initial changes in app.py
Browse files
app.py
CHANGED
|
@@ -1,57 +1,57 @@
|
|
| 1 |
-
import
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
from transformers import ViTForImageClassification, ViTImageProcessor, CLIPProcessor, CLIPModel
|
| 5 |
-
|
| 6 |
-
"""Load models"""
|
| 7 |
-
# Path to model can be replaced by local one
|
| 8 |
-
deepfake_model = ViTForImageClassification.from_pretrained("prithivMLmods/Deep-Fake-Detector-v2-Model")
|
| 9 |
-
deepfake_processor = ViTImageProcessor.from_pretrained("prithivMLmods/Deep-Fake-Detector-v2-Model")
|
| 10 |
-
clip_model_path = "openai/clip-vit-base-patch32"
|
| 11 |
-
|
| 12 |
-
clip_model = CLIPModel.from_pretrained(clip_model_path)
|
| 13 |
-
clip_processor = CLIPProcessor.from_pretrained(clip_model_path)
|
| 14 |
-
clip_model.eval()
|
| 15 |
-
deepfake_model.eval()
|
| 16 |
-
|
| 17 |
-
clip_labels = ["photo of a real person or scene", "synthetic or AI generated image"]
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
def hybrid_classifier(img: Image.Image):
|
| 21 |
-
df_inputs = deepfake_processor(images=img, return_tensors="pt")
|
| 22 |
-
with torch.no_grad():
|
| 23 |
-
df_outputs = deepfake_model(**df_inputs)
|
| 24 |
-
df_probs = torch.nn.functional.softmax(df_outputs.logits, dim=1)
|
| 25 |
-
df_real_score = df_probs[0][deepfake_model.config.label2id["Realism"]].item()
|
| 26 |
-
df_fake_score = df_probs[0][deepfake_model.config.label2id["Deepfake"]].item()
|
| 27 |
-
|
| 28 |
-
clip_inputs = clip_processor(text=clip_labels, images=img, return_tensors="pt", padding=True)
|
| 29 |
-
with torch.no_grad():
|
| 30 |
-
clip_outputs = clip_model(**clip_inputs)
|
| 31 |
-
clip_probs = torch.softmax(clip_outputs.logits_per_image, dim=1).squeeze()
|
| 32 |
-
clip_real_score = clip_probs[0].item()
|
| 33 |
-
clip_fake_score = clip_probs[1].item()
|
| 34 |
-
|
| 35 |
-
final_real_score = (0.3 * df_real_score + 0.7 * clip_real_score)
|
| 36 |
-
final_fake_score = (0.3 * df_fake_score + 0.7 * clip_fake_score)
|
| 37 |
-
|
| 38 |
-
decision = "Generated"
|
| 39 |
-
if abs(final_real_score - final_fake_score) > 0.3:
|
| 40 |
-
decision = "Real" if final_real_score > final_fake_score else decision
|
| 41 |
-
|
| 42 |
-
return decision
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
"""Preset and launch Gradio """
|
| 46 |
-
iface = gr.Interface(
|
| 47 |
-
fn=hybrid_classifier,
|
| 48 |
-
inputs=gr.Image(type="pil"),
|
| 49 |
-
outputs=gr.Textbox(label="Final Decision"),
|
| 50 |
-
title="RealifyAI",
|
| 51 |
-
description="Figure out if image real or generated",
|
| 52 |
-
examples=[["examples/image00.jpg"],
|
| 53 |
-
["examples/image01.jpg"],
|
| 54 |
-
["examples/image02.jpg"]])
|
| 55 |
-
|
| 56 |
-
if __name__ == "__main__":
|
| 57 |
-
iface.launch()
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from transformers import ViTForImageClassification, ViTImageProcessor, CLIPProcessor, CLIPModel
|
| 5 |
+
|
| 6 |
+
"""Load models"""
|
| 7 |
+
# Path to model can be replaced by local one
|
| 8 |
+
deepfake_model = ViTForImageClassification.from_pretrained("prithivMLmods/Deep-Fake-Detector-v2-Model")
|
| 9 |
+
deepfake_processor = ViTImageProcessor.from_pretrained("prithivMLmods/Deep-Fake-Detector-v2-Model")
|
| 10 |
+
clip_model_path = "openai/clip-vit-base-patch32"
|
| 11 |
+
|
| 12 |
+
clip_model = CLIPModel.from_pretrained(clip_model_path)
|
| 13 |
+
clip_processor = CLIPProcessor.from_pretrained(clip_model_path)
|
| 14 |
+
clip_model.eval()
|
| 15 |
+
deepfake_model.eval()
|
| 16 |
+
|
| 17 |
+
clip_labels = ["photo of a real person or scene", "synthetic or AI generated image"]
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def hybrid_classifier(img: Image.Image):
|
| 21 |
+
df_inputs = deepfake_processor(images=img, return_tensors="pt")
|
| 22 |
+
with torch.no_grad():
|
| 23 |
+
df_outputs = deepfake_model(**df_inputs)
|
| 24 |
+
df_probs = torch.nn.functional.softmax(df_outputs.logits, dim=1)
|
| 25 |
+
df_real_score = df_probs[0][deepfake_model.config.label2id["Realism"]].item()
|
| 26 |
+
df_fake_score = df_probs[0][deepfake_model.config.label2id["Deepfake"]].item()
|
| 27 |
+
|
| 28 |
+
clip_inputs = clip_processor(text=clip_labels, images=img, return_tensors="pt", padding=True)
|
| 29 |
+
with torch.no_grad():
|
| 30 |
+
clip_outputs = clip_model(**clip_inputs)
|
| 31 |
+
clip_probs = torch.softmax(clip_outputs.logits_per_image, dim=1).squeeze()
|
| 32 |
+
clip_real_score = clip_probs[0].item()
|
| 33 |
+
clip_fake_score = clip_probs[1].item()
|
| 34 |
+
|
| 35 |
+
final_real_score = (0.3 * df_real_score + 0.7 * clip_real_score)
|
| 36 |
+
final_fake_score = (0.3 * df_fake_score + 0.7 * clip_fake_score)
|
| 37 |
+
|
| 38 |
+
decision = "Generated"
|
| 39 |
+
if abs(final_real_score - final_fake_score) > 0.3:
|
| 40 |
+
decision = "Real" if final_real_score > final_fake_score else decision
|
| 41 |
+
|
| 42 |
+
return decision
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
"""Preset and launch Gradio """
|
| 46 |
+
iface = gr.Interface(
|
| 47 |
+
fn=hybrid_classifier,
|
| 48 |
+
inputs=gr.Image(type="pil"),
|
| 49 |
+
outputs=gr.Textbox(label="Final Decision"),
|
| 50 |
+
title="RealifyAI",
|
| 51 |
+
description="Figure out if image real or generated",
|
| 52 |
+
examples=[["examples/image00.jpg"],
|
| 53 |
+
["examples/image01.jpg"],
|
| 54 |
+
["examples/image02.jpg"]])
|
| 55 |
+
|
| 56 |
+
if __name__ == "__main__":
|
| 57 |
+
iface.launch()
|