import gradio as gr import torch from PIL import Image from diffusers import QwenImageEditPlusPipeline MODEL_ID = "Qwen/Qwen-Image-Edit-2509" LORA_REPO = "lovis93/next-scene-qwen-image-lora-2509" LORA_FILE = "next-scene_lora_v1-3000.safetensors" device = "cuda" if torch.cuda.is_available() else "cpu" dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32 pipe = QwenImageEditPlusPipeline.from_pretrained(MODEL_ID, torch_dtype=dtype).to(device) pipe.load_lora_weights(LORA_REPO, weight_name=LORA_FILE) def next_scene(image, prompt, steps, true_cfg_scale, lora_strength, seed): gen = None if seed and int(seed) != 0: gen = torch.Generator(device=device).manual_seed(int(seed)) try: pipe.set_adapters(["default"], adapter_weights=[float(lora_strength)]) except Exception: pass kwargs = dict( image=[image], prompt=prompt, num_inference_steps=int(steps), guidance_scale=1.0, generator=gen, ) try: kwargs["true_cfg_scale"] = float(true_cfg_scale) except Exception: pass out = pipe(**kwargs) return out.images[0] with gr.Blocks() as demo: gr.Markdown("## Next Scene — Qwen-Image-Edit-2509 + LoRA") with gr.Row(): with gr.Column(): inp_img = gr.Image(type="pil", label="Входной кадр (старт сцены)") prompt = gr.Textbox( label='Промпт (начинайте с "Next Scene: ...")', value='Next Scene: camera pulls back revealing the riverside at sunset, soft rim light, subtle lens flare.' ) steps = gr.Slider(4, 60, value=40, step=1, label="Steps") true_cfg = gr.Slider(1.0, 6.0, value=3.0, step=0.5, label="true_cfg_scale") lora_strength = gr.Slider(0.0, 1.2, value=0.75, step=0.05, label="LoRA strength") seed = gr.Number(value=0, label="Seed (0 = random)") btn = gr.Button("Сгенерировать следующий кадр") with gr.Column(): out_img = gr.Image(label="Результат") btn.click(next_scene, [inp_img, prompt, steps, true_cfg, lora_strength, seed], [out_img]) if __name__ == "__main__": demo.launch()