Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,272 Bytes
a3a2e41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import torch
import re
import numpy as np
import torch
import cv2
import os
import math
from typing import Tuple
import pandas as pd
import io
from pydub import AudioSegment
from PIL import Image
def preprocess_image_tensor(image_path, device, target_dtype, h_w_multiple_of=32, resize_total_area=720*720):
"""Preprocess video data into standardized tensor format and (optionally) resize area."""
def _parse_area(val):
if val is None:
return None
if isinstance(val, (int, float)):
return int(val)
if isinstance(val, (tuple, list)) and len(val) == 2:
return int(val[0]) * int(val[1])
if isinstance(val, str):
m = re.match(r"\s*(\d+)\s*[x\*\s]\s*(\d+)\s*$", val, flags=re.IGNORECASE)
if m:
return int(m.group(1)) * int(m.group(2))
if val.strip().isdigit():
return int(val.strip())
raise ValueError(f"resize_total_area={val!r} is not a valid area or WxH.")
def _best_hw_for_area(h, w, area_target, multiple):
if area_target <= 0:
return h, w
ratio_wh = w / float(h)
area_unit = multiple * multiple
tgt_units = max(1, area_target // area_unit)
p0 = max(1, int(round(np.sqrt(tgt_units / max(ratio_wh, 1e-8)))))
candidates = []
for dp in range(-3, 4):
p = max(1, p0 + dp)
q = max(1, int(round(p * ratio_wh)))
H = p * multiple
W = q * multiple
candidates.append((H, W))
scale = np.sqrt(area_target / (h * float(w)))
H_sc = max(multiple, int(round(h * scale / multiple)) * multiple)
W_sc = max(multiple, int(round(w * scale / multiple)) * multiple)
candidates.append((H_sc, W_sc))
def score(HW):
H, W = HW
area = H * W
return (abs(area - area_target), abs((W / max(H, 1e-8)) - ratio_wh))
H_best, W_best = min(candidates, key=score)
return H_best, W_best
if isinstance(image_path, str):
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
else:
assert isinstance(image_path, Image.Image)
if image_path.mode != "RGB":
image_path = image_path.convert("RGB")
image = np.array(image_path)
image = image.transpose(2, 0, 1)
image = image.astype(np.float32) / 255.0
image_tensor = torch.from_numpy(image).float().to(device, dtype=target_dtype).unsqueeze(0) ## b c h w
image_tensor = image_tensor * 2.0 - 1.0 ## -1 to 1
_, c, h, w = image_tensor.shape
area_target = _parse_area(resize_total_area)
if area_target is not None:
target_h, target_w = _best_hw_for_area(h, w, area_target, h_w_multiple_of)
else:
target_h = (h // h_w_multiple_of) * h_w_multiple_of
target_w = (w // h_w_multiple_of) * h_w_multiple_of
target_h = max(h_w_multiple_of, int(target_h))
target_w = max(h_w_multiple_of, int(target_w))
if (h != target_h) or (w != target_w):
image_tensor = torch.nn.functional.interpolate(
image_tensor,
size=(target_h, target_w),
mode='bicubic',
align_corners=False
)
return image_tensor
def preprocess_audio_tensor(audio, device):
"""Preprocess audio data into standardized tensor format."""
if isinstance(audio, np.ndarray):
audio_tensor = torch.from_numpy(audio).float().squeeze().unsqueeze(0).to(device)
else:
audio_tensor = audio.squeeze().unsqueeze(0).to(device)
return audio_tensor
def calc_dims_from_area(
aspect_ratio: str,
total_area: int = 720*720,
divisible_by: int = 32
) -> Tuple[int, int]:
"""
Calculate width and height given an aspect ratio (h:w), total area,
and divisibility constraint.
Args:
aspect_ratio (str): Aspect ratio string in format "h:w" (e.g., "9:16").
total_area (int): Target maximum area (width * height ≤ total_area).
divisible_by (int): Force width and height to be divisible by this value.
Returns:
(width, height): Tuple of integers that satisfy constraints.
"""
# Parse aspect ratio string
h_ratio, w_ratio = map(int, aspect_ratio.split(":"))
# Reduce ratio
gcd = math.gcd(h_ratio, w_ratio)
h_ratio //= gcd
w_ratio //= gcd
# Scaling factor
k = math.sqrt(total_area / (h_ratio * w_ratio))
# Floor to multiples of divisible_by
height = (int(k * h_ratio) // divisible_by) * divisible_by
width = (int(k * w_ratio) // divisible_by) * divisible_by
# Safety check: avoid 0
height = max(height, divisible_by)
width = max(width, divisible_by)
return height, width
def snap_hw_to_multiple_of_32(h: int, w: int, area = 720 * 720) -> tuple[int, int]:
"""
Scale (h, w) to match a target area if provided, then snap both
dimensions to the nearest multiple of 32 (min 32).
Args:
h (int): original height
w (int): original width
area (int, optional): target area to scale to. If None, no scaling is applied.
Returns:
(new_h, new_w): dimensions adjusted
"""
if h <= 0 or w <= 0:
raise ValueError(f"h and w must be positive, got {(h, w)}")
# If a target area is provided, rescale h, w proportionally
if area is not None and area > 0:
current_area = h * w
scale = math.sqrt(area / float(current_area))
h = int(round(h * scale))
w = int(round(w * scale))
# Snap to nearest multiple of 32
def _n32(x: int) -> int:
return max(32, int(round(x / 32)) * 32)
return _n32(h), _n32(w)
def scale_hw_to_area_divisible(h, w, area=1024*1024, n=16):
"""
Scale (h, w) so that area ≈ A, while keeping aspect ratio,
and then round so both are divisible by n.
Args:
h (int): original height
w (int): original width
A (int or float): target area
n (int): divisibility requirement
Returns:
(new_h, new_w): scaled and adjusted dimensions
"""
# Current area
current_area = h * w
if current_area == 0:
raise ValueError("Height and width must be positive")
# Scale factor to match target area
scale = math.sqrt(area / current_area)
# Apply scaling while preserving aspect ratio
new_h = h * scale
new_w = w * scale
# Round to nearest multiple of n
new_h = int(round(new_h / n) * n)
new_w = int(round(new_w / n) * n)
# Ensure non-zero
new_h = max(new_h, n)
new_w = max(new_w, n)
return new_h, new_w
def validate_and_process_user_prompt(text_prompt: str, image_path: str = None, mode: str = "t2v") -> str:
if not isinstance(text_prompt, str):
raise ValueError("User input must be a string")
# Normalize whitespace
text_prompt = text_prompt.strip()
# Check if it's a file path that exists
if os.path.isfile(text_prompt):
_, ext = os.path.splitext(text_prompt.lower())
if ext == ".csv":
df = pd.read_csv(text_prompt)
df = df.fillna("")
elif ext == ".tsv":
df = pd.read_csv(text_prompt, sep="\t")
df = df.fillna("")
else:
raise ValueError(f"Unsupported file type: {ext}. Only .csv and .tsv are allowed.")
assert "text_prompt" in df.keys(), f"Missing required columns in TSV file."
text_prompts = list(df["text_prompt"])
if mode == "i2v" and 'image_path' in df.keys():
image_paths = list(df["image_path"])
assert all(p is None or len(p) == 0 or os.path.isfile(p) for p in image_paths), "One or more image paths in the TSV file do not exist."
else:
print("Warning: image_path was not found, assuming t2v or t2i2v mode...")
image_paths = [None] * len(text_prompts)
else:
assert image_path is None or os.path.isfile(image_path), f"Image path is not None but {image_path} does not exist."
text_prompts = [text_prompt]
image_paths = [image_path]
return text_prompts, image_paths
def format_prompt_for_filename(text: str) -> str:
# remove anything inside <...>
no_tags = re.sub(r"<.*?>", "", text)
# replace spaces and slashes with underscores
safe = no_tags.replace(" ", "_").replace("/", "_")
# truncate to 50 chars
return safe[:50]
def audio_bytes_to_tensor(audio_bytes, target_sr=16000):
"""
Convert audio bytes to a 16kHz mono torch tensor in [-1, 1].
Args:
audio_bytes (bytes): Raw audio bytes
target_sr (int): Target sample rate
Returns:
torch.Tensor: shape (num_samples,)
int: sample rate
"""
# Load audio from bytes
audio = AudioSegment.from_file(io.BytesIO(audio_bytes), format="wav")
# Convert to mono if needed
if audio.channels != 1:
audio = audio.set_channels(1)
# Resample if needed
if audio.frame_rate != target_sr:
audio = audio.set_frame_rate(target_sr)
# Convert to numpy
samples = np.array(audio.get_array_of_samples())
samples = samples.astype(np.float32) / np.iinfo(samples.dtype).max
# Convert to torch tensor
tensor = torch.from_numpy(samples) # shape: (num_samples,)
return tensor, target_sr
def audio_path_to_tensor(path, target_sr=16000):
with open(path, "rb") as f:
audio_bytes = f.read()
return audio_bytes_to_tensor(audio_bytes, target_sr=target_sr)
def clean_text(text: str) -> str:
"""
Remove all text between <S>...</E> and <AUDCAP>...</ENDAUDCAP> tags,
including the tags themselves.
"""
# Remove <S> ... <E>
text = re.sub(r"<S>.*?<E>", "", text, flags=re.DOTALL)
# Remove <AUDCAP> ... <ENDAUDCAP>
text = re.sub(r"<AUDCAP>.*?<ENDAUDCAP>", "", text, flags=re.DOTALL)
# Strip extra whitespace
return text.strip() |