Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,89 +1,137 @@
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import shutil
|
| 3 |
-
import subprocess
|
| 4 |
from pathlib import Path
|
| 5 |
-
from PIL import Image
|
| 6 |
-
import gradio as gr
|
| 7 |
import spaces
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
INPUT_DIR = "samples"
|
| 10 |
OUTPUT_DIR = "inference_results/coz_vlmprompt"
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
def resize_and_center_crop(img: Image.Image, size: int) -> Image.Image:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
w, h = img.size
|
| 14 |
scale = size / min(w, h)
|
| 15 |
new_w, new_h = int(w * scale), int(h * scale)
|
| 16 |
img = img.resize((new_w, new_h), Image.LANCZOS)
|
|
|
|
| 17 |
left = (new_w - size) // 2
|
| 18 |
top = (new_h - size) // 2
|
| 19 |
return img.crop((left, top, left + size, top + size))
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
def make_preview_with_boxes(image_path: str, scale_option: str) -> Image.Image:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
try:
|
| 23 |
orig = Image.open(image_path).convert("RGB")
|
| 24 |
except Exception as e:
|
|
|
|
| 25 |
fallback = Image.new("RGB", (512, 512), (200, 200, 200))
|
| 26 |
-
from PIL import ImageDraw
|
| 27 |
draw = ImageDraw.Draw(fallback)
|
| 28 |
draw.text((20, 20), f"Error:\n{e}", fill="red")
|
| 29 |
return fallback
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
draw = ImageDraw.Draw(base)
|
|
|
|
|
|
|
| 36 |
colors = ["red", "lime", "cyan", "yellow"]
|
| 37 |
-
width = 3
|
|
|
|
| 38 |
for idx, s in enumerate(sizes):
|
|
|
|
| 39 |
x0 = (512 - s) // 2
|
| 40 |
y0 = (512 - s) // 2
|
| 41 |
x1 = x0 + s
|
| 42 |
y1 = y0 + s
|
| 43 |
-
draw.rectangle([(x0, y0), (x1, y1)], outline=colors[idx], width=width)
|
|
|
|
| 44 |
return base
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
@spaces.GPU(duration=120)
|
| 47 |
-
def run_with_upload(uploaded_image_path, upscale_option
|
| 48 |
"""
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
| 52 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
if uploaded_image_path is None:
|
| 54 |
return []
|
| 55 |
-
# 1) Prepare a per-session input directory
|
| 56 |
-
print(session_id)
|
| 57 |
-
session_folder = os.path.join(INPUT_DIR, str(session_id))
|
| 58 |
-
os.makedirs(session_folder, exist_ok=True)
|
| 59 |
-
|
| 60 |
-
# 2) Clear only this session’s folder
|
| 61 |
-
for fn in os.listdir(session_folder):
|
| 62 |
-
full_path = os.path.join(session_folder, fn)
|
| 63 |
-
if os.path.isfile(full_path) or os.path.islink(full_path):
|
| 64 |
-
os.remove(full_path)
|
| 65 |
-
elif os.path.isdir(full_path):
|
| 66 |
-
shutil.rmtree(full_path)
|
| 67 |
-
|
| 68 |
-
# 3) Save uploaded image to session_folder/input.png
|
| 69 |
try:
|
| 70 |
pil_img = Image.open(uploaded_image_path).convert("RGB")
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
pil_img.save(save_path, format="PNG")
|
| 73 |
except Exception as e:
|
| 74 |
-
print(f"Error: could not save
|
| 75 |
return []
|
| 76 |
|
| 77 |
-
|
| 78 |
-
session_output_dir = os.path.join(OUTPUT_DIR, str(session_id))
|
| 79 |
-
os.makedirs(session_output_dir, exist_ok=True)
|
| 80 |
-
|
| 81 |
-
# 5) Build and run the inference command
|
| 82 |
-
upscale_value = upscale_option.replace("x", "")
|
| 83 |
cmd = [
|
| 84 |
"python", "inference_coz.py",
|
| 85 |
-
"-i",
|
| 86 |
-
"-o",
|
| 87 |
"--rec_type", "recursive_multiscale",
|
| 88 |
"--prompt_type", "vlm",
|
| 89 |
"--upscale", upscale_value,
|
|
@@ -99,23 +147,32 @@ def run_with_upload(uploaded_image_path, upscale_option, session_id=None):
|
|
| 99 |
print("Inference failed:", err)
|
| 100 |
return []
|
| 101 |
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
|
|
|
|
|
|
| 105 |
for fp in expected_files:
|
| 106 |
if not os.path.isfile(fp):
|
| 107 |
print(f"Warning: expected file not found: {fp}")
|
| 108 |
return []
|
| 109 |
return expected_files
|
| 110 |
|
|
|
|
| 111 |
def get_caption(src_gallery, evt: gr.SelectData):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
if not src_gallery or not os.path.isfile(src_gallery[evt.index][0]):
|
| 113 |
return "No caption available."
|
|
|
|
| 114 |
selected_image_path = src_gallery[evt.index][0]
|
| 115 |
base = os.path.basename(selected_image_path) # e.g. "2.png"
|
| 116 |
stem = os.path.splitext(base)[0] # e.g. "2"
|
| 117 |
-
txt_folder = os.path.join(OUTPUT_DIR,
|
| 118 |
txt_path = os.path.join(txt_folder, f"{int(stem) - 1}.txt")
|
|
|
|
| 119 |
if not os.path.isfile(txt_path):
|
| 120 |
return f"Caption file not found: {int(stem) - 1}.txt"
|
| 121 |
try:
|
|
@@ -125,6 +182,11 @@ def get_caption(src_gallery, evt: gr.SelectData):
|
|
| 125 |
except Exception as e:
|
| 126 |
return f"Error reading caption: {e}"
|
| 127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
css = """
|
| 129 |
#col-container {
|
| 130 |
margin: 0 auto;
|
|
@@ -133,6 +195,7 @@ css = """
|
|
| 133 |
"""
|
| 134 |
|
| 135 |
with gr.Blocks(css=css) as demo:
|
|
|
|
| 136 |
gr.HTML(
|
| 137 |
"""
|
| 138 |
<div style="text-align: center;">
|
|
@@ -149,39 +212,98 @@ with gr.Blocks(css=css) as demo:
|
|
| 149 |
)
|
| 150 |
|
| 151 |
with gr.Column(elem_id="col-container"):
|
|
|
|
| 152 |
with gr.Row():
|
| 153 |
with gr.Column():
|
| 154 |
-
|
| 155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
run_button = gr.Button("Chain-of-Zoom it")
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
with gr.Column():
|
| 160 |
-
|
| 161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
upload_image.change(
|
| 164 |
-
fn=
|
| 165 |
inputs=[upload_image, upscale_radio],
|
| 166 |
outputs=[preview_with_box]
|
| 167 |
)
|
|
|
|
|
|
|
| 168 |
upscale_radio.change(
|
| 169 |
-
fn=
|
| 170 |
inputs=[upload_image, upscale_radio],
|
| 171 |
outputs=[preview_with_box]
|
| 172 |
)
|
| 173 |
|
| 174 |
-
#
|
|
|
|
|
|
|
|
|
|
| 175 |
run_button.click(
|
| 176 |
fn=run_with_upload,
|
| 177 |
-
inputs=[upload_image, upscale_radio
|
| 178 |
outputs=[output_gallery]
|
| 179 |
)
|
| 180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
output_gallery.select(
|
| 182 |
fn=get_caption,
|
| 183 |
inputs=[output_gallery],
|
| 184 |
outputs=[caption_text]
|
| 185 |
)
|
| 186 |
|
| 187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import subprocess
|
| 3 |
import os
|
| 4 |
import shutil
|
|
|
|
| 5 |
from pathlib import Path
|
| 6 |
+
from PIL import Image, ImageDraw
|
|
|
|
| 7 |
import spaces
|
| 8 |
|
| 9 |
+
# ------------------------------------------------------------------
|
| 10 |
+
# CONFIGURE THESE PATHS TO MATCH YOUR PROJECT STRUCTURE
|
| 11 |
+
# ------------------------------------------------------------------
|
| 12 |
+
|
| 13 |
INPUT_DIR = "samples"
|
| 14 |
OUTPUT_DIR = "inference_results/coz_vlmprompt"
|
| 15 |
|
| 16 |
+
# ------------------------------------------------------------------
|
| 17 |
+
# HELPER: Resize & center-crop to 512, preserving aspect ratio
|
| 18 |
+
# ------------------------------------------------------------------
|
| 19 |
+
|
| 20 |
def resize_and_center_crop(img: Image.Image, size: int) -> Image.Image:
|
| 21 |
+
"""
|
| 22 |
+
Resize the input PIL image so that its shorter side == `size`,
|
| 23 |
+
then center-crop to exactly (size x size).
|
| 24 |
+
"""
|
| 25 |
w, h = img.size
|
| 26 |
scale = size / min(w, h)
|
| 27 |
new_w, new_h = int(w * scale), int(h * scale)
|
| 28 |
img = img.resize((new_w, new_h), Image.LANCZOS)
|
| 29 |
+
|
| 30 |
left = (new_w - size) // 2
|
| 31 |
top = (new_h - size) // 2
|
| 32 |
return img.crop((left, top, left + size, top + size))
|
| 33 |
|
| 34 |
+
|
| 35 |
+
# ------------------------------------------------------------------
|
| 36 |
+
# HELPER: Draw four concentric, centered rectangles on a 512×512 image
|
| 37 |
+
# ------------------------------------------------------------------
|
| 38 |
+
|
| 39 |
def make_preview_with_boxes(image_path: str, scale_option: str) -> Image.Image:
|
| 40 |
+
"""
|
| 41 |
+
1) Open the uploaded image from disk.
|
| 42 |
+
2) Resize & center-crop it to exactly 512×512.
|
| 43 |
+
3) Depending on scale_option ("1x","2x","4x"), compute four rectangle sizes:
|
| 44 |
+
- "1x": [512, 512, 512, 512]
|
| 45 |
+
- "2x": [256, 128, 64, 32]
|
| 46 |
+
- "4x": [128, 64, 32, 16]
|
| 47 |
+
4) Draw each of those four rectangles (outline only), all centered.
|
| 48 |
+
5) Return the modified PIL image.
|
| 49 |
+
"""
|
| 50 |
try:
|
| 51 |
orig = Image.open(image_path).convert("RGB")
|
| 52 |
except Exception as e:
|
| 53 |
+
# If something fails, return a plain 512×512 gray image as fallback
|
| 54 |
fallback = Image.new("RGB", (512, 512), (200, 200, 200))
|
|
|
|
| 55 |
draw = ImageDraw.Draw(fallback)
|
| 56 |
draw.text((20, 20), f"Error:\n{e}", fill="red")
|
| 57 |
return fallback
|
| 58 |
+
|
| 59 |
+
# 1. Resize & center-crop to 512×512
|
| 60 |
+
base = resize_and_center_crop(orig, 512) # now `base.size == (512,512)`
|
| 61 |
+
|
| 62 |
+
# 2. Determine the four box sizes
|
| 63 |
+
scale_int = int(scale_option.replace("x", "")) # e.g. "2x" -> 2
|
| 64 |
+
if scale_int == 1:
|
| 65 |
+
sizes = [512, 512, 512, 512]
|
| 66 |
+
else:
|
| 67 |
+
# For scale=2: sizes = [512//2, 512//(2*2), 512//(2*4), 512//(2*8)] -> [256,128,64,32]
|
| 68 |
+
# For scale=4: sizes = [512//4, 512//(4*2), 512//(4*4), 512//(4*8)] -> [128,64,32,16]
|
| 69 |
+
sizes = [512 // (scale_int * (2 ** i)) for i in range(4)]
|
| 70 |
+
|
| 71 |
draw = ImageDraw.Draw(base)
|
| 72 |
+
|
| 73 |
+
# 3. Outline color cycle (you can change these or use just one color)
|
| 74 |
colors = ["red", "lime", "cyan", "yellow"]
|
| 75 |
+
width = 3 # thickness of each rectangle’s outline
|
| 76 |
+
|
| 77 |
for idx, s in enumerate(sizes):
|
| 78 |
+
# Compute top-left corner so that box is centered in 512×512
|
| 79 |
x0 = (512 - s) // 2
|
| 80 |
y0 = (512 - s) // 2
|
| 81 |
x1 = x0 + s
|
| 82 |
y1 = y0 + s
|
| 83 |
+
draw.rectangle([(x0, y0), (x1, y1)], outline=colors[idx % len(colors)], width=width)
|
| 84 |
+
|
| 85 |
return base
|
| 86 |
|
| 87 |
+
|
| 88 |
+
# ------------------------------------------------------------------
|
| 89 |
+
# HELPER FUNCTIONS FOR INFERENCE & CAPTION (unchanged from your original)
|
| 90 |
+
# ------------------------------------------------------------------
|
| 91 |
@spaces.GPU(duration=120)
|
| 92 |
+
def run_with_upload(uploaded_image_path, upscale_option):
|
| 93 |
"""
|
| 94 |
+
1) Clear INPUT_DIR
|
| 95 |
+
2) Save the uploaded file as input.png in INPUT_DIR
|
| 96 |
+
3) Read `upscale_option` (e.g. "1x", "2x", "4x") → turn it into "1","2","4"
|
| 97 |
+
4) Call inference_coz.py with `--upscale <that_value>`
|
| 98 |
+
5) Return the FOUR output‐PNG file‐paths as a Python list, so that Gradio's Gallery
|
| 99 |
+
can display them.
|
| 100 |
"""
|
| 101 |
+
# ————————————————————————————————————————————————————————————
|
| 102 |
+
# (Copy‐paste exactly your existing code here; no changes needed)
|
| 103 |
+
# ————————————————————————————————————————————————————————————
|
| 104 |
+
|
| 105 |
+
os.makedirs(INPUT_DIR, exist_ok=True)
|
| 106 |
+
for fn in os.listdir(INPUT_DIR):
|
| 107 |
+
full_path = os.path.join(INPUT_DIR, fn)
|
| 108 |
+
try:
|
| 109 |
+
if os.path.isfile(full_path) or os.path.islink(full_path):
|
| 110 |
+
os.remove(full_path)
|
| 111 |
+
elif os.path.isdir(full_path):
|
| 112 |
+
shutil.rmtree(full_path)
|
| 113 |
+
except Exception as e:
|
| 114 |
+
print(f"Warning: could not delete {full_path}: {e}")
|
| 115 |
+
|
| 116 |
if uploaded_image_path is None:
|
| 117 |
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
try:
|
| 119 |
pil_img = Image.open(uploaded_image_path).convert("RGB")
|
| 120 |
+
except Exception as e:
|
| 121 |
+
print(f"Error: could not open uploaded image: {e}")
|
| 122 |
+
return []
|
| 123 |
+
save_path = Path(INPUT_DIR) / "input.png"
|
| 124 |
+
try:
|
| 125 |
pil_img.save(save_path, format="PNG")
|
| 126 |
except Exception as e:
|
| 127 |
+
print(f"Error: could not save as PNG: {e}")
|
| 128 |
return []
|
| 129 |
|
| 130 |
+
upscale_value = upscale_option.replace("x", "") # e.g. "2x" → "2"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
cmd = [
|
| 132 |
"python", "inference_coz.py",
|
| 133 |
+
"-i", INPUT_DIR,
|
| 134 |
+
"-o", OUTPUT_DIR,
|
| 135 |
"--rec_type", "recursive_multiscale",
|
| 136 |
"--prompt_type", "vlm",
|
| 137 |
"--upscale", upscale_value,
|
|
|
|
| 147 |
print("Inference failed:", err)
|
| 148 |
return []
|
| 149 |
|
| 150 |
+
per_sample_dir = os.path.join(OUTPUT_DIR, "per-sample", "input")
|
| 151 |
+
expected_files = [
|
| 152 |
+
os.path.join(per_sample_dir, f"{i}.png")
|
| 153 |
+
for i in range(1, 5)
|
| 154 |
+
]
|
| 155 |
for fp in expected_files:
|
| 156 |
if not os.path.isfile(fp):
|
| 157 |
print(f"Warning: expected file not found: {fp}")
|
| 158 |
return []
|
| 159 |
return expected_files
|
| 160 |
|
| 161 |
+
|
| 162 |
def get_caption(src_gallery, evt: gr.SelectData):
|
| 163 |
+
"""
|
| 164 |
+
Given a clicked‐on image in the gallery, read the corresponding .txt in
|
| 165 |
+
.../per-sample/input/txt and return its contents.
|
| 166 |
+
"""
|
| 167 |
if not src_gallery or not os.path.isfile(src_gallery[evt.index][0]):
|
| 168 |
return "No caption available."
|
| 169 |
+
|
| 170 |
selected_image_path = src_gallery[evt.index][0]
|
| 171 |
base = os.path.basename(selected_image_path) # e.g. "2.png"
|
| 172 |
stem = os.path.splitext(base)[0] # e.g. "2"
|
| 173 |
+
txt_folder = os.path.join(OUTPUT_DIR, "per-sample", "input", "txt")
|
| 174 |
txt_path = os.path.join(txt_folder, f"{int(stem) - 1}.txt")
|
| 175 |
+
|
| 176 |
if not os.path.isfile(txt_path):
|
| 177 |
return f"Caption file not found: {int(stem) - 1}.txt"
|
| 178 |
try:
|
|
|
|
| 182 |
except Exception as e:
|
| 183 |
return f"Error reading caption: {e}"
|
| 184 |
|
| 185 |
+
|
| 186 |
+
# ------------------------------------------------------------------
|
| 187 |
+
# BUILD THE GRADIO INTERFACE (with updated callbacks)
|
| 188 |
+
# ------------------------------------------------------------------
|
| 189 |
+
|
| 190 |
css = """
|
| 191 |
#col-container {
|
| 192 |
margin: 0 auto;
|
|
|
|
| 195 |
"""
|
| 196 |
|
| 197 |
with gr.Blocks(css=css) as demo:
|
| 198 |
+
|
| 199 |
gr.HTML(
|
| 200 |
"""
|
| 201 |
<div style="text-align: center;">
|
|
|
|
| 212 |
)
|
| 213 |
|
| 214 |
with gr.Column(elem_id="col-container"):
|
| 215 |
+
|
| 216 |
with gr.Row():
|
| 217 |
with gr.Column():
|
| 218 |
+
# 1) Image upload component
|
| 219 |
+
upload_image = gr.Image(
|
| 220 |
+
label="Upload your input image",
|
| 221 |
+
type="filepath"
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
# 2) Radio for choosing 1× / 2× / 4× upscaling
|
| 225 |
+
upscale_radio = gr.Radio(
|
| 226 |
+
choices=["1x", "2x", "4x"],
|
| 227 |
+
value="2x",
|
| 228 |
+
show_label=False
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
# 3) Button to launch inference
|
| 232 |
run_button = gr.Button("Chain-of-Zoom it")
|
| 233 |
+
|
| 234 |
+
# 4) Show the 512×512 preview with four centered rectangles
|
| 235 |
+
preview_with_box = gr.Image(
|
| 236 |
+
label="Preview (512×512 with centered boxes)",
|
| 237 |
+
type="pil", # we’ll return a PIL.Image from our function
|
| 238 |
+
interactive=False
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
|
| 242 |
with gr.Column():
|
| 243 |
+
# 5) Gallery to display multiple output images
|
| 244 |
+
output_gallery = gr.Gallery(
|
| 245 |
+
label="Inference Results",
|
| 246 |
+
show_label=True,
|
| 247 |
+
elem_id="gallery",
|
| 248 |
+
columns=[2], rows=[2]
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
# 6) Textbox under the gallery for showing captions
|
| 252 |
+
caption_text = gr.Textbox(
|
| 253 |
+
label="Caption",
|
| 254 |
+
lines=4,
|
| 255 |
+
placeholder="Click on any image above to see its caption here."
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
# ------------------------------------------------------------------
|
| 259 |
+
# CALLBACK #1: Whenever the user uploads or changes the radio, update preview
|
| 260 |
+
# ------------------------------------------------------------------
|
| 261 |
|
| 262 |
+
def update_preview(img_path, scale_opt):
|
| 263 |
+
"""
|
| 264 |
+
If there's no image uploaded yet, return None (Gradio will show blank).
|
| 265 |
+
Otherwise, draw the resized 512×512 + four boxes and return it.
|
| 266 |
+
"""
|
| 267 |
+
if img_path is None:
|
| 268 |
+
return None
|
| 269 |
+
return make_preview_with_boxes(img_path, scale_opt)
|
| 270 |
+
|
| 271 |
+
# When the user uploads a new file:
|
| 272 |
upload_image.change(
|
| 273 |
+
fn=update_preview,
|
| 274 |
inputs=[upload_image, upscale_radio],
|
| 275 |
outputs=[preview_with_box]
|
| 276 |
)
|
| 277 |
+
|
| 278 |
+
# Also trigger preview redraw if they switch 1×/2×/4× after uploading:
|
| 279 |
upscale_radio.change(
|
| 280 |
+
fn=update_preview,
|
| 281 |
inputs=[upload_image, upscale_radio],
|
| 282 |
outputs=[preview_with_box]
|
| 283 |
)
|
| 284 |
|
| 285 |
+
# ------------------------------------------------------------------
|
| 286 |
+
# CALLBACK #2: When “Chain-of-Zoom it” is clicked, run inference
|
| 287 |
+
# ------------------------------------------------------------------
|
| 288 |
+
|
| 289 |
run_button.click(
|
| 290 |
fn=run_with_upload,
|
| 291 |
+
inputs=[upload_image, upscale_radio],
|
| 292 |
outputs=[output_gallery]
|
| 293 |
)
|
| 294 |
|
| 295 |
+
# ------------------------------------------------------------------
|
| 296 |
+
# CALLBACK #3: When an image in the gallery is clicked, show its caption
|
| 297 |
+
# ------------------------------------------------------------------
|
| 298 |
+
|
| 299 |
output_gallery.select(
|
| 300 |
fn=get_caption,
|
| 301 |
inputs=[output_gallery],
|
| 302 |
outputs=[caption_text]
|
| 303 |
)
|
| 304 |
|
| 305 |
+
# ------------------------------------------------------------------
|
| 306 |
+
# START THE GRADIO SERVER
|
| 307 |
+
# ------------------------------------------------------------------
|
| 308 |
+
|
| 309 |
+
demo.launch(share=True)
|