""" Intelligent Audit Report Chatbot UI """ import os import time import json import uuid import logging import traceback from pathlib import Path from collections import Counter from typing import List, Dict, Any, Optional import pandas as pd import streamlit as st import plotly.express as px from langchain_core.messages import HumanMessage, AIMessage from multi_agent_chatbot import get_multi_agent_chatbot from smart_chatbot import get_chatbot as get_smart_chatbot from src.reporting.snowflake_connector import save_to_snowflake from src.reporting.feedback_schema import create_feedback_from_dict from src.config.paths import ( IS_DEPLOYED, PROJECT_DIR, HF_CACHE_DIR, FEEDBACK_DIR, CONVERSATIONS_DIR, ) # ===== CRITICAL: Fix OMP_NUM_THREADS FIRST, before ANY other imports ===== # Some libraries load at import time and will fail if OMP_NUM_THREADS is invalid omp_threads = os.environ.get("OMP_NUM_THREADS", "") try: if omp_threads: # Handle invalid formats like "3500m" by extracting just the number # Remove any non-numeric suffix and convert to int cleaned = ''.join(filter(str.isdigit, omp_threads)) if cleaned: threads = int(cleaned) if threads <= 0: os.environ["OMP_NUM_THREADS"] = "1" else: # Set the cleaned integer value back os.environ["OMP_NUM_THREADS"] = str(threads) else: os.environ["OMP_NUM_THREADS"] = "1" else: os.environ["OMP_NUM_THREADS"] = "1" except (ValueError, TypeError): os.environ["OMP_NUM_THREADS"] = "1" # ===== Setup HuggingFace cache directories BEFORE any model imports ===== # CRITICAL: Set these before any imports that might use HuggingFace (like sentence-transformers) # Only override cache directories in deployed environment (local uses defaults) if IS_DEPLOYED and HF_CACHE_DIR: cache_dir = str(HF_CACHE_DIR) os.environ["HF_HOME"] = cache_dir os.environ["TRANSFORMERS_CACHE"] = cache_dir os.environ["HF_DATASETS_CACHE"] = cache_dir os.environ["HF_HUB_CACHE"] = cache_dir os.environ["SENTENCE_TRANSFORMERS_HOME"] = cache_dir # Ensure cache directory exists (created in Dockerfile, but ensure it's there) try: os.makedirs(cache_dir, mode=0o755, exist_ok=True) except (PermissionError, OSError): # If we can't create it, log but continue (might already exist from Dockerfile) pass # Configure logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # Log environment setup for debugging logger.info(f"🌍 Environment: {'DEPLOYED' if IS_DEPLOYED else 'LOCAL'}") logger.info(f"📁 PROJECT_DIR: {PROJECT_DIR}") logger.info(f"📁 HuggingFace cache: {os.environ.get('HF_HOME', 'DEFAULT (not overridden)')}") logger.info(f"🔧 OMP_NUM_THREADS: {os.environ.get('OMP_NUM_THREADS', 'NOT SET')}") # Page config st.set_page_config( layout="wide", page_icon="🤖", initial_sidebar_state="expanded", page_title="Intelligent Audit Report Chatbot" ) # Custom CSS st.markdown(""" """, unsafe_allow_html=True) def get_system_type(): """Get the current system type""" system = os.environ.get('CHATBOT_SYSTEM', 'multi-agent') if system == 'smart': return "Smart Chatbot System" else: return "Multi-Agent System" def get_chatbot(): """Initialize and return the chatbot based on system type""" # Check environment variable for system type system = os.environ.get('CHATBOT_SYSTEM', 'multi-agent') if system == 'smart': return get_smart_chatbot() else: return get_multi_agent_chatbot() def serialize_messages(messages): """Serialize LangChain messages to dictionaries""" serialized = [] for msg in messages: if hasattr(msg, 'content'): serialized.append({ "type": type(msg).__name__, "content": str(msg.content) }) return serialized def serialize_documents(sources): """Serialize document objects to dictionaries with deduplication""" serialized = [] seen_content = set() for doc in sources: content = getattr(doc, 'page_content', getattr(doc, 'content', '')) # Skip if we've seen this exact content before if content in seen_content: continue seen_content.add(content) doc_dict = { "content": content, "metadata": getattr(doc, 'metadata', {}), "score": getattr(doc, 'metadata', {}).get('reranked_score', getattr(doc, 'metadata', {}).get('original_score', 0.0)), "id": getattr(doc, 'metadata', {}).get('_id', 'unknown'), "source": getattr(doc, 'metadata', {}).get('source', 'unknown'), "year": getattr(doc, 'metadata', {}).get('year', 'unknown'), "district": getattr(doc, 'metadata', {}).get('district', 'unknown'), "page": getattr(doc, 'metadata', {}).get('page', 'unknown'), "chunk_id": getattr(doc, 'metadata', {}).get('chunk_id', 'unknown'), "page_label": getattr(doc, 'metadata', {}).get('page_label', 'unknown'), "original_score": getattr(doc, 'metadata', {}).get('original_score', 0.0), "reranked_score": getattr(doc, 'metadata', {}).get('reranked_score', None) } serialized.append(doc_dict) return serialized def extract_transcript(messages: List[Any]) -> List[Dict[str, str]]: """Extract transcript from messages - only user and bot messages, no extra metadata""" transcript = [] for msg in messages: if isinstance(msg, HumanMessage): transcript.append({ "role": "user", "content": str(msg.content) if hasattr(msg, 'content') else str(msg) }) elif isinstance(msg, AIMessage): transcript.append({ "role": "assistant", "content": str(msg.content) if hasattr(msg, 'content') else str(msg) }) return transcript def build_retrievals_structure(rag_retrieval_history: List[Dict[str, Any]], messages: List[Any]) -> List[Dict[str, Any]]: """Build retrievals structure from retrieval history""" retrievals = [] for entry in rag_retrieval_history: # Get the user message that triggered this retrieval # The entry has conversation_up_to which includes messages up to that point conversation_up_to = entry.get("conversation_up_to", []) # Find the last user message in conversation_up_to (this is the trigger) user_message_trigger = "" for msg_dict in reversed(conversation_up_to): if msg_dict.get("type") == "HumanMessage": user_message_trigger = msg_dict.get("content", "") break # Fallback: if not found in conversation_up_to, get from actual messages # This handles edge cases where conversation_up_to might be incomplete if not user_message_trigger: # Find which retrieval this is (0-indexed) retrieval_idx = rag_retrieval_history.index(entry) # The user message that triggered this retrieval is at position (retrieval_idx * 2) # because each retrieval is preceded by: user message, bot response, user message, ... # But we need to account for the fact that the first retrieval happens after the first user message user_msgs = [msg for msg in messages if isinstance(msg, HumanMessage)] if retrieval_idx < len(user_msgs): user_message_trigger = str(user_msgs[retrieval_idx].content) elif user_msgs: # Fallback to last user message user_message_trigger = str(user_msgs[-1].content) # Get retrieved documents and truncate content to 100 chars docs_retrieved = entry.get("docs_retrieved", []) retrieved_docs = [] for doc in docs_retrieved: doc_copy = doc.copy() # Truncate content to 100 characters (keep all other fields) if "content" in doc_copy: doc_copy["content"] = doc_copy["content"][:100] retrieved_docs.append(doc_copy) retrievals.append({ "retrieved_docs": retrieved_docs, "user_message_trigger": user_message_trigger }) return retrievals def build_feedback_score_related_retrieval_docs( is_feedback_about_last_retrieval: bool, messages: List[Any], rag_retrieval_history: List[Dict[str, Any]] ) -> Optional[Dict[str, Any]]: """Build feedback_score_related_retrieval_docs structure""" if not rag_retrieval_history: return None # Get the relevant retrieval entry if is_feedback_about_last_retrieval: relevant_entry = rag_retrieval_history[-1] else: # If feedback is about all retrievals, use the last one as default relevant_entry = rag_retrieval_history[-1] # Get conversation up to that point conversation_up_to = relevant_entry.get("conversation_up_to", []) # Convert to transcript format (role/content) conversation_up_to_point = [] for msg_dict in conversation_up_to: if msg_dict.get("type") == "HumanMessage": conversation_up_to_point.append({ "role": "user", "content": msg_dict.get("content", "") }) elif msg_dict.get("type") == "AIMessage": conversation_up_to_point.append({ "role": "assistant", "content": msg_dict.get("content", "") }) # Get retrieved docs with full content (not truncated) retrieved_docs = relevant_entry.get("docs_retrieved", []) return { "conversation_up_to_point": conversation_up_to_point, "retrieved_docs": retrieved_docs } def extract_chunk_statistics(sources: List[Any]) -> Dict[str, Any]: """Extract statistics from retrieved chunks.""" if not sources: return {} sources_list = [] years = [] filenames = [] districts = [] for doc in sources: metadata = getattr(doc, 'metadata', {}) # Extract source source = metadata.get('source', 'Unknown') sources_list.append(source) # Extract year year = metadata.get('year', 'Unknown') if year and year != 'Unknown': try: # Convert to int first, then back to string to ensure it's a proper year year_int = int(float(year)) # Handle both int and float strings if 1900 <= year_int <= 2030: # Reasonable year range years.append(str(year_int)) else: years.append('Unknown') except (ValueError, TypeError): years.append('Unknown') else: years.append('Unknown') # Extract filename filename = metadata.get('filename', 'Unknown') filenames.append(filename) # Extract district district = metadata.get('district', 'Unknown') if district and district != 'Unknown': districts.append(district) else: districts.append('Unknown') # Count occurrences source_counts = Counter(sources_list) year_counts = Counter(years) filename_counts = Counter(filenames) district_counts = Counter(districts) return { 'total_chunks': len(sources), 'unique_sources': len(source_counts), 'unique_years': len([y for y in year_counts.keys() if y != 'Unknown']), 'unique_filenames': len(filename_counts), 'unique_districts': len([d for d in district_counts.keys() if d != 'Unknown']), 'source_distribution': dict(source_counts), 'year_distribution': dict(year_counts), 'filename_distribution': dict(filename_counts), 'district_distribution': dict(district_counts), 'sources': sources_list, 'years': years, 'filenames': filenames, 'districts': districts } def display_chunk_statistics_charts(stats: Dict[str, Any], title: str = "Retrieval Statistics"): """Display statistics as interactive charts for 10+ results.""" if not stats or stats.get('total_chunks', 0) == 0: return # Wrap everything in one styled container - open it st.markdown(f"""

📊 {title}

Total Chunks
{stats['total_chunks']}
Unique Sources
{stats['unique_sources']}
Unique Years
{stats['unique_years']}
Unique Files
{stats['unique_filenames']}
""", unsafe_allow_html=True) # Charts - three columns to include Districts col1, col2, col3 = st.columns(3) with col1: # Source distribution chart if stats['source_distribution']: source_df = pd.DataFrame( list(stats['source_distribution'].items()), columns=['Source', 'Count'] ) fig_source = px.bar( source_df, x='Count', y='Source', orientation='h', title='Distribution by Source', color='Count', color_continuous_scale='viridis' ) fig_source.update_layout(height=400, showlegend=False) st.plotly_chart(fig_source, use_container_width=True) with col2: # Year distribution chart if stats['year_distribution']: # Filter out 'Unknown' years for the chart year_dist_filtered = {k: v for k, v in stats['year_distribution'].items() if k != 'Unknown'} if year_dist_filtered: year_df = pd.DataFrame( list(year_dist_filtered.items()), columns=['Year', 'Count'] ) # Sort by year as integer but keep as string for categorical display year_df['Year_Int'] = year_df['Year'].astype(int) year_df = year_df.sort_values('Year_Int').drop('Year_Int', axis=1) fig_year = px.bar( year_df, x='Year', y='Count', title='Distribution by Year', color='Count', color_continuous_scale='plasma' ) # Ensure years are treated as categorical (discrete) not continuous fig_year.update_xaxes(type='category') fig_year.update_layout(height=400, showlegend=False) st.plotly_chart(fig_year, use_container_width=True) else: st.info("No valid years found in the results") with col3: # District distribution chart if stats.get('district_distribution'): district_dist_filtered = {k: v for k, v in stats['district_distribution'].items() if k != 'Unknown'} if district_dist_filtered: district_df = pd.DataFrame( list(district_dist_filtered.items()), columns=['District', 'Count'] ) district_df = district_df.sort_values('Count', ascending=False) fig_district = px.bar( district_df, x='Count', y='District', orientation='h', title='Distribution by District', color='Count', color_continuous_scale='blues' ) fig_district.update_layout(height=400, showlegend=False) st.plotly_chart(fig_district, use_container_width=True) else: st.info("No valid districts found in the results") # Close the container st.markdown('
', unsafe_allow_html=True) def display_chunk_statistics_table(stats: Dict[str, Any], title: str = "Retrieval Distribution"): """Display statistics as tables for smaller results with fixed alignment.""" if not stats or stats.get('total_chunks', 0) == 0: return # Wrap in styled container st.markdown('
', unsafe_allow_html=True) st.subheader(f"📊 {title}") # Create a container with fixed height for alignment stats_container = st.container() with stats_container: # Create 4 equal columns for consistent alignment col1, col2, col3, col4 = st.columns(4) with col1: st.markdown("**🏘️ Districts**") if stats.get('district_distribution'): district_dist_filtered = {k: v for k, v in stats['district_distribution'].items() if k != 'Unknown'} if district_dist_filtered: district_data = { "District": list(district_dist_filtered.keys()), "Count": list(district_dist_filtered.values()) } district_df = pd.DataFrame(district_data).sort_values('Count', ascending=False) st.dataframe(district_df, hide_index=True, use_container_width=True) else: st.write("No district data") else: st.write("No district data") with col2: st.markdown("**📂 Sources**") if stats['source_distribution']: source_data = { "Source": list(stats['source_distribution'].keys()), "Count": list(stats['source_distribution'].values()) } source_df = pd.DataFrame(source_data).sort_values('Count', ascending=False) st.dataframe(source_df, hide_index=True, use_container_width=True) else: st.write("No source data") with col3: st.markdown("**📅 Years**") if stats['year_distribution']: year_dist_filtered = {k: v for k, v in stats['year_distribution'].items() if k != 'Unknown'} if year_dist_filtered: year_data = { "Year": list(year_dist_filtered.keys()), "Count": list(year_dist_filtered.values()) } year_df = pd.DataFrame(year_data) # Sort by year as integer but display as string year_df['Year_Int'] = year_df['Year'].astype(int) year_df = year_df.sort_values('Year_Int')[['Year', 'Count']] st.dataframe(year_df, hide_index=True, use_container_width=True) else: st.write("No year data") else: st.write("No year data") with col4: st.markdown("**📄 Files**") if stats['filename_distribution']: filename_items = list(stats['filename_distribution'].items()) filename_items.sort(key=lambda x: x[1], reverse=True) # Show top files with truncated names file_data = { "File": [f[:30] + "..." if len(f) > 30 else f for f, c in filename_items[:5]], "Count": [c for f, c in filename_items[:5]] } file_df = pd.DataFrame(file_data) st.dataframe(file_df, hide_index=True, use_container_width=True) else: st.write("No file data") # Close container st.markdown('
', unsafe_allow_html=True) @st.cache_data def load_filter_options(): try: filter_options_path = PROJECT_DIR / "src" / "config" / "filter_options.json" with open(filter_options_path, "r") as f: return json.load(f) except FileNotFoundError: st.info(f"Looking for filter_options.json in: {PROJECT_DIR / 'src' / 'config'}") st.error("filter_options.json not found. Please run the metadata analysis script.") return {"sources": [], "years": [], "districts": [], 'filenames': []} def main(): # Initialize session state if 'messages' not in st.session_state: st.session_state.messages = [] if 'conversation_id' not in st.session_state: st.session_state.conversation_id = f"session_{uuid.uuid4().hex[:8]}" if 'session_start_time' not in st.session_state: st.session_state.session_start_time = time.time() if 'active_filters' not in st.session_state: st.session_state.active_filters = {'sources': [], 'years': [], 'districts': [], 'filenames': []} # Track RAG retrieval history for feedback if 'rag_retrieval_history' not in st.session_state: st.session_state.rag_retrieval_history = [] # Initialize chatbot only once per app session (cached) if 'chatbot' not in st.session_state: with st.spinner("🔄 Loading AI models and connecting to database..."): st.session_state.chatbot = get_chatbot() st.success("✅ AI system ready!") # Reset conversation history if needed (but keep chatbot cached) if 'reset_conversation' in st.session_state and st.session_state.reset_conversation: st.session_state.messages = [] st.session_state.conversation_id = f"session_{uuid.uuid4().hex[:8]}" st.session_state.session_start_time = time.time() st.session_state.rag_retrieval_history = [] st.session_state.feedback_submitted = False st.session_state.reset_conversation = False st.rerun() # Header - fully center aligned st.markdown('

🤖 Intelligent Audit Report Chatbot

', unsafe_allow_html=True) st.markdown('

Ask questions about audit reports. Use the sidebar filters to narrow down your search!

', unsafe_allow_html=True) # Session info duration = int(time.time() - st.session_state.session_start_time) duration_str = f"{duration // 60}m {duration % 60}s" st.markdown(f'''
Session Info: Messages: {len(st.session_state.messages)} | Duration: {duration_str} | Status: Active | ID: {st.session_state.conversation_id}
''', unsafe_allow_html=True) # Load filter options filter_options = load_filter_options() # Sidebar for filters with st.sidebar: # Instructions section (collapsible) with st.expander("📖 How to Use", expanded=False): st.markdown(""" #### 🎯 Using Filters 1. **Select filters** from the sidebar to narrow your search: 2. **Leave filters empty** to search across all data 3. **Type your question** in the chat input at the bottom 4. **Click "Send"** to submit your question #### 💡 Tips - Use specific questions for better results - Combine multiple filters for precise searches - Check the "Retrieved Documents" tab to see source material #### ⚠️ Important **When finished, please close the browser window** to free up computational resources. --- For more detailed help, see the example questions at the bottom of the page. """) st.markdown("### 🔍 Search Filters") st.markdown("Select filters to narrow down your search. Leave empty to search all data.") st.markdown('
', unsafe_allow_html=True) st.markdown('
📄 Specific Reports (Filename Filter)
', unsafe_allow_html=True) st.markdown('

⚠️ Selecting specific reports will ignore all other filters

', unsafe_allow_html=True) selected_filenames = st.multiselect( "Select specific reports:", options=filter_options.get('filenames', []), default=st.session_state.active_filters.get('filenames', []), key="filenames_filter", help="Choose specific reports to search. When enabled, all other filters are ignored." ) st.markdown('
', unsafe_allow_html=True) # Determine if filename filter is active filename_mode = len(selected_filenames) > 0 # Sources filter st.markdown('
', unsafe_allow_html=True) st.markdown('
📊 Sources
', unsafe_allow_html=True) selected_sources = st.multiselect( "Select sources:", options=filter_options['sources'], default=st.session_state.active_filters['sources'], disabled = filename_mode, key="sources_filter", help="Choose which types of reports to search" ) st.markdown('
', unsafe_allow_html=True) # Years filter # st.markdown('
', unsafe_allow_html=True) st.markdown('
📅 Years
', unsafe_allow_html=True) selected_years = st.multiselect( "Select years:", options=filter_options['years'], default=st.session_state.active_filters['years'], disabled = filename_mode, key="years_filter", help="Choose which years to search" ) st.markdown('
', unsafe_allow_html=True) # Districts filter # st.markdown('
', unsafe_allow_html=True) st.markdown('
🏘️ Districts
', unsafe_allow_html=True) selected_districts = st.multiselect( "Select districts:", options=filter_options['districts'], default=st.session_state.active_filters['districts'], disabled = filename_mode, key="districts_filter", help="Choose which districts to search" ) st.markdown('
', unsafe_allow_html=True) # Update active filters st.session_state.active_filters = { 'sources': selected_sources if not filename_mode else [], 'years': selected_years if not filename_mode else [], 'districts': selected_districts if not filename_mode else [], 'filenames': selected_filenames } # Clear filters button if st.button("🗑️ Clear All Filters", key="clear_filters_button"): st.session_state.active_filters = {'sources': [], 'years': [], 'districts': [], 'filenames': []} st.rerun() # Main content area with tabs tab1, tab2 = st.tabs(["💬 Chat", "📄 Retrieved Documents"]) with tab1: # Chat container chat_container = st.container() with chat_container: # Display conversation history for message in st.session_state.messages: if isinstance(message, HumanMessage): st.markdown(f'
{message.content}
', unsafe_allow_html=True) elif isinstance(message, AIMessage): st.markdown(f'
{message.content}
', unsafe_allow_html=True) # Input area st.markdown("
", unsafe_allow_html=True) # Create two columns for input and button col1, col2 = st.columns([4, 1]) with col1: # Use a counter to force input clearing if 'input_counter' not in st.session_state: st.session_state.input_counter = 0 # Handle pending question from example questions section if 'pending_question' in st.session_state and st.session_state.pending_question: default_value = st.session_state.pending_question # Increment counter to force new input widget st.session_state.input_counter = (st.session_state.get('input_counter', 0) + 1) % 1000 del st.session_state.pending_question key_suffix = st.session_state.input_counter else: default_value = "" key_suffix = st.session_state.input_counter user_input = st.text_input( "Type your message here...", placeholder="Ask about budget allocations, expenditures, or audit findings...", key=f"user_input_{key_suffix}", label_visibility="collapsed", value=default_value if default_value else None ) with col2: send_button = st.button("Send", key="send_button", use_container_width=True) # Clear chat button if st.button("🗑️ Clear Chat", key="clear_chat_button"): st.session_state.reset_conversation = True # Clear all conversation files conversations_path = CONVERSATIONS_DIR if conversations_path.exists(): for file in conversations_path.iterdir(): if file.suffix == '.json': file.unlink() st.rerun() # Handle user input if send_button and user_input: # Construct filter context string filter_context_str = "" if selected_filenames: filter_context_str += "FILTER CONTEXT:\n" filter_context_str += f"Filenames: {', '.join(selected_filenames)}\n" filter_context_str += "USER QUERY:\n" elif selected_sources or selected_years or selected_districts: filter_context_str += "FILTER CONTEXT:\n" if selected_sources: filter_context_str += f"Sources: {', '.join(selected_sources)}\n" if selected_years: filter_context_str += f"Years: {', '.join(selected_years)}\n" if selected_districts: filter_context_str += f"Districts: {', '.join(selected_districts)}\n" filter_context_str += "USER QUERY:\n" full_query = filter_context_str + user_input # Add user message to history st.session_state.messages.append(HumanMessage(content=user_input)) # Get chatbot response with st.spinner("🤔 Thinking..."): try: # Pass the full query with filter context chat_result = st.session_state.chatbot.chat(full_query, st.session_state.conversation_id) # Handle both old format (string) and new format (dict) if isinstance(chat_result, dict): response = chat_result['response'] rag_result = chat_result.get('rag_result') st.session_state.last_rag_result = rag_result # Track RAG retrieval for feedback if rag_result: sources = rag_result.get('sources', []) if isinstance(rag_result, dict) else (rag_result.sources if hasattr(rag_result, 'sources') else []) # Get the actual RAG query actual_rag_query = chat_result.get('actual_rag_query', '') if actual_rag_query: # Format it like the log message timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) formatted_query = f"{timestamp} - INFO - 🔍 ACTUAL RAG QUERY: '{actual_rag_query}'" else: formatted_query = "No RAG query available" retrieval_entry = { "conversation_up_to": serialize_messages(st.session_state.messages), "rag_query_expansion": formatted_query, "docs_retrieved": serialize_documents(sources) } st.session_state.rag_retrieval_history.append(retrieval_entry) else: response = chat_result st.session_state.last_rag_result = None # Add bot response to history st.session_state.messages.append(AIMessage(content=response)) except Exception as e: error_msg = f"Sorry, I encountered an error: {str(e)}" st.session_state.messages.append(AIMessage(content=error_msg)) # Clear input and rerun st.session_state.input_counter += 1 # This will clear the input st.rerun() with tab2: # Document retrieval panel if hasattr(st.session_state, 'last_rag_result') and st.session_state.last_rag_result: rag_result = st.session_state.last_rag_result # Handle both PipelineResult object and dictionary formats sources = None if hasattr(rag_result, 'sources'): # PipelineResult object format sources = rag_result.sources elif isinstance(rag_result, dict) and 'sources' in rag_result: # Dictionary format from multi-agent system sources = rag_result['sources'] if sources and len(sources) > 0: # Count unique filenames unique_filenames = set() for doc in sources: filename = getattr(doc, 'metadata', {}).get('filename', 'Unknown') unique_filenames.add(filename) st.markdown(f"**Found {len(sources)} document chunks from {len(unique_filenames)} unique documents (showing top 20):**") if len(unique_filenames) < len(sources): st.info(f"💡 **Note**: Each document is split into multiple chunks. You're seeing {len(sources)} chunks from {len(unique_filenames)} documents.") # Extract and display statistics stats = extract_chunk_statistics(sources) # Show charts for 10+ results, tables for fewer if len(sources) >= 10: display_chunk_statistics_charts(stats, "Retrieval Statistics") # Also show tables below charts for detailed view st.markdown("---") display_chunk_statistics_table(stats, "Retrieval Distribution") else: display_chunk_statistics_table(stats, "Retrieval Distribution") st.markdown("---") st.markdown("### 📄 Document Details") for i, doc in enumerate(sources): # Show all documents # Get relevance score and ID if available metadata = getattr(doc, 'metadata', {}) score = metadata.get('reranked_score', metadata.get('original_score', None)) chunk_id = metadata.get('_id', 'Unknown') score_text = f" (Score: {score:.3f}, ID: {chunk_id[:8]}...)" if score is not None else f" (ID: {chunk_id[:8]}...)" with st.expander(f"📄 Document {i+1}: {getattr(doc, 'metadata', {}).get('filename', 'Unknown')[:50]}...{score_text}"): # Display document metadata with emojis metadata = getattr(doc, 'metadata', {}) col1, col2, col3, col4 = st.columns([2, 1.5, 1, 1]) with col1: st.write(f"📄 **File:** {metadata.get('filename', 'Unknown')}") with col2: st.write(f"🏛️ **Source:** {metadata.get('source', 'Unknown')}") with col3: st.write(f"📅 **Year:** {metadata.get('year', 'Unknown')}") with col4: # Display page number and chunk ID page = metadata.get('page_label', metadata.get('page', 'Unknown')) chunk_id = metadata.get('_id', 'Unknown') st.write(f"📖 **Page:** {page}") st.write(f"🆔 **ID:** {chunk_id}") # Display full content (no truncation) content = getattr(doc, 'page_content', 'No content available') st.write(f"**Full Content:**") st.text_area("Full Content", value=content, height=300, disabled=True, label_visibility="collapsed", key=f"preview_{i}") else: st.info("No documents were retrieved for the last query.") else: st.info("No documents have been retrieved yet. Start a conversation to see retrieved documents here.") # Feedback Dashboard Section st.markdown("---") st.markdown("### 💬 Feedback Dashboard") # Check if there's any conversation to provide feedback on has_conversation = len(st.session_state.messages) > 0 has_retrievals = len(st.session_state.rag_retrieval_history) > 0 if not has_conversation: st.info("💡 Start a conversation to provide feedback!") st.markdown("The feedback dashboard will be enabled once you begin chatting.") else: st.markdown("Help us improve by providing feedback on this conversation.") # Initialize feedback state if not exists if 'feedback_submitted' not in st.session_state: st.session_state.feedback_submitted = False # Feedback form - only show if feedback not already submitted if not st.session_state.feedback_submitted: with st.form("feedback_form", clear_on_submit=False): col1, col2 = st.columns([1, 1]) with col1: feedback_score = st.slider( "Rate this conversation (1-5)", min_value=1, max_value=5, help="How satisfied are you with the conversation?" ) with col2: is_feedback_about_last_retrieval = st.checkbox( "Feedback about last retrieval only", value=True, help="If checked, feedback applies to the most recent document retrieval" ) open_ended_feedback = st.text_area( "Your feedback (optional)", placeholder="Tell us what went well or what could be improved...", height=100 ) # Disable submit if no score selected submit_disabled = feedback_score is None submitted = st.form_submit_button( "📤 Submit Feedback", use_container_width=True, disabled=submit_disabled ) if submitted: # Log the feedback data being submitted print("=" * 80) print("🔄 FEEDBACK SUBMISSION: Starting...") print("=" * 80) st.write("🔍 **Debug: Feedback Data Being Submitted:**") # Extract transcript from messages transcript = extract_transcript(st.session_state.messages) # Build retrievals structure retrievals = build_retrievals_structure( st.session_state.rag_retrieval_history.copy() if st.session_state.rag_retrieval_history else [], st.session_state.messages ) # Build feedback_score_related_retrieval_docs feedback_score_related_retrieval_docs = build_feedback_score_related_retrieval_docs( is_feedback_about_last_retrieval, st.session_state.messages, st.session_state.rag_retrieval_history.copy() if st.session_state.rag_retrieval_history else [] ) # Preserve old retrieved_data format for backward compatibility retrieved_data_old_format = st.session_state.rag_retrieval_history.copy() if st.session_state.rag_retrieval_history else [] # Create feedback data dictionary feedback_dict = { "open_ended_feedback": open_ended_feedback, "score": feedback_score, "is_feedback_about_last_retrieval": is_feedback_about_last_retrieval, "conversation_id": st.session_state.conversation_id, "timestamp": time.time(), "message_count": len(st.session_state.messages), "has_retrievals": has_retrievals, "retrieval_count": len(st.session_state.rag_retrieval_history) if st.session_state.rag_retrieval_history else 0, "transcript": transcript, "retrievals": retrievals, "feedback_score_related_retrieval_docs": feedback_score_related_retrieval_docs, "retrieved_data": retrieved_data_old_format # Preserved old column } print(f"📝 FEEDBACK SUBMISSION: Score={feedback_score}, Retrievals={len(st.session_state.rag_retrieval_history) if st.session_state.rag_retrieval_history else 0}") # Create UserFeedback dataclass instance feedback_obj = None # Initialize outside try block try: feedback_obj = create_feedback_from_dict(feedback_dict) print(f"✅ FEEDBACK SUBMISSION: Feedback object created - ID={feedback_obj.feedback_id}") st.write(f"✅ **Feedback Object Created**") st.write(f"- Feedback ID: {feedback_obj.feedback_id}") st.write(f"- Score: {feedback_obj.score}/5") st.write(f"- Has Retrievals: {feedback_obj.has_retrievals}") # Convert back to dict for JSON serialization feedback_data = feedback_obj.to_dict() except Exception as e: print(f"❌ FEEDBACK SUBMISSION: Failed to create feedback object: {e}") st.error(f"Failed to create feedback object: {e}") feedback_data = feedback_dict # Display the data being submitted st.json(feedback_data) # Save feedback to file - use PROJECT_DIR to ensure writability feedback_dir = FEEDBACK_DIR try: # Ensure directory exists with write permissions (777 for compatibility) feedback_dir.mkdir(parents=True, mode=0o777, exist_ok=True) except (PermissionError, OSError) as e: logger.warning(f"Could not create feedback directory at {feedback_dir}: {e}") # Fallback to relative path feedback_dir = Path("feedback") feedback_dir.mkdir(parents=True, mode=0o777, exist_ok=True) feedback_file = feedback_dir / f"feedback_{st.session_state.conversation_id}_{int(time.time())}.json" try: # Ensure parent directory exists before writing feedback_file.parent.mkdir(parents=True, mode=0o777, exist_ok=True) # Save to local file first print(f"💾 FEEDBACK SAVE: Saving to local file: {feedback_file}") with open(feedback_file, 'w') as f: json.dump(feedback_data, f, indent=2, default=str) print(f"✅ FEEDBACK SAVE: Local file saved successfully") # Save to Snowflake if enabled and credentials available logger.info("🔄 FEEDBACK SAVE: Starting Snowflake save process...") logger.info(f"📊 FEEDBACK SAVE: feedback_obj={'exists' if feedback_obj else 'None'}") snowflake_success = False try: snowflake_enabled = os.getenv("SNOWFLAKE_ENABLED", "false").lower() == "true" logger.info(f"🔍 SNOWFLAKE CHECK: enabled={snowflake_enabled}") if snowflake_enabled: if feedback_obj: try: logger.info("📤 SNOWFLAKE UI: Attempting to save feedback to Snowflake...") print("📤 SNOWFLAKE UI: Attempting to save feedback to Snowflake...") snowflake_success = save_to_snowflake(feedback_obj) if snowflake_success: logger.info("✅ SNOWFLAKE UI: Successfully saved to Snowflake") print("✅ SNOWFLAKE UI: Successfully saved to Snowflake") else: logger.warning("⚠️ SNOWFLAKE UI: Save failed") print("⚠️ SNOWFLAKE UI: Save failed") except Exception as e: logger.error(f"❌ SNOWFLAKE UI ERROR: {e}") print(f"❌ SNOWFLAKE UI ERROR: {e}") traceback.print_exc() snowflake_success = False else: logger.warning("⚠️ SNOWFLAKE UI: Skipping (feedback object not created)") print("⚠️ SNOWFLAKE UI: Skipping (feedback object not created)") snowflake_success = False else: logger.info("💡 SNOWFLAKE UI: Integration disabled") print("💡 SNOWFLAKE UI: Integration disabled") # If Snowflake is disabled, consider it successful (local save only) snowflake_success = True except Exception as e: logger.error(f"❌ Exception in Snowflake save: {type(e).__name__}: {e}") print(f"❌ Exception in Snowflake save: {type(e).__name__}: {e}") snowflake_success = False # Only show success if Snowflake save succeeded (or if Snowflake is disabled) if snowflake_success: st.success("✅ Thank you for your feedback! It has been saved successfully.") st.balloons() else: st.warning("⚠️ Feedback saved locally, but Snowflake save failed. Please check logs.") # Mark feedback as submitted to prevent resubmission st.session_state.feedback_submitted = True print("=" * 80) print(f"✅ FEEDBACK SUBMISSION: Completed successfully") print("=" * 80) # Log file location st.info(f"📁 Feedback saved to: {feedback_file}") except Exception as e: print(f"❌ FEEDBACK SUBMISSION: Error saving feedback: {e}") print(f"❌ FEEDBACK SUBMISSION: Error type: {type(e).__name__}") traceback.print_exc() st.error(f"❌ Error saving feedback: {e}") st.write(f"Debug error: {str(e)}") else: # Feedback already submitted - show success message and reset option st.success("✅ Feedback already submitted for this conversation!") col1, col2 = st.columns([1, 1]) with col1: if st.button("🔄 Submit New Feedback", key="new_feedback_button", use_container_width=True): try: st.session_state.feedback_submitted = False st.rerun() except Exception as e: # Handle any Streamlit API exceptions gracefully logger.error(f"Error resetting feedback state: {e}") st.error(f"Error resetting feedback. Please refresh the page.") with col2: if st.button("📋 View Conversation", key="view_conversation_button", use_container_width=True): # Scroll to conversation - this is handled by the auto-scroll at bottom pass # Display retrieval history stats if st.session_state.rag_retrieval_history: st.markdown("---") st.markdown("#### 📊 Retrieval History") with st.expander(f"View {len(st.session_state.rag_retrieval_history)} retrieval entries", expanded=False): for idx, entry in enumerate(st.session_state.rag_retrieval_history, 1): st.markdown(f"**Retrieval #{idx}**") # Display the actual RAG query rag_query_expansion = entry.get("rag_query_expansion", "No query available") st.code(rag_query_expansion, language="text") # Display summary stats st.json({ "conversation_length": len(entry.get("conversation_up_to", [])), "documents_retrieved": len(entry.get("docs_retrieved", [])) }) st.markdown("---") # Example Questions Section st.markdown("---") st.markdown("### 💡 Example Questions") st.markdown("Click on any question below to use it, or modify the editable examples:") # Initialize example question state if 'custom_question_1' not in st.session_state: st.session_state.custom_question_1 = "How were administrative costs managed in the PDM implementation, and what issues arose with budget execution regarding staff salaries?" if 'custom_question_2' not in st.session_state: st.session_state.custom_question_2 = "What did the National Coordinator say about the release of funds for PDM administrative costs in the letter dated 29th September 2022 and how did the funding received affect the activities of the PDCs and PDM SACCOs in the FY 2022/23?" # Question 1: Filename insights (fixed, clickable) st.markdown("#### 📄 Question 1: List insights from a specific file") col1, col2 = st.columns([3, 1]) with col1: example_q1 = "List couple of insights from the filename." st.markdown(f"**Example:** `{example_q1}`") st.info("💡 **Filter to apply:** Select a Filename from the sidebar panel before asking this question.") with col2: if st.button("📋 Use This Question", key="use_example_1", use_container_width=True): st.session_state.pending_question = example_q1 st.session_state.input_counter = (st.session_state.get('input_counter', 0) + 1) % 1000 st.rerun() st.markdown("---") # Questions 2 & 3: Editable examples st.markdown("#### ✏️ Customizable Questions (Edit and use)") # Question 2 # st.markdown("**Question 2:**") custom_q1 = st.text_area( "Edit question 2:", value=st.session_state.custom_question_1, height=80, key="edit_question_2", help="Modify this question to fit your needs, then click 'Use This Question'" ) col1, col2 = st.columns([1, 4]) with col1: if st.button("📋 Use Question 2", key="use_custom_1", use_container_width=True): if custom_q1.strip(): st.session_state.pending_question = custom_q1.strip() st.session_state.custom_question_1 = custom_q1.strip() st.session_state.input_counter = (st.session_state.get('input_counter', 0) + 1) % 1000 st.rerun() else: st.warning("Please enter a question first!") with col2: st.caption("💡 Tip: Add specific details like dates, names, or amounts to get more precise answers") st.info("💡 **Filter to apply:** Select District(s) and Year(s) sidebar panel before asking this question.") st.markdown("---") # Question 3 # st.markdown("**Question 3:**") custom_q2 = st.text_area( "Edit question 3:", value=st.session_state.custom_question_2, height=80, key="edit_question_3", help="Modify this question to fit your needs, then click 'Use This Question'" ) col1, col2 = st.columns([1, 4]) with col1: if st.button("📋 Use Question 3", key="use_custom_2", use_container_width=True): if custom_q2.strip(): st.session_state.pending_question = custom_q2.strip() st.session_state.custom_question_2 = custom_q2.strip() st.session_state.input_counter = (st.session_state.get('input_counter', 0) + 1) % 1000 st.rerun() else: st.warning("Please enter a question first!") with col2: st.caption("💡 Tip: Use specific terms from the documents (e.g., 'PDM', 'SACCOs', 'FY 2022/23')") # Store selected question for next render (handled in input section above) # This ensures the question populates the input field correctly # Auto-scroll to bottom st.markdown(""" """, unsafe_allow_html=True) if __name__ == "__main__": # Check if running in Streamlit context try: from streamlit.runtime.scriptrunner import get_script_run_ctx if get_script_run_ctx() is None: # Not in Streamlit runtime - show helpful message print("=" * 80) print("⚠️ WARNING: This is a Streamlit app!") print("=" * 80) print("\nPlease run this app using:") print(" streamlit run app.py") print("\nNot: python app.py") print("\nThe app will not function correctly when run with 'python app.py'") print("=" * 80) import sys sys.exit(1) except ImportError: # Streamlit not installed or not in Streamlit context print("=" * 80) print("⚠️ WARNING: This is a Streamlit app!") print("=" * 80) print("\nPlease run this app using:") print(" streamlit run app.py") print("\nNot: python app.py") print("=" * 80) import sys sys.exit(1) main()