarify missing information"""
|
| 725 |
+
|
| 726 |
+
analysis = state["query_analysis"]
|
| 727 |
+
current_query = state["current_query"].lower()
|
| 728 |
+
conversation_context = state.get("conversation_context", {})
|
| 729 |
+
|
| 730 |
+
# Check if this is a PDM query
|
| 731 |
+
is_pdm_query = "pdm" in current_query or "parish development" in current_query
|
| 732 |
+
|
| 733 |
+
if is_pdm_query:
|
| 734 |
+
# Generate PDM-specific follow-up questions
|
| 735 |
+
missing_info = []
|
| 736 |
+
|
| 737 |
+
if not analysis.has_district and not conversation_context.get("district"):
|
| 738 |
+
missing_info.append("district (e.g., Gulu, Kalangala)")
|
| 739 |
+
|
| 740 |
+
if not analysis.has_year and not conversation_context.get("year"):
|
| 741 |
+
missing_info.append("year (e.g., 2022, 2023)")
|
| 742 |
+
|
| 743 |
+
if missing_info:
|
| 744 |
+
follow_up_message = f"For PDM administrative costs information, I need to know the {', '.join(missing_info)}. Could you please specify these details?"
|
| 745 |
+
else:
|
| 746 |
+
follow_up_message = "Could you please provide more specific details about the PDM administrative costs you're looking for?"
|
| 747 |
+
else:
|
| 748 |
+
# Use the original follow-up logic
|
| 749 |
+
if analysis.suggested_follow_up:
|
| 750 |
+
follow_up_message = analysis.suggested_follow_up
|
| 751 |
+
else:
|
| 752 |
+
follow_up_message = "Could you please provide more specific details to help me give you a precise answer?"
|
| 753 |
+
|
| 754 |
+
state["final_response"] = follow_up_message
|
| 755 |
+
state["last_ai_message_time"] = time.time()
|
| 756 |
+
|
| 757 |
+
return state
|
| 758 |
+
|
| 759 |
+
def _build_comprehensive_query(self, current_query: str, analysis, conversation_context: dict, recent_messages: list) -> str:
|
| 760 |
+
"""Build a better RAG query from conversation.
|
| 761 |
+
- If latest message is a short modifier (e.g., "financial"), merge it into the last substantive question.
|
| 762 |
+
- If latest message looks like filters (district/year), keep the last question unchanged.
|
| 763 |
+
- Otherwise, use the current message.
|
| 764 |
+
"""
|
| 765 |
+
|
| 766 |
+
def is_interrogative(text: str) -> bool:
|
| 767 |
+
t = text.lower().strip()
|
| 768 |
+
return any(t.startswith(w) for w in ["what", "how", "why", "when", "where", "which", "who"]) or t.endswith("?")
|
| 769 |
+
|
| 770 |
+
def is_filter_like(text: str) -> bool:
|
| 771 |
+
t = text.lower()
|
| 772 |
+
if "district" in t:
|
| 773 |
+
return True
|
| 774 |
+
if re.search(r"\b20\d{2}\b", t) or re.search(r"20\d{2}\s*[\-/β]\s*\d{2}\b", t):
|
| 775 |
+
return True
|
| 776 |
+
if self._extract_districts_list(text):
|
| 777 |
+
return True
|
| 778 |
+
return False
|
| 779 |
+
|
| 780 |
+
# Find last substantive user question
|
| 781 |
+
last_question = None
|
| 782 |
+
for msg in reversed(recent_messages[:-1] if recent_messages else []):
|
| 783 |
+
if isinstance(msg, HumanMessage):
|
| 784 |
+
if is_interrogative(msg.content) and len(msg.content.strip()) > 15:
|
| 785 |
+
last_question = msg.content.strip()
|
| 786 |
+
break
|
| 787 |
+
|
| 788 |
+
cq = current_query.strip()
|
| 789 |
+
words = cq.split()
|
| 790 |
+
is_short_modifier = (not is_interrogative(cq)) and (len(words) <= 3)
|
| 791 |
+
|
| 792 |
+
if is_filter_like(cq) and last_question:
|
| 793 |
+
comprehensive_query = last_question
|
| 794 |
+
elif is_short_modifier and last_question:
|
| 795 |
+
modifier = cq
|
| 796 |
+
if modifier.lower() in last_question.lower():
|
| 797 |
+
comprehensive_query = last_question
|
| 798 |
+
else:
|
| 799 |
+
if last_question.endswith('?'):
|
| 800 |
+
comprehensive_query = last_question[:-1] + f" for {modifier}?"
|
| 801 |
+
else:
|
| 802 |
+
comprehensive_query = last_question + f" for {modifier}"
|
| 803 |
+
else:
|
| 804 |
+
comprehensive_query = current_query
|
| 805 |
+
|
| 806 |
+
self.logger.info(f"π COMPREHENSIVE QUERY: '{comprehensive_query}'")
|
| 807 |
+
return comprehensive_query
|
| 808 |
+
|
| 809 |
+
def _rewrite_query_with_llm(self, recent_messages: list, draft_query: str) -> str:
|
| 810 |
+
"""Use the LLM to rewrite a clean, focused RAG query from the conversation.
|
| 811 |
+
Rules enforced in prompt:
|
| 812 |
+
- Keep the user's main information need from the last substantive question
|
| 813 |
+
- Integrate short modifiers (e.g., "financial") into that question when appropriate
|
| 814 |
+
- Do NOT include filter text (years/districts/sources) in the query; those are handled separately
|
| 815 |
+
- Return a single plain sentence only (no quotes, no markdown)
|
| 816 |
+
"""
|
| 817 |
+
try:
|
| 818 |
+
# Build a compact conversation transcript (last 6 messages max)
|
| 819 |
+
convo_lines = []
|
| 820 |
+
for msg in recent_messages[-6:]:
|
| 821 |
+
if isinstance(msg, HumanMessage):
|
| 822 |
+
convo_lines.append(f"User: {msg.content}")
|
| 823 |
+
elif isinstance(msg, AIMessage):
|
| 824 |
+
convo_lines.append(f"Assistant: {msg.content}")
|
| 825 |
+
|
| 826 |
+
convo_text = "\n".join(convo_lines)
|
| 827 |
+
|
| 828 |
+
"""
|
| 829 |
+
"DECISION GUIDANCE:\n"
|
| 830 |
+
"- If the latest user message looks like a modifier (e.g., 'financial'), merge it into the best prior question.\n"
|
| 831 |
+
"- If the latest message provides filters (e.g., districts, years), DO NOT embed them; keep the base question.\n"
|
| 832 |
+
"- If the latest message itself is a full, clear question, use it.\n"
|
| 833 |
+
"- If the draft query is already good, you may refine its clarity but keep the same intent.\n\n"
|
| 834 |
+
"""
|
| 835 |
+
|
| 836 |
+
|
| 837 |
+
prompt = ChatPromptTemplate.from_messages([
|
| 838 |
+
SystemMessage(content=(
|
| 839 |
+
"ROLE: Query Rewriter for a RAG system.\n\n"
|
| 840 |
+
"PRIMARY OBJECTIVE:\n- Produce ONE retrieval-focused sentence that best represents the user's information need.\n"
|
| 841 |
+
"- Maximize recall of relevant evidence; be specific but not overconstrained.\n\n"
|
| 842 |
+
"INPUTS:\n- Conversation with User and Assistant turns (latest last).\n- A draft query (heuristic).\n\n"
|
| 843 |
+
"OPERATING PRINCIPLES:\n"
|
| 844 |
+
"1) Use the last substantive USER question as the backbone of intent.\n"
|
| 845 |
+
"2) Merge helpful domain modifiers from any USER turns (financial, procurement, risk) when they sharpen focus; ignore if not helpful.\n"
|
| 846 |
+
"3) Treat Assistant messages as guidance only; if the user later provided filters (years, districts, sources), DO NOT embed them in the query (filters are applied separately).\n"
|
| 847 |
+
"4) Remove meta-verbs like 'summarize', 'list', 'explain', 'compare' from the query.\n"
|
| 848 |
+
"5) Prefer content-bearing terms (topics, programs, outcomes) over task phrasing.\n"
|
| 849 |
+
"6) If the latest user message is filters-only, keep the prior substantive question unchanged.\n"
|
| 850 |
+
"7) If the draft query is already strong, refine wording for clarity but keep the same intent.\n\n"
|
| 851 |
+
"EXAMPLES (multi-turn):\n"
|
| 852 |
+
"A)\nUser: What are the top 5 priorities for improving audit procedures?\nAssistant: Could you specify the scope (e.g., financial, procurement)?\nUser: Financial\nβ Output: Top priorities for improving financial audit procedures.\n\n"
|
| 853 |
+
"B)\nUser: How were PDM administrative costs utilized and what was the impact of shortfalls?\nAssistant: Please specify district/year for precision.\nUser: Namutumba and Lwengo Districts (2022/23)\nβ Output: How were PDM administrative costs utilized and what was the impact of shortfalls.\n(Exclude districts/years; they are filters.)\n\n"
|
| 854 |
+
"C)\nUser: Summarize risk management issues in audit reports.\nβ Output: Key risk management issues in audit reports.\n\n"
|
| 855 |
+
"CONSTRAINTS:\n- Do NOT include filters (years, districts, sources, filenames).\n- Do NOT include quotes/markdown/bullets or multiple sentences.\n- Return exactly one plain sentence."
|
| 856 |
+
)),
|
| 857 |
+
HumanMessage(content=(
|
| 858 |
+
f"Conversation (most recent last):\n{convo_text}\n\n"
|
| 859 |
+
f"Draft query: {draft_query}\n\n"
|
| 860 |
+
"Rewrite the single best retrieval query sentence now:"
|
| 861 |
+
)),
|
| 862 |
+
])
|
| 863 |
+
|
| 864 |
+
# Add timeout for LLM call
|
| 865 |
+
import signal
|
| 866 |
+
|
| 867 |
+
def timeout_handler(signum, frame):
|
| 868 |
+
raise TimeoutError("LLM rewrite timeout")
|
| 869 |
+
|
| 870 |
+
# Set 10 second timeout
|
| 871 |
+
signal.signal(signal.SIGALRM, timeout_handler)
|
| 872 |
+
signal.alarm(10)
|
| 873 |
+
|
| 874 |
+
try:
|
| 875 |
+
resp = self.llm.invoke(prompt.format_messages())
|
| 876 |
+
signal.alarm(0) # Cancel timeout
|
| 877 |
+
|
| 878 |
+
rewritten = getattr(resp, 'content', '').strip()
|
| 879 |
+
# Basic sanitization: keep it one line
|
| 880 |
+
rewritten = rewritten.replace('\n', ' ').strip()
|
| 881 |
+
if rewritten and len(rewritten) > 5: # Basic quality check
|
| 882 |
+
self.logger.info(f"π οΈ LLM REWRITER: '{rewritten}'")
|
| 883 |
+
return rewritten
|
| 884 |
+
else:
|
| 885 |
+
self.logger.info(f"β οΈ LLM rewrite too short/empty, using draft query")
|
| 886 |
+
return draft_query
|
| 887 |
+
except TimeoutError:
|
| 888 |
+
signal.alarm(0)
|
| 889 |
+
self.logger.info(f"β οΈ LLM rewrite timeout after 10s, using draft query")
|
| 890 |
+
return draft_query
|
| 891 |
+
except Exception as e:
|
| 892 |
+
signal.alarm(0)
|
| 893 |
+
self.logger.info(f"β οΈ LLM rewrite failed, using draft query. Error: {e}")
|
| 894 |
+
return draft_query
|
| 895 |
+
except Exception as e:
|
| 896 |
+
self.logger.info(f"β οΈ LLM rewrite setup failed, using draft query. Error: {e}")
|
| 897 |
+
return draft_query
|
| 898 |
+
|
| 899 |
+
def _perform_rag(self, state: ConversationState) -> ConversationState:
|
| 900 |
+
"""Perform RAG retrieval with smart query expansion"""
|
| 901 |
+
|
| 902 |
+
query = state["current_query"]
|
| 903 |
+
analysis = state["query_analysis"]
|
| 904 |
+
conversation_context = state.get("conversation_context", {})
|
| 905 |
+
recent_messages = state.get("messages", [])
|
| 906 |
+
|
| 907 |
+
# Build comprehensive query from conversation history
|
| 908 |
+
draft_query = self._build_comprehensive_query(query, analysis, conversation_context, recent_messages)
|
| 909 |
+
# Let LLM rewrite a clean, focused search query
|
| 910 |
+
search_query = self._rewrite_query_with_llm(recent_messages, draft_query)
|
| 911 |
+
|
| 912 |
+
self.logger.info(f"π RAG RETRIEVAL: Starting for query: '{search_query[:50]}...'")
|
| 913 |
+
self.logger.info(f"π Analysis: district={analysis.has_district}, source={analysis.has_source}, year={analysis.has_year}")
|
| 914 |
+
|
| 915 |
+
try:
|
| 916 |
+
# Build filters from analysis and conversation context
|
| 917 |
+
filters = {}
|
| 918 |
+
|
| 919 |
+
# Use conversation context to fill in missing filters
|
| 920 |
+
source = analysis.extracted_source or conversation_context.get("source")
|
| 921 |
+
district = analysis.extracted_district or conversation_context.get("district")
|
| 922 |
+
year = analysis.extracted_year or conversation_context.get("year")
|
| 923 |
+
|
| 924 |
+
if source:
|
| 925 |
+
filters["source"] = [source] # Qdrant expects lists
|
| 926 |
+
self.logger.info(f"π― Filter: source={source}")
|
| 927 |
+
|
| 928 |
+
if year:
|
| 929 |
+
filters["year"] = [year]
|
| 930 |
+
self.logger.info(f"π― Filter: year={year}")
|
| 931 |
+
|
| 932 |
+
if district:
|
| 933 |
+
# Map district to source if needed
|
| 934 |
+
if district.upper() == "KAMPALA":
|
| 935 |
+
filters["source"] = ["KCCA"]
|
| 936 |
+
self.logger.info(f"π― Filter: district={district} -> source=KCCA")
|
| 937 |
+
elif district.upper() in ["GULU", "KALANGALA"]:
|
| 938 |
+
filters["source"] = [f"{district.upper()} DLG"]
|
| 939 |
+
self.logger.info(f"π― Filter: district={district} -> source={district.upper()} DLG")
|
| 940 |
+
|
| 941 |
+
# Run RAG pipeline with correct parameters
|
| 942 |
+
result = self.pipeline_manager.run(
|
| 943 |
+
query=search_query, # Use expanded query
|
| 944 |
+
sources=filters.get("source") if filters.get("source") else None,
|
| 945 |
+
auto_infer_filters=False, # Our agent already handled filter inference
|
| 946 |
+
filters=filters if filters else None
|
| 947 |
+
)
|
| 948 |
+
|
| 949 |
+
self.logger.info(f"β
RAG completed: Found {len(result.sources)} sources")
|
| 950 |
+
self.logger.info(f"β±οΈ Execution time: {result.execution_time:.2f}s")
|
| 951 |
+
|
| 952 |
+
# Store RAG result in state
|
| 953 |
+
state["rag_result"] = result
|
| 954 |
+
state["rag_query"] = search_query
|
| 955 |
+
|
| 956 |
+
except Exception as e:
|
| 957 |
+
self.logger.info(f"β RAG retrieval failed: {e}")
|
| 958 |
+
state["rag_result"] = None
|
| 959 |
+
|
| 960 |
+
return state
|
| 961 |
+
|
| 962 |
+
def _generate_response(self, state: ConversationState) -> ConversationState:
|
| 963 |
+
"""Generate final response using RAG results"""
|
| 964 |
+
|
| 965 |
+
rag_result = state["rag_result"]
|
| 966 |
+
|
| 967 |
+
self.logger.info(f"π RESPONSE: Using RAG result ({len(rag_result.answer)} chars)")
|
| 968 |
+
|
| 969 |
+
# Store the final response directly from RAG
|
| 970 |
+
state["final_response"] = rag_result.answer
|
| 971 |
+
state["last_ai_message_time"] = time.time()
|
| 972 |
+
|
| 973 |
+
return state
|
| 974 |
+
|
| 975 |
+
def chat(self, user_input: str, conversation_id: str = "default") -> str:
|
| 976 |
+
"""Main chat interface with conversation management"""
|
| 977 |
+
|
| 978 |
+
self.logger.info(f"π¬ CHAT: Processing user input: '{user_input[:50]}...'")
|
| 979 |
+
self.logger.info(f"π Session: {conversation_id}")
|
| 980 |
+
|
| 981 |
+
# Load conversation history
|
| 982 |
+
conversation_file = self.conversations_dir / f"{conversation_id}.json"
|
| 983 |
+
conversation = self._load_conversation(conversation_file)
|
| 984 |
+
|
| 985 |
+
# Add user message to conversation
|
| 986 |
+
conversation["messages"].append(HumanMessage(content=user_input))
|
| 987 |
+
|
| 988 |
+
self.logger.info(f"π LANGGRAPH: Starting graph execution")
|
| 989 |
+
|
| 990 |
+
# Prepare state for LangGraph with conversation context
|
| 991 |
+
state = ConversationState(
|
| 992 |
+
conversation_id=conversation_id,
|
| 993 |
+
messages=conversation["messages"],
|
| 994 |
+
current_query=user_input,
|
| 995 |
+
query_analysis=None,
|
| 996 |
+
conversation_context=conversation.get("context", {}),
|
| 997 |
+
rag_result=None,
|
| 998 |
+
final_response=None,
|
| 999 |
+
session_start_time=conversation["session_start_time"],
|
| 1000 |
+
last_ai_message_time=conversation["last_ai_message_time"]
|
| 1001 |
+
)
|
| 1002 |
+
|
| 1003 |
+
# Run the graph
|
| 1004 |
+
final_state = self.graph.invoke(state)
|
| 1005 |
+
|
| 1006 |
+
# Add the AI response to conversation
|
| 1007 |
+
if final_state["final_response"]:
|
| 1008 |
+
conversation["messages"].append(AIMessage(content=final_state["final_response"]))
|
| 1009 |
+
|
| 1010 |
+
# Update conversation state
|
| 1011 |
+
conversation["last_ai_message_time"] = final_state["last_ai_message_time"]
|
| 1012 |
+
conversation["context"] = final_state["conversation_context"]
|
| 1013 |
+
|
| 1014 |
+
# Save conversation
|
| 1015 |
+
self._save_conversation(conversation_file, conversation)
|
| 1016 |
+
|
| 1017 |
+
self.logger.info(f"β
LANGGRAPH: Graph execution completed")
|
| 1018 |
+
self.logger.info(f"π― CHAT COMPLETE: Response ready")
|
| 1019 |
+
|
| 1020 |
+
# Return both response and RAG result for UI
|
| 1021 |
+
return {
|
| 1022 |
+
'response': final_state["final_response"] or "I apologize, but I couldn't process your request.",
|
| 1023 |
+
'rag_result': final_state["rag_result"],
|
| 1024 |
+
'actual_rag_query': final_state.get("rag_query", "")
|
| 1025 |
+
}
|
| 1026 |
+
|
| 1027 |
+
def _load_conversation(self, conversation_file: Path) -> Dict[str, Any]:
|
| 1028 |
+
"""Load conversation from file"""
|
| 1029 |
+
if conversation_file.exists():
|
| 1030 |
+
try:
|
| 1031 |
+
with open(conversation_file) as f:
|
| 1032 |
+
data = json.load(f)
|
| 1033 |
+
# Convert message dicts back to LangChain messages
|
| 1034 |
+
messages = []
|
| 1035 |
+
for msg_data in data.get("messages", []):
|
| 1036 |
+
if msg_data["type"] == "human":
|
| 1037 |
+
messages.append(HumanMessage(content=msg_data["content"]))
|
| 1038 |
+
elif msg_data["type"] == "ai":
|
| 1039 |
+
messages.append(AIMessage(content=msg_data["content"]))
|
| 1040 |
+
data["messages"] = messages
|
| 1041 |
+
return data
|
| 1042 |
+
except Exception as e:
|
| 1043 |
+
self.logger.info(f"β οΈ Could not load conversation: {e}")
|
| 1044 |
+
|
| 1045 |
+
# Return default conversation
|
| 1046 |
+
return {
|
| 1047 |
+
"messages": [],
|
| 1048 |
+
"session_start_time": time.time(),
|
| 1049 |
+
"last_ai_message_time": time.time(),
|
| 1050 |
+
"context": {}
|
| 1051 |
+
}
|
| 1052 |
+
|
| 1053 |
+
def _save_conversation(self, conversation_file: Path, conversation: Dict[str, Any]):
|
| 1054 |
+
"""Save conversation to file"""
|
| 1055 |
+
try:
|
| 1056 |
+
# Convert LangChain messages to serializable format
|
| 1057 |
+
messages_data = []
|
| 1058 |
+
for msg in conversation["messages"]:
|
| 1059 |
+
if isinstance(msg, HumanMessage):
|
| 1060 |
+
messages_data.append({"type": "human", "content": msg.content})
|
| 1061 |
+
elif isinstance(msg, AIMessage):
|
| 1062 |
+
messages_data.append({"type": "ai", "content": msg.content})
|
| 1063 |
+
|
| 1064 |
+
data = {
|
| 1065 |
+
"messages": messages_data,
|
| 1066 |
+
"session_start_time": conversation["session_start_time"],
|
| 1067 |
+
"last_ai_message_time": conversation["last_ai_message_time"],
|
| 1068 |
+
"context": conversation.get("context", {}),
|
| 1069 |
+
"last_updated": datetime.now().isoformat()
|
| 1070 |
+
}
|
| 1071 |
+
|
| 1072 |
+
with open(conversation_file, "w") as f:
|
| 1073 |
+
json.dump(data, f, indent=2)
|
| 1074 |
+
|
| 1075 |
+
except Exception as e:
|
| 1076 |
+
self.logger.info(f"β οΈ Could not save conversation: {e}")
|
| 1077 |
+
|
| 1078 |
+
|
| 1079 |
+
def get_chatbot():
|
| 1080 |
+
"""Get chatbot instance"""
|
| 1081 |
+
return IntelligentRAGChatbot()
|
| 1082 |
+
|
| 1083 |
+
if __name__ == "__main__":
|
| 1084 |
+
# Test the chatbot
|
| 1085 |
+
chatbot = IntelligentRAGChatbot()
|
| 1086 |
+
|
| 1087 |
+
# Test conversation
|
| 1088 |
+
test_queries = [
|
| 1089 |
+
"How much was the budget allocation for government salary payroll management?",
|
| 1090 |
+
"Namutumba district in 2023",
|
| 1091 |
+
"KCCA"
|
| 1092 |
+
]
|
| 1093 |
+
|
| 1094 |
+
for query in test_queries:
|
| 1095 |
+
self.logger.info(f"\n{'='*50}")
|
| 1096 |
+
self.logger.info(f"User: {query}")
|
| 1097 |
+
response = chatbot.chat(query)
|
| 1098 |
+
self.logger.info(f"Bot: {response}")
|