Update app.py
Browse files
app.py
CHANGED
|
@@ -25,13 +25,10 @@ vitgpt_processor = AutoImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image
|
|
| 25 |
vitgpt_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
| 26 |
vitgpt_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
# "coca_ViT-L-14",
|
| 33 |
-
# pretrained=filepath,
|
| 34 |
-
# )
|
| 35 |
|
| 36 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 37 |
|
|
@@ -40,7 +37,7 @@ blip_model_base.to(device)
|
|
| 40 |
git_model_large.to(device)
|
| 41 |
blip_model_large.to(device)
|
| 42 |
vitgpt_model.to(device)
|
| 43 |
-
|
| 44 |
|
| 45 |
def generate_caption(processor, model, image, tokenizer=None):
|
| 46 |
inputs = processor(images=image, return_tensors="pt").to(device)
|
|
@@ -72,13 +69,13 @@ def generate_captions(image):
|
|
| 72 |
|
| 73 |
caption_vitgpt = generate_caption(vitgpt_processor, vitgpt_model, image, vitgpt_tokenizer)
|
| 74 |
|
| 75 |
-
|
| 76 |
|
| 77 |
-
return caption_git_base, caption_git_large, caption_blip_base, caption_blip_large, caption_vitgpt
|
| 78 |
|
| 79 |
|
| 80 |
examples = [["cats.jpg"], ["stop_sign.png"], ["astronaut.jpg"]]
|
| 81 |
-
outputs = [gr.outputs.Textbox(label="Caption generated by GIT-base"), gr.outputs.Textbox(label="Caption generated by GIT-large"), gr.outputs.Textbox(label="Caption generated by BLIP-base"), gr.outputs.Textbox(label="Caption generated by BLIP-large"), gr.outputs.Textbox(label="Caption generated by ViT+GPT-2")]
|
| 82 |
|
| 83 |
title = "Interactive demo: comparing image captioning models"
|
| 84 |
description = "Gradio Demo to compare GIT, BLIP and ViT+GPT2, 3 state-of-the-art vision+language models. To use it, simply upload your image and click 'submit', or click one of the examples to load them. Read more at the links below."
|
|
|
|
| 25 |
vitgpt_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
| 26 |
vitgpt_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
| 27 |
|
| 28 |
+
coca_model, _, coca_transform = open_clip.create_model_and_transforms(
|
| 29 |
+
model_name="coca_ViT-L-14",
|
| 30 |
+
pretrained="mscoco_finetuned_laion2B-s13B-b90k"
|
| 31 |
+
)
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 34 |
|
|
|
|
| 37 |
git_model_large.to(device)
|
| 38 |
blip_model_large.to(device)
|
| 39 |
vitgpt_model.to(device)
|
| 40 |
+
coca_model.to(device)
|
| 41 |
|
| 42 |
def generate_caption(processor, model, image, tokenizer=None):
|
| 43 |
inputs = processor(images=image, return_tensors="pt").to(device)
|
|
|
|
| 69 |
|
| 70 |
caption_vitgpt = generate_caption(vitgpt_processor, vitgpt_model, image, vitgpt_tokenizer)
|
| 71 |
|
| 72 |
+
caption_coca = generate_caption_coca(coca_model, coca_transform, image)
|
| 73 |
|
| 74 |
+
return caption_git_base, caption_git_large, caption_blip_base, caption_blip_large, caption_vitgpt, caption_coca
|
| 75 |
|
| 76 |
|
| 77 |
examples = [["cats.jpg"], ["stop_sign.png"], ["astronaut.jpg"]]
|
| 78 |
+
outputs = [gr.outputs.Textbox(label="Caption generated by GIT-base"), gr.outputs.Textbox(label="Caption generated by GIT-large"), gr.outputs.Textbox(label="Caption generated by BLIP-base"), gr.outputs.Textbox(label="Caption generated by BLIP-large"), gr.outputs.Textbox(label="Caption generated by ViT+GPT-2"), gr.outputs.Textbox(label="Caption generated by CoCa")]
|
| 79 |
|
| 80 |
title = "Interactive demo: comparing image captioning models"
|
| 81 |
description = "Gradio Demo to compare GIT, BLIP and ViT+GPT2, 3 state-of-the-art vision+language models. To use it, simply upload your image and click 'submit', or click one of the examples to load them. Read more at the links below."
|