Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) Microsoft Corporation. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| from typing import Any, Tuple | |
| import torch | |
| import torch.distributed as dist | |
| from torch import Tensor | |
| from .parallel_states import nccl_info | |
| def broadcast(input_: torch.Tensor): | |
| src = nccl_info.group_id * nccl_info.sp_size | |
| dist.broadcast(input_, src=src, group=nccl_info.group) | |
| def _all_to_all_4D(input: torch.tensor, | |
| scatter_idx: int = 2, | |
| gather_idx: int = 1, | |
| group=None) -> torch.tensor: | |
| """ | |
| all-to-all for QKV | |
| Args: | |
| input (torch.tensor): a tensor sharded along dim scatter dim | |
| scatter_idx (int): default 1 | |
| gather_idx (int): default 2 | |
| group : torch process group | |
| Returns: | |
| torch.tensor: resharded tensor (bs, seqlen/P, hc, hs) | |
| """ | |
| assert ( | |
| input.dim() == 4 | |
| ), f"input must be 4D tensor, got {input.dim()} and shape {input.shape}" | |
| seq_world_size = dist.get_world_size(group) | |
| if scatter_idx == 2 and gather_idx == 1: | |
| # input (torch.tensor): a tensor sharded along dim 1 (bs, seqlen/P, hc, hs) output: (bs, seqlen, hc/P, hs) | |
| bs, shard_seqlen, hc, hs = input.shape | |
| seqlen = shard_seqlen * seq_world_size | |
| shard_hc = hc // seq_world_size | |
| # transpose groups of heads with the seq-len parallel dimension, so that we can scatter them! | |
| # (bs, seqlen/P, hc, hs) -reshape-> (bs, seq_len/P, P, hc/P, hs) -transpose(0,2)-> (P, seq_len/P, bs, hc/P, hs) | |
| input_t = (input.reshape(bs, shard_seqlen, seq_world_size, shard_hc, | |
| hs).transpose(0, 2).contiguous()) | |
| output = torch.empty_like(input_t) | |
| # https://pytorch.org/docs/stable/distributed.html#torch.distributed.all_to_all_single | |
| # (P, seq_len/P, bs, hc/P, hs) scatter seqlen -all2all-> (P, seq_len/P, bs, hc/P, hs) scatter head | |
| if seq_world_size > 1: | |
| dist.all_to_all_single(output, input_t, group=group) | |
| torch.cuda.synchronize() | |
| else: | |
| output = input_t | |
| # if scattering the seq-dim, transpose the heads back to the original dimension | |
| output = output.reshape(seqlen, bs, shard_hc, hs) | |
| # (seq_len, bs, hc/P, hs) -reshape-> (bs, seq_len, hc/P, hs) | |
| output = output.transpose(0, 1).contiguous().reshape( | |
| bs, seqlen, shard_hc, hs) | |
| return output | |
| elif scatter_idx == 1 and gather_idx == 2: | |
| # input (torch.tensor): a tensor sharded along dim 1 (bs, seqlen, hc/P, hs) output: (bs, seqlen/P, hc, hs) | |
| bs, seqlen, shard_hc, hs = input.shape | |
| hc = shard_hc * seq_world_size | |
| shard_seqlen = seqlen // seq_world_size | |
| seq_world_size = dist.get_world_size(group) | |
| # transpose groups of heads with the seq-len parallel dimension, so that we can scatter them! | |
| # (bs, seqlen, hc/P, hs) -reshape-> (bs, P, seq_len/P, hc/P, hs) -transpose(0, 3)-> (hc/P, P, seqlen/P, bs, hs) -transpose(0, 1) -> (P, hc/P, seqlen/P, bs, hs) | |
| input_t = (input.reshape( | |
| bs, seq_world_size, shard_seqlen, shard_hc, | |
| hs).transpose(0, 3).transpose(0, 1).contiguous().reshape( | |
| seq_world_size, shard_hc, shard_seqlen, bs, hs)) | |
| output = torch.empty_like(input_t) | |
| # https://pytorch.org/docs/stable/distributed.html#torch.distributed.all_to_all_single | |
| # (P, bs x hc/P, seqlen/P, hs) scatter seqlen -all2all-> (P, bs x seq_len/P, hc/P, hs) scatter head | |
| if seq_world_size > 1: | |
| dist.all_to_all_single(output, input_t, group=group) | |
| torch.cuda.synchronize() | |
| else: | |
| output = input_t | |
| # if scattering the seq-dim, transpose the heads back to the original dimension | |
| output = output.reshape(hc, shard_seqlen, bs, hs) | |
| # (hc, seqlen/N, bs, hs) -tranpose(0,2)-> (bs, seqlen/N, hc, hs) | |
| output = output.transpose(0, 2).contiguous().reshape( | |
| bs, shard_seqlen, hc, hs) | |
| return output | |
| else: | |
| raise RuntimeError( | |
| "scatter_idx must be 1 or 2 and gather_idx must be 1 or 2") | |
| class SeqAllToAll4D(torch.autograd.Function): | |
| def forward( | |
| ctx: Any, | |
| group: dist.ProcessGroup, | |
| input: Tensor, | |
| scatter_idx: int, | |
| gather_idx: int, | |
| ) -> Tensor: | |
| ctx.group = group | |
| ctx.scatter_idx = scatter_idx | |
| ctx.gather_idx = gather_idx | |
| return _all_to_all_4D(input, scatter_idx, gather_idx, group=group) | |
| def backward(ctx: Any, | |
| *grad_output: Tensor) -> Tuple[None, Tensor, None, None]: | |
| return ( | |
| None, | |
| SeqAllToAll4D.apply(ctx.group, *grad_output, ctx.gather_idx, | |
| ctx.scatter_idx), | |
| None, | |
| None, | |
| ) | |
| def all_to_all_4D( | |
| input_: torch.Tensor, | |
| scatter_dim: int = 2, | |
| gather_dim: int = 1, | |
| ): | |
| return SeqAllToAll4D.apply(nccl_info.group, input_, scatter_dim, | |
| gather_dim) | |
| def _all_to_all( | |
| input_: torch.Tensor, | |
| world_size: int, | |
| group: dist.ProcessGroup, | |
| scatter_dim: int, | |
| gather_dim: int, | |
| ): | |
| input_list = [ | |
| t.contiguous() | |
| for t in torch.tensor_split(input_, world_size, scatter_dim) | |
| ] | |
| output_list = [torch.empty_like(input_list[0]) for _ in range(world_size)] | |
| dist.all_to_all(output_list, input_list, group=group) | |
| return torch.cat(output_list, dim=gather_dim).contiguous() | |
| class _AllToAll(torch.autograd.Function): | |
| """All-to-all communication. | |
| Args: | |
| input_: input matrix | |
| process_group: communication group | |
| scatter_dim: scatter dimension | |
| gather_dim: gather dimension | |
| """ | |
| def forward(ctx, input_, process_group, scatter_dim, gather_dim): | |
| ctx.process_group = process_group | |
| ctx.scatter_dim = scatter_dim | |
| ctx.gather_dim = gather_dim | |
| ctx.world_size = dist.get_world_size(process_group) | |
| output = _all_to_all(input_, ctx.world_size, process_group, | |
| scatter_dim, gather_dim) | |
| return output | |
| def backward(ctx, grad_output): | |
| grad_output = _all_to_all( | |
| grad_output, | |
| ctx.world_size, | |
| ctx.process_group, | |
| ctx.gather_dim, | |
| ctx.scatter_dim, | |
| ) | |
| return ( | |
| grad_output, | |
| None, | |
| None, | |
| None, | |
| ) | |
| def all_to_all( | |
| input_: torch.Tensor, | |
| scatter_dim: int = 2, | |
| gather_dim: int = 1, | |
| ): | |
| return _AllToAll.apply(input_, nccl_info.group, scatter_dim, gather_dim) | |
| class _AllGather(torch.autograd.Function): | |
| """All-gather communication with autograd support. | |
| Args: | |
| input_: input tensor | |
| dim: dimension along which to concatenate | |
| """ | |
| def forward(ctx, input_, dim): | |
| ctx.dim = dim | |
| world_size = nccl_info.sp_size | |
| group = nccl_info.group | |
| input_size = list(input_.size()) | |
| ctx.input_size = input_size[dim] | |
| tensor_list = [torch.empty_like(input_) for _ in range(world_size)] | |
| input_ = input_.contiguous() | |
| dist.all_gather(tensor_list, input_, group=group) | |
| output = torch.cat(tensor_list, dim=dim) | |
| return output | |
| def backward(ctx, grad_output): | |
| world_size = nccl_info.sp_size | |
| rank = nccl_info.rank_within_group | |
| dim = ctx.dim | |
| input_size = ctx.input_size | |
| sizes = [input_size] * world_size | |
| grad_input_list = torch.split(grad_output, sizes, dim=dim) | |
| grad_input = grad_input_list[rank] | |
| return grad_input, None | |
| def all_gather(input_: torch.Tensor, dim: int = 1): | |
| """Performs an all-gather operation on the input tensor along the specified dimension. | |
| Args: | |
| input_ (torch.Tensor): Input tensor of shape [B, H, S, D]. | |
| dim (int, optional): Dimension along which to concatenate. Defaults to 1. | |
| Returns: | |
| torch.Tensor: Output tensor after all-gather operation, concatenated along 'dim'. | |
| """ | |
| return _AllGather.apply(input_, dim) | |
| def prepare_sequence_parallel_data(hidden_states, encoder_hidden_states, | |
| attention_mask, encoder_attention_mask): | |
| if nccl_info.sp_size == 1: | |
| return ( | |
| hidden_states, | |
| encoder_hidden_states, | |
| attention_mask, | |
| encoder_attention_mask, | |
| ) | |
| def prepare(hidden_states, encoder_hidden_states, attention_mask, | |
| encoder_attention_mask): | |
| hidden_states = all_to_all(hidden_states, scatter_dim=2, gather_dim=0) | |
| encoder_hidden_states = all_to_all(encoder_hidden_states, | |
| scatter_dim=1, | |
| gather_dim=0) | |
| attention_mask = all_to_all(attention_mask, | |
| scatter_dim=1, | |
| gather_dim=0) | |
| encoder_attention_mask = all_to_all(encoder_attention_mask, | |
| scatter_dim=1, | |
| gather_dim=0) | |
| return ( | |
| hidden_states, | |
| encoder_hidden_states, | |
| attention_mask, | |
| encoder_attention_mask, | |
| ) | |
| sp_size = nccl_info.sp_size | |
| frame = hidden_states.shape[2] | |
| assert frame % sp_size == 0, "frame should be a multiple of sp_size" | |
| ( | |
| hidden_states, | |
| encoder_hidden_states, | |
| attention_mask, | |
| encoder_attention_mask, | |
| ) = prepare( | |
| hidden_states, | |
| encoder_hidden_states.repeat(1, sp_size, 1), | |
| attention_mask.repeat(1, sp_size, 1, 1), | |
| encoder_attention_mask.repeat(1, sp_size), | |
| ) | |
| return hidden_states, encoder_hidden_states, attention_mask, encoder_attention_mask | |
| def sp_parallel_dataloader_wrapper(dataloader, device, train_batch_size, | |
| sp_size, train_sp_batch_size): | |
| while True: | |
| for data_item in dataloader: | |
| latents, cond, attn_mask, cond_mask = data_item | |
| latents = latents.to(device) | |
| cond = cond.to(device) | |
| attn_mask = attn_mask.to(device) | |
| cond_mask = cond_mask.to(device) | |
| frame = latents.shape[2] | |
| if frame == 1: | |
| yield latents, cond, attn_mask, cond_mask | |
| else: | |
| latents, cond, attn_mask, cond_mask = prepare_sequence_parallel_data( | |
| latents, cond, attn_mask, cond_mask) | |
| assert ( | |
| train_batch_size * sp_size >= train_sp_batch_size | |
| ), "train_batch_size * sp_size should be greater than train_sp_batch_size" | |
| for iter in range(train_batch_size * sp_size // | |
| train_sp_batch_size): | |
| st_idx = iter * train_sp_batch_size | |
| ed_idx = (iter + 1) * train_sp_batch_size | |
| encoder_hidden_states = cond[st_idx:ed_idx] | |
| attention_mask = attn_mask[st_idx:ed_idx] | |
| encoder_attention_mask = cond_mask[st_idx:ed_idx] | |
| yield ( | |
| latents[st_idx:ed_idx], | |
| encoder_hidden_states, | |
| attention_mask, | |
| encoder_attention_mask, | |
| ) | |