Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,32 +3,105 @@ import subprocess
|
|
| 3 |
import os
|
| 4 |
import shutil
|
| 5 |
from pathlib import Path
|
| 6 |
-
from PIL import Image
|
| 7 |
import spaces
|
| 8 |
|
| 9 |
-
#
|
| 10 |
# CONFIGURE THESE PATHS TO MATCH YOUR PROJECT STRUCTURE
|
| 11 |
-
#
|
| 12 |
|
| 13 |
INPUT_DIR = "samples"
|
| 14 |
OUTPUT_DIR = "inference_results/coz_vlmprompt"
|
| 15 |
|
| 16 |
-
#
|
| 17 |
-
# HELPER
|
| 18 |
-
#
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
@spaces.GPU(duration=120)
|
| 21 |
def run_with_upload(uploaded_image_path, upscale_option):
|
| 22 |
"""
|
| 23 |
1) Clear INPUT_DIR
|
| 24 |
2) Save the uploaded file as input.png in INPUT_DIR
|
| 25 |
-
3) Read `upscale_option` (e.g. "1x", "2x", "4x") β turn it into "1",
|
| 26 |
4) Call inference_coz.py with `--upscale <that_value>`
|
| 27 |
5) Return the FOUR outputβPNG fileβpaths as a Python list, so that Gradio's Gallery
|
| 28 |
-
can display them
|
| 29 |
"""
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
# 1) Make sure INPUT_DIR exists; if it does, delete everything inside.
|
| 32 |
os.makedirs(INPUT_DIR, exist_ok=True)
|
| 33 |
for fn in os.listdir(INPUT_DIR):
|
| 34 |
full_path = os.path.join(INPUT_DIR, fn)
|
|
@@ -40,7 +113,6 @@ def run_with_upload(uploaded_image_path, upscale_option):
|
|
| 40 |
except Exception as e:
|
| 41 |
print(f"Warning: could not delete {full_path}: {e}")
|
| 42 |
|
| 43 |
-
# 2) Copy the uploaded image into INPUT_DIR.
|
| 44 |
if uploaded_image_path is None:
|
| 45 |
return []
|
| 46 |
try:
|
|
@@ -55,7 +127,6 @@ def run_with_upload(uploaded_image_path, upscale_option):
|
|
| 55 |
print(f"Error: could not save as PNG: {e}")
|
| 56 |
return []
|
| 57 |
|
| 58 |
-
# 3) Build and run your inference_coz.py command.
|
| 59 |
upscale_value = upscale_option.replace("x", "") # e.g. "2x" β "2"
|
| 60 |
cmd = [
|
| 61 |
"python", "inference_coz.py",
|
|
@@ -76,52 +147,34 @@ def run_with_upload(uploaded_image_path, upscale_option):
|
|
| 76 |
print("Inference failed:", err)
|
| 77 |
return []
|
| 78 |
|
| 79 |
-
# -------------------------------------------------------------------------
|
| 80 |
-
# 4) After inference, gather the four numbered PNGs and return their paths
|
| 81 |
-
# -------------------------------------------------------------------------
|
| 82 |
per_sample_dir = os.path.join(OUTPUT_DIR, "per-sample", "input")
|
| 83 |
-
# We expect 1.png, 2.png, 3.png, 4.png in that folder
|
| 84 |
expected_files = [
|
| 85 |
os.path.join(per_sample_dir, f"{i}.png")
|
| 86 |
for i in range(1, 5)
|
| 87 |
]
|
| 88 |
-
|
| 89 |
-
# Verify they exist; if any is missing, return an empty list
|
| 90 |
for fp in expected_files:
|
| 91 |
if not os.path.isfile(fp):
|
| 92 |
print(f"Warning: expected file not found: {fp}")
|
| 93 |
return []
|
| 94 |
-
|
| 95 |
-
# Return the list of fileβpaths (strings). Gradio's Gallery will display them.
|
| 96 |
return expected_files
|
| 97 |
|
| 98 |
|
| 99 |
-
# -----------------------------------------------------------------------------
|
| 100 |
-
# HELPER: Given a selected image PATH, read the matching .txt in .../txt/
|
| 101 |
-
# -----------------------------------------------------------------------------
|
| 102 |
-
|
| 103 |
def get_caption(src_gallery, evt: gr.SelectData):
|
| 104 |
-
selected_image_path = src_gallery[evt.index][0]
|
| 105 |
-
|
| 106 |
"""
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
Return the text contents (or a default message if not found).
|
| 110 |
"""
|
| 111 |
-
if not
|
| 112 |
return "No caption available."
|
| 113 |
|
| 114 |
-
|
| 115 |
-
base = os.path.basename(selected_image_path)
|
| 116 |
-
stem = os.path.splitext(base)[0]
|
| 117 |
-
|
| 118 |
-
# Construct the .txt filename under the 'txt' subdirectory:
|
| 119 |
txt_folder = os.path.join(OUTPUT_DIR, "per-sample", "input", "txt")
|
| 120 |
txt_path = os.path.join(txt_folder, f"{int(stem) - 1}.txt")
|
| 121 |
|
| 122 |
if not os.path.isfile(txt_path):
|
| 123 |
return f"Caption file not found: {int(stem) - 1}.txt"
|
| 124 |
-
|
| 125 |
try:
|
| 126 |
with open(txt_path, "r", encoding="utf-8") as f:
|
| 127 |
caption = f.read().strip()
|
|
@@ -130,9 +183,9 @@ def get_caption(src_gallery, evt: gr.SelectData):
|
|
| 130 |
return f"Error reading caption: {e}"
|
| 131 |
|
| 132 |
|
| 133 |
-
#
|
| 134 |
-
# BUILD THE GRADIO INTERFACE
|
| 135 |
-
#
|
| 136 |
|
| 137 |
css = """
|
| 138 |
#col-container {
|
|
@@ -178,40 +231,79 @@ with gr.Blocks(css=css) as demo:
|
|
| 178 |
# 3) Button to launch inference
|
| 179 |
run_button = gr.Button("Chain-of-Zoom it")
|
| 180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
-
# 4) Gallery to display multiple output images
|
| 184 |
-
output_gallery = gr.Gallery(
|
| 185 |
-
label="Inference Results",
|
| 186 |
-
show_label=True,
|
| 187 |
-
elem_id="gallery",
|
| 188 |
-
columns=[2], rows=[2]
|
| 189 |
-
)
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
# 5) Textbox under the gallery for showing captions
|
| 193 |
-
caption_text = gr.Textbox(
|
| 194 |
-
label="Caption",
|
| 195 |
-
lines=4,
|
| 196 |
-
placeholder="Click on any image above to see its caption here."
|
| 197 |
-
)
|
| 198 |
-
|
| 199 |
-
# Wire the button: when clicked, call run_with_upload(...) β output_gallery
|
| 200 |
run_button.click(
|
| 201 |
fn=run_with_upload,
|
| 202 |
inputs=[upload_image, upscale_radio],
|
| 203 |
outputs=[output_gallery]
|
| 204 |
)
|
| 205 |
|
| 206 |
-
#
|
|
|
|
|
|
|
|
|
|
| 207 |
output_gallery.select(
|
| 208 |
fn=get_caption,
|
| 209 |
inputs=[output_gallery],
|
| 210 |
outputs=[caption_text]
|
| 211 |
)
|
| 212 |
|
| 213 |
-
#
|
| 214 |
# START THE GRADIO SERVER
|
| 215 |
-
#
|
| 216 |
|
| 217 |
demo.launch(share=True)
|
|
|
|
| 3 |
import os
|
| 4 |
import shutil
|
| 5 |
from pathlib import Path
|
| 6 |
+
from PIL import Image, ImageDraw
|
| 7 |
import spaces
|
| 8 |
|
| 9 |
+
# ------------------------------------------------------------------
|
| 10 |
# CONFIGURE THESE PATHS TO MATCH YOUR PROJECT STRUCTURE
|
| 11 |
+
# ------------------------------------------------------------------
|
| 12 |
|
| 13 |
INPUT_DIR = "samples"
|
| 14 |
OUTPUT_DIR = "inference_results/coz_vlmprompt"
|
| 15 |
|
| 16 |
+
# ------------------------------------------------------------------
|
| 17 |
+
# HELPER: Resize & center-crop to 512, preserving aspect ratio
|
| 18 |
+
# ------------------------------------------------------------------
|
| 19 |
|
| 20 |
+
def resize_and_center_crop(img: Image.Image, size: int) -> Image.Image:
|
| 21 |
+
"""
|
| 22 |
+
Resize the input PIL image so that its shorter side == `size`,
|
| 23 |
+
then center-crop to exactly (size x size).
|
| 24 |
+
"""
|
| 25 |
+
w, h = img.size
|
| 26 |
+
scale = size / min(w, h)
|
| 27 |
+
new_w, new_h = int(w * scale), int(h * scale)
|
| 28 |
+
img = img.resize((new_w, new_h), Image.LANCZOS)
|
| 29 |
+
|
| 30 |
+
left = (new_w - size) // 2
|
| 31 |
+
top = (new_h - size) // 2
|
| 32 |
+
return img.crop((left, top, left + size, top + size))
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
# ------------------------------------------------------------------
|
| 36 |
+
# HELPER: Draw four concentric, centered rectangles on a 512Γ512 image
|
| 37 |
+
# ------------------------------------------------------------------
|
| 38 |
+
|
| 39 |
+
def make_preview_with_boxes(image_path: str, scale_option: str) -> Image.Image:
|
| 40 |
+
"""
|
| 41 |
+
1) Open the uploaded image from disk.
|
| 42 |
+
2) Resize & center-crop it to exactly 512Γ512.
|
| 43 |
+
3) Depending on scale_option ("1x","2x","4x"), compute four rectangle sizes:
|
| 44 |
+
- "1x": [512, 512, 512, 512]
|
| 45 |
+
- "2x": [256, 128, 64, 32]
|
| 46 |
+
- "4x": [128, 64, 32, 16]
|
| 47 |
+
4) Draw each of those four rectangles (outline only), all centered.
|
| 48 |
+
5) Return the modified PIL image.
|
| 49 |
+
"""
|
| 50 |
+
try:
|
| 51 |
+
orig = Image.open(image_path).convert("RGB")
|
| 52 |
+
except Exception as e:
|
| 53 |
+
# If something fails, return a plain 512Γ512 gray image as fallback
|
| 54 |
+
fallback = Image.new("RGB", (512, 512), (200, 200, 200))
|
| 55 |
+
draw = ImageDraw.Draw(fallback)
|
| 56 |
+
draw.text((20, 20), f"Error:\n{e}", fill="red")
|
| 57 |
+
return fallback
|
| 58 |
+
|
| 59 |
+
# 1. Resize & center-crop to 512Γ512
|
| 60 |
+
base = resize_and_center_crop(orig, 512) # now `base.size == (512,512)`
|
| 61 |
+
|
| 62 |
+
# 2. Determine the four box sizes
|
| 63 |
+
scale_int = int(scale_option.replace("x", "")) # e.g. "2x" -> 2
|
| 64 |
+
if scale_int == 1:
|
| 65 |
+
sizes = [512, 512, 512, 512]
|
| 66 |
+
else:
|
| 67 |
+
# For scale=2: sizes = [512//2, 512//(2*2), 512//(2*4), 512//(2*8)] -> [256,128,64,32]
|
| 68 |
+
# For scale=4: sizes = [512//4, 512//(4*2), 512//(4*4), 512//(4*8)] -> [128,64,32,16]
|
| 69 |
+
sizes = [512 // (scale_int * (2 ** i)) for i in range(4)]
|
| 70 |
+
|
| 71 |
+
draw = ImageDraw.Draw(base)
|
| 72 |
+
|
| 73 |
+
# 3. Outline color cycle (you can change these or use just one color)
|
| 74 |
+
colors = ["red", "lime", "cyan", "yellow"]
|
| 75 |
+
width = 3 # thickness of each rectangleβs outline
|
| 76 |
+
|
| 77 |
+
for idx, s in enumerate(sizes):
|
| 78 |
+
# Compute top-left corner so that box is centered in 512Γ512
|
| 79 |
+
x0 = (512 - s) // 2
|
| 80 |
+
y0 = (512 - s) // 2
|
| 81 |
+
x1 = x0 + s
|
| 82 |
+
y1 = y0 + s
|
| 83 |
+
draw.rectangle([(x0, y0), (x1, y1)], outline=colors[idx % len(colors)], width=width)
|
| 84 |
+
|
| 85 |
+
return base
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
# ------------------------------------------------------------------
|
| 89 |
+
# HELPER FUNCTIONS FOR INFERENCE & CAPTION (unchanged from your original)
|
| 90 |
+
# ------------------------------------------------------------------
|
| 91 |
@spaces.GPU(duration=120)
|
| 92 |
def run_with_upload(uploaded_image_path, upscale_option):
|
| 93 |
"""
|
| 94 |
1) Clear INPUT_DIR
|
| 95 |
2) Save the uploaded file as input.png in INPUT_DIR
|
| 96 |
+
3) Read `upscale_option` (e.g. "1x", "2x", "4x") β turn it into "1","2","4"
|
| 97 |
4) Call inference_coz.py with `--upscale <that_value>`
|
| 98 |
5) Return the FOUR outputβPNG fileβpaths as a Python list, so that Gradio's Gallery
|
| 99 |
+
can display them.
|
| 100 |
"""
|
| 101 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 102 |
+
# (Copyβpaste exactly your existing code here; no changes needed)
|
| 103 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 104 |
|
|
|
|
| 105 |
os.makedirs(INPUT_DIR, exist_ok=True)
|
| 106 |
for fn in os.listdir(INPUT_DIR):
|
| 107 |
full_path = os.path.join(INPUT_DIR, fn)
|
|
|
|
| 113 |
except Exception as e:
|
| 114 |
print(f"Warning: could not delete {full_path}: {e}")
|
| 115 |
|
|
|
|
| 116 |
if uploaded_image_path is None:
|
| 117 |
return []
|
| 118 |
try:
|
|
|
|
| 127 |
print(f"Error: could not save as PNG: {e}")
|
| 128 |
return []
|
| 129 |
|
|
|
|
| 130 |
upscale_value = upscale_option.replace("x", "") # e.g. "2x" β "2"
|
| 131 |
cmd = [
|
| 132 |
"python", "inference_coz.py",
|
|
|
|
| 147 |
print("Inference failed:", err)
|
| 148 |
return []
|
| 149 |
|
|
|
|
|
|
|
|
|
|
| 150 |
per_sample_dir = os.path.join(OUTPUT_DIR, "per-sample", "input")
|
|
|
|
| 151 |
expected_files = [
|
| 152 |
os.path.join(per_sample_dir, f"{i}.png")
|
| 153 |
for i in range(1, 5)
|
| 154 |
]
|
|
|
|
|
|
|
| 155 |
for fp in expected_files:
|
| 156 |
if not os.path.isfile(fp):
|
| 157 |
print(f"Warning: expected file not found: {fp}")
|
| 158 |
return []
|
|
|
|
|
|
|
| 159 |
return expected_files
|
| 160 |
|
| 161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
def get_caption(src_gallery, evt: gr.SelectData):
|
|
|
|
|
|
|
| 163 |
"""
|
| 164 |
+
Given a clickedβon image in the gallery, read the corresponding .txt in
|
| 165 |
+
.../per-sample/input/txt and return its contents.
|
|
|
|
| 166 |
"""
|
| 167 |
+
if not src_gallery or not os.path.isfile(src_gallery[evt.index][0]):
|
| 168 |
return "No caption available."
|
| 169 |
|
| 170 |
+
selected_image_path = src_gallery[evt.index][0]
|
| 171 |
+
base = os.path.basename(selected_image_path) # e.g. "2.png"
|
| 172 |
+
stem = os.path.splitext(base)[0] # e.g. "2"
|
|
|
|
|
|
|
| 173 |
txt_folder = os.path.join(OUTPUT_DIR, "per-sample", "input", "txt")
|
| 174 |
txt_path = os.path.join(txt_folder, f"{int(stem) - 1}.txt")
|
| 175 |
|
| 176 |
if not os.path.isfile(txt_path):
|
| 177 |
return f"Caption file not found: {int(stem) - 1}.txt"
|
|
|
|
| 178 |
try:
|
| 179 |
with open(txt_path, "r", encoding="utf-8") as f:
|
| 180 |
caption = f.read().strip()
|
|
|
|
| 183 |
return f"Error reading caption: {e}"
|
| 184 |
|
| 185 |
|
| 186 |
+
# ------------------------------------------------------------------
|
| 187 |
+
# BUILD THE GRADIO INTERFACE (with updated callbacks)
|
| 188 |
+
# ------------------------------------------------------------------
|
| 189 |
|
| 190 |
css = """
|
| 191 |
#col-container {
|
|
|
|
| 231 |
# 3) Button to launch inference
|
| 232 |
run_button = gr.Button("Chain-of-Zoom it")
|
| 233 |
|
| 234 |
+
# 4) Show the 512Γ512 preview with four centered rectangles
|
| 235 |
+
preview_with_box = gr.Image(
|
| 236 |
+
label="Preview (512Γ512 with centered boxes)",
|
| 237 |
+
type="pil", # weβll return a PIL.Image from our function
|
| 238 |
+
interactive=False
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
|
| 242 |
with gr.Column():
|
| 243 |
+
# 5) Gallery to display multiple output images
|
| 244 |
+
output_gallery = gr.Gallery(
|
| 245 |
+
label="Inference Results",
|
| 246 |
+
show_label=True,
|
| 247 |
+
elem_id="gallery",
|
| 248 |
+
columns=[2], rows=[2]
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
# 6) Textbox under the gallery for showing captions
|
| 252 |
+
caption_text = gr.Textbox(
|
| 253 |
+
label="Caption",
|
| 254 |
+
lines=4,
|
| 255 |
+
placeholder="Click on any image above to see its caption here."
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
# ------------------------------------------------------------------
|
| 259 |
+
# CALLBACK #1: Whenever the user uploads or changes the radio, update preview
|
| 260 |
+
# ------------------------------------------------------------------
|
| 261 |
+
|
| 262 |
+
def update_preview(img_path, scale_opt):
|
| 263 |
+
"""
|
| 264 |
+
If there's no image uploaded yet, return None (Gradio will show blank).
|
| 265 |
+
Otherwise, draw the resized 512Γ512 + four boxes and return it.
|
| 266 |
+
"""
|
| 267 |
+
if img_path is None:
|
| 268 |
+
return None
|
| 269 |
+
return make_preview_with_boxes(img_path, scale_opt)
|
| 270 |
+
|
| 271 |
+
# When the user uploads a new file:
|
| 272 |
+
upload_image.change(
|
| 273 |
+
fn=update_preview,
|
| 274 |
+
inputs=[upload_image, upscale_radio],
|
| 275 |
+
outputs=[preview_with_box]
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
# Also trigger preview redraw if they switch 1Γ/2Γ/4Γ after uploading:
|
| 279 |
+
upscale_radio.change(
|
| 280 |
+
fn=update_preview,
|
| 281 |
+
inputs=[upload_image, upscale_radio],
|
| 282 |
+
outputs=[preview_with_box]
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
# ------------------------------------------------------------------
|
| 286 |
+
# CALLBACK #2: When βChain-of-Zoom itβ is clicked, run inference
|
| 287 |
+
# ------------------------------------------------------------------
|
| 288 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 289 |
run_button.click(
|
| 290 |
fn=run_with_upload,
|
| 291 |
inputs=[upload_image, upscale_radio],
|
| 292 |
outputs=[output_gallery]
|
| 293 |
)
|
| 294 |
|
| 295 |
+
# ------------------------------------------------------------------
|
| 296 |
+
# CALLBACK #3: When an image in the gallery is clicked, show its caption
|
| 297 |
+
# ------------------------------------------------------------------
|
| 298 |
+
|
| 299 |
output_gallery.select(
|
| 300 |
fn=get_caption,
|
| 301 |
inputs=[output_gallery],
|
| 302 |
outputs=[caption_text]
|
| 303 |
)
|
| 304 |
|
| 305 |
+
# ------------------------------------------------------------------
|
| 306 |
# START THE GRADIO SERVER
|
| 307 |
+
# ------------------------------------------------------------------
|
| 308 |
|
| 309 |
demo.launch(share=True)
|