Spaces:
Paused
Paused
File size: 7,924 Bytes
f4349d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
#!/usr/bin/env python3
"""
Test script for Hugging Face Dots-OCR Space API
This script demonstrates how to interact with your deployed Dots-OCR Space
at https://algoryn-dots-ocr-idcard.hf.space
"""
import requests
import json
import time
from pathlib import Path
from typing import Optional, Dict, Any, List
class HFDotsOCRClient:
"""Client for interacting with the Hugging Face Dots-OCR Space API."""
def __init__(self, base_url: str = "https://algoryn-dots-ocr-idcard.hf.space"):
"""Initialize the client with the Space URL."""
self.base_url = base_url.rstrip('/')
self.session = requests.Session()
# Set a reasonable timeout for HF Spaces
self.session.timeout = 60
def health_check(self) -> Dict[str, Any]:
"""Check if the Space is healthy and running."""
try:
response = self.session.get(f"{self.base_url}/health")
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
return {"error": f"Health check failed: {e}"}
def extract_text(
self,
image_path: str,
roi: Optional[Dict[str, float]] = None
) -> Dict[str, Any]:
"""Extract text from an identity document image.
Args:
image_path: Path to the image file
roi: Optional region of interest as dict with x1, y1, x2, y2 (0-1 normalized)
"""
try:
with open(image_path, 'rb') as f:
files = {'file': f}
data = {}
# Add ROI if provided
if roi:
data['roi'] = json.dumps(roi)
response = self.session.post(
f"{self.base_url}/v1/id/ocr",
files=files,
data=data
)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
return {"error": f"OCR extraction failed: {e}"}
except FileNotFoundError:
return {"error": f"Image file not found: {image_path}"}
def print_ocr_results(result: Dict[str, Any]) -> None:
"""Pretty print OCR extraction results."""
if "error" in result:
print(f"β Error: {result['error']}")
return
print(f"β
Request ID: {result.get('request_id', 'N/A')}")
print(f"π Media Type: {result.get('media_type', 'N/A')}")
print(f"β±οΈ Processing Time: {result.get('processing_time', 0):.2f}s")
detections = result.get('detections', [])
print(f"π OCR Detections: {len(detections)}")
for i, detection in enumerate(detections, 1):
print(f"\nπ Detection {i}:")
# Print MRZ data if available
mrz_data = detection.get('mrz_data')
if mrz_data:
print(f" π MRZ Data:")
print(f" Format: {mrz_data.get('format_type', 'N/A')}")
print(f" Valid: {mrz_data.get('is_valid', False)}")
print(f" Confidence: {mrz_data.get('confidence', 0):.3f}")
if mrz_data.get('raw_text'):
print(f" Raw Text: {mrz_data['raw_text'][:50]}...")
else:
print(f" π MRZ Data: None detected")
# Print extracted fields
extracted_fields = detection.get('extracted_fields', {})
print(f" π Extracted Fields:")
# Define field categories for better organization
field_categories = {
"Document Info": [
"document_number", "document_type", "issuing_country", "issuing_authority"
],
"Personal Info": [
"surname", "given_names", "nationality", "date_of_birth",
"gender", "place_of_birth"
],
"Validity Info": [
"date_of_issue", "date_of_expiry", "personal_number"
],
"Additional": [
"optional_data_1", "optional_data_2"
]
}
for category, fields in field_categories.items():
category_fields = []
for field_name in fields:
field_data = extracted_fields.get(field_name)
if field_data and field_data.get('value'):
category_fields.append(f"{field_name}: {field_data['value']} ({field_data.get('confidence', 0):.2f})")
if category_fields:
print(f" {category}:")
for field in category_fields:
print(f" β’ {field}")
def test_with_roi(client: HFDotsOCRClient, image_path: str) -> None:
"""Test OCR with different ROI regions."""
print(f"\nπ― Testing with different ROI regions...")
# Define different ROI regions to test
roi_regions = {
"Full Image": None,
"Top Half": {"x1": 0.0, "y1": 0.0, "x2": 1.0, "y2": 0.5},
"Bottom Half": {"x1": 0.0, "y1": 0.5, "x2": 1.0, "y2": 1.0},
"Center Region": {"x1": 0.25, "y1": 0.25, "x2": 0.75, "y2": 0.75},
"Left Side": {"x1": 0.0, "y1": 0.0, "x2": 0.5, "y2": 1.0},
"Right Side": {"x1": 0.5, "y1": 0.0, "x2": 1.0, "y2": 1.0}
}
for region_name, roi in roi_regions.items():
print(f"\nπ Testing {region_name}...")
result = client.extract_text(image_path, roi)
if "error" not in result:
print(f" β
Success - Processing time: {result.get('processing_time', 0):.2f}s")
# Show a summary of extracted fields
detections = result.get('detections', [])
if detections:
fields = detections[0].get('extracted_fields', {})
field_count = sum(1 for field in fields.values() if field and field.get('value'))
print(f" π Extracted {field_count} fields")
else:
print(f" β Error: {result['error']}")
def main():
"""Main test function."""
print("π Testing Hugging Face Dots-OCR Space API")
print("=" * 50)
# Initialize client
client = HFDotsOCRClient()
# Test 1: Health check
print("\n1οΈβ£ Testing health check...")
health = client.health_check()
if "error" in health:
print(f"β Health check failed: {health['error']}")
print("π‘ Make sure your Hugging Face Space is running and accessible")
return
else:
print(f"β
Space is healthy: {health}")
# Test 2: OCR extraction (if demo images exist)
demo_images = [
"data/demo/tom_id_card_front.jpg",
"data/demo/tom_id_card_back.jpg",
"data/demo/ocr/0000095097_1_E-5858-MA Fahrzeugschein und -brief.png",
"data/demo/ocr/container_inspection_report.png",
"data/demo/ocr/handelsregister_b.png"
]
test_image = None
for image_path in demo_images:
if Path(image_path).exists():
test_image = image_path
break
if test_image:
print(f"\n2οΈβ£ Testing OCR extraction with {test_image}...")
result = client.extract_text(test_image)
print_ocr_results(result)
# Test 3: ROI testing
if "error" not in result:
test_with_roi(client, test_image)
else:
print("\n2οΈβ£ No demo images found for testing")
print("π‘ Place some test images in the data/demo/ directory")
print("\nπ Testing complete!")
print("\nπ‘ To test with your own files:")
print(" python test_hf_dots_ocr_space.py")
print("\nπ‘ To test with ROI:")
print(" client = HFDotsOCRClient()")
print(" result = client.extract_text('image.jpg', roi={'x1': 0.0, 'y1': 0.0, 'x2': 0.5, 'y2': 0.5})")
if __name__ == "__main__":
main()
|