Spaces:
Paused
Paused
File size: 16,813 Bytes
211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 5537ceb 211e423 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
"""Enhanced field extraction utilities for Dots.OCR text processing.
This module provides improved field extraction and mapping from OCR results
to structured KYB field formats with better confidence scoring and validation.
"""
import re
import logging
from typing import Optional, Dict, List, Tuple, Any
from datetime import datetime
from .api_models import ExtractedField, IdCardFields, MRZData
# Configure logging
logger = logging.getLogger(__name__)
class EnhancedFieldExtractor:
"""Enhanced field extraction with improved confidence scoring and validation."""
# Enhanced field mapping patterns with confidence scoring
FIELD_PATTERNS = {
"document_number": [
(r"documentnummer[:\s]*([A-Z0-9]{6,15})", 0.9), # Dutch format
(r"document\s*number[:\s]*([A-Z0-9]{6,15})", 0.85), # English format
(r"nr[:\s]*([A-Z0-9]{6,15})", 0.7), # Abbreviated format
(r"ID[:\s]*([A-Z0-9]{6,15})", 0.8), # ID format
(r"([A-Z]{3}\d{9})", 0.75), # Passport format (3 letters + 9 digits)
],
"surname": [
# Anchor to line and capture value up to newline to avoid spilling into next label
(r"^\s*achternaam[:\s]*([^\r\n]+)", 0.95), # Dutch format (line-anchored)
(r"^\s*surname[:\s]*([^\r\n]+)", 0.9), # English format (line-anchored)
(r"^\s*family\s*name[:\s]*([^\r\n]+)", 0.85), # Full English
(r"^\s*last\s*name[:\s]*([^\r\n]+)", 0.85), # Alternative English
],
"given_names": [
(r"^\s*voornamen[:\s]*([^\r\n]+)", 0.95), # Dutch format (line-anchored)
(
r"^\s*given\s*names[:\s]*([^\r\n]+)",
0.9,
), # English format (line-anchored)
(r"^\s*first\s*name[:\s]*([^\r\n]+)", 0.85), # First name only
(r"^\s*voorletters[:\s]*([^\r\n]+)", 0.75), # Dutch initials
],
"nationality": [
(r"nationaliteit[:\s]*([A-Z]{3})", 0.9), # Dutch format (3-letter code)
(r"nationality[:\s]*([A-Z]{3})", 0.85), # English format
(r"nationality[:\s]*([A-Za-z\s]{3,20})", 0.7), # Full country name
],
"date_of_birth": [
(r"geboortedatum[:\s]*(\d{2}[./-]\d{2}[./-]\d{4})", 0.9), # Dutch format
(
r"date\s*of\s*birth[:\s]*(\d{2}[./-]\d{2}[./-]\d{4})",
0.85,
), # English format
(r"born[:\s]*(\d{2}[./-]\d{2}[./-]\d{4})", 0.8), # Short English
(r"(\d{2}[./-]\d{2}[./-]\d{4})", 0.6), # Generic date pattern
],
"gender": [
(r"geslacht[:\s]*([MF])", 0.9), # Dutch format
(r"gender[:\s]*([MF])", 0.85), # English format
(r"sex[:\s]*([MF])", 0.8), # Alternative English
(r"geslacht[:\s]*(man|vrouw)", 0.7), # Dutch full words
(r"gender[:\s]*(male|female)", 0.7), # English full words
],
"place_of_birth": [
(r"geboorteplaats[:\s]*([A-Za-z\s]{2,30})", 0.9), # Dutch format
(r"place\s*of\s*birth[:\s]*([A-Za-z\s]{2,30})", 0.85), # English format
(r"born\s*in[:\s]*([A-Za-z\s]{2,30})", 0.8), # Short English
],
"date_of_issue": [
(r"uitgiftedatum[:\s]*(\d{2}[./-]\d{2}[./-]\d{4})", 0.9), # Dutch format
(
r"date\s*of\s*issue[:\s]*(\d{2}[./-]\d{2}[./-]\d{4})",
0.85,
), # English format
(r"issued[:\s]*(\d{2}[./-]\d{2}[./-]\d{4})", 0.8), # Short English
],
"date_of_expiry": [
(r"vervaldatum[:\s]*(\d{2}[./-]\d{2}[./-]\d{4})", 0.9), # Dutch format
(
r"date\s*of\s*expiry[:\s]*(\d{2}[./-]\d{2}[./-]\d{4})",
0.85,
), # English format
(r"expires[:\s]*(\d{2}[./-]\d{2}[./-]\d{4})", 0.8), # Short English
(
r"valid\s*until[:\s]*(\d{2}[./-]\d{2}[./-]\d{4})",
0.8,
), # Alternative English
],
"personal_number": [
(r"persoonsnummer[:\s]*(\d{9})", 0.9), # Dutch format
(r"personal\s*number[:\s]*(\d{9})", 0.85), # English format
(r"bsn[:\s]*(\d{9})", 0.9), # Dutch BSN
(r"social\s*security[:\s]*(\d{9})", 0.8), # SSN format
],
"document_type": [
(r"document\s*type[:\s]*([A-Za-z\s]{3,20})", 0.8), # English format
(r"soort\s*document[:\s]*([A-Za-z\s]{3,20})", 0.9), # Dutch format
(r"(passport|paspoort)", 0.9), # Passport
(r"(identity\s*card|identiteitskaart)", 0.9), # ID card
(r"(driving\s*license|rijbewijs)", 0.9), # Driving license
],
"issuing_country": [
(r"issuing\s*country[:\s]*([A-Z]{3})", 0.85), # English format
(r"uitgevende\s*land[:\s]*([A-Z]{3})", 0.9), # Dutch format
(r"country[:\s]*([A-Z]{3})", 0.7), # Short format
],
"issuing_authority": [
(r"issuing\s*authority[:\s]*([A-Za-z\s]{3,30})", 0.8), # English format
(r"uitgevende\s*autoriteit[:\s]*([A-Za-z\s]{3,30})", 0.9), # Dutch format
(r"authority[:\s]*([A-Za-z\s]{3,30})", 0.7), # Short format
],
}
# MRZ patterns with confidence scoring
MRZ_PATTERNS = [
# Strict formats first, allowing leading/trailing whitespace per line
(
r"^\s*((?:[A-Z0-9<]{44})\s*\n\s*(?:[A-Z0-9<]{44}))\s*$",
0.95,
), # TD3: Passport (2 x 44)
(
r"^\s*((?:[A-Z0-9<]{36})\s*\n\s*(?:[A-Z0-9<]{36}))\s*$",
0.9,
), # TD2: ID card (2 x 36)
(
r"^\s*((?:[A-Z0-9<]{30})\s*\n\s*(?:[A-Z0-9<]{30})\s*\n\s*(?:[A-Z0-9<]{30}))\s*$",
0.85,
), # TD1: (3 x 30)
# Fallback generic: a line starting with P< followed by another MRZ-like line
(r"(P<[^\r\n]+\n[^\r\n]+)", 0.85),
]
@classmethod
def extract_fields(cls, ocr_text: str) -> IdCardFields:
"""Extract structured fields from OCR text with enhanced confidence scoring.
Args:
ocr_text: Raw OCR text from document processing
Returns:
IdCardFields object with extracted field data
"""
logger.info(f"Extracting fields from text of length: {len(ocr_text)}")
fields = {}
extraction_stats = {"total_patterns": 0, "matches_found": 0}
for field_name, patterns in cls.FIELD_PATTERNS.items():
value = None
confidence = 0.0
best_pattern = None
for pattern, base_confidence in patterns:
extraction_stats["total_patterns"] += 1
match = re.search(pattern, ocr_text, re.IGNORECASE | re.MULTILINE)
if match:
candidate_value = match.group(1).strip()
# Validate the extracted value
if cls._validate_field_value(field_name, candidate_value):
value = candidate_value
confidence = base_confidence
best_pattern = pattern
extraction_stats["matches_found"] += 1
logger.debug(
f"Found {field_name}: '{value}' (confidence: {confidence:.2f})"
)
break
if value:
# Apply additional confidence adjustments
confidence = cls._adjust_confidence(
field_name, value, confidence, ocr_text
)
fields[field_name] = ExtractedField(
field_name=field_name,
value=value,
confidence=confidence,
source="ocr",
)
logger.info(
f"Field extraction complete: {extraction_stats['matches_found']}/{extraction_stats['total_patterns']} patterns matched"
)
return IdCardFields(**fields)
@classmethod
def _validate_field_value(cls, field_name: str, value: str) -> bool:
"""Validate extracted field value based on field type.
Args:
field_name: Name of the field
value: Extracted value to validate
Returns:
True if value is valid
"""
if not value or len(value.strip()) == 0:
return False
# Field-specific validation
if field_name == "document_number":
return len(value) >= 6 and len(value) <= 15
elif field_name in ["surname", "given_names", "place_of_birth"]:
return len(value) >= 2 and len(value) <= 50
elif field_name == "nationality":
return len(value) == 3 and value.isalpha()
elif field_name in ["date_of_birth", "date_of_issue", "date_of_expiry"]:
return cls._validate_date_format(value)
elif field_name == "gender":
return value.upper() in ["M", "F", "MALE", "FEMALE", "MAN", "VROUW"]
elif field_name == "personal_number":
return len(value) == 9 and value.isdigit()
elif field_name == "issuing_country":
return len(value) == 3 and value.isalpha()
return True
@classmethod
def _validate_date_format(cls, date_str: str) -> bool:
"""Validate date format and basic date logic.
Args:
date_str: Date string to validate
Returns:
True if date format is valid
"""
try:
# Try different date separators
for sep in [".", "/", "-"]:
if sep in date_str:
parts = date_str.split(sep)
if len(parts) == 3:
day, month, year = parts
# Basic validation
if (
1 <= int(day) <= 31
and 1 <= int(month) <= 12
and 1900 <= int(year) <= 2100
):
return True
except (ValueError, IndexError):
pass
return False
@classmethod
def _adjust_confidence(
cls, field_name: str, value: str, base_confidence: float, full_text: str
) -> float:
"""Adjust confidence based on additional factors.
Args:
field_name: Name of the field
value: Extracted value
base_confidence: Base confidence from pattern matching
full_text: Full OCR text for context
Returns:
Adjusted confidence score
"""
confidence = base_confidence
# Length-based adjustments
if field_name in ["surname", "given_names"] and len(value) < 3:
confidence *= 0.8 # Shorter names are less reliable
# Context-based adjustments
if field_name == "document_number" and "passport" in full_text.lower():
confidence *= 1.1 # Higher confidence in passport context
# Multiple occurrence bonus
if value in full_text and full_text.count(value) > 1:
confidence *= 1.05 # Slight bonus for repeated values
# Ensure confidence stays within bounds
return min(max(confidence, 0.0), 1.0)
@classmethod
def extract_mrz(cls, ocr_text: str) -> Optional[MRZData]:
"""Extract MRZ data from OCR text with enhanced validation.
Args:
ocr_text: Raw OCR text from document processing
Returns:
MRZData object if MRZ detected, None otherwise
"""
logger.info("Extracting MRZ data from OCR text")
best_match = None
best_confidence = 0.0
for pattern, base_confidence in cls.MRZ_PATTERNS:
match = re.search(pattern, ocr_text, re.MULTILINE)
if match:
raw_mrz = match.group(1)
# Validate MRZ format
if cls._validate_mrz_format(raw_mrz):
confidence = base_confidence
# Adjust confidence based on MRZ quality
confidence = cls._adjust_mrz_confidence(raw_mrz, confidence)
if confidence > best_confidence:
best_match = raw_mrz
best_confidence = confidence
logger.debug(f"Found MRZ with confidence {confidence:.2f}")
if best_match:
# Parse MRZ to determine format type
format_type = cls._determine_mrz_format(best_match)
# Basic checksum validation
is_valid, errors = cls._validate_mrz_checksums(best_match, format_type)
logger.info(f"MRZ extracted: {format_type} format, valid: {is_valid}")
# Convert to the format expected by the API
from .api_models import MRZData as APIMRZData
# Populate both canonical and legacy alias fields for compatibility
return APIMRZData(
document_type=format_type,
format_type=format_type, # legacy alias
issuing_country=None, # would be parsed in full impl
surname=None,
given_names=None,
document_number=None,
nationality=None,
date_of_birth=None,
gender=None,
date_of_expiry=None,
personal_number=None,
raw_mrz=best_match,
raw_text=best_match, # legacy alias
confidence=best_confidence,
)
logger.info("No MRZ data found in OCR text")
return None
@classmethod
def _validate_mrz_format(cls, mrz_text: str) -> bool:
"""Validate basic MRZ format.
Args:
mrz_text: Raw MRZ text
Returns:
True if format is valid
"""
lines = mrz_text.strip().split("\n")
if len(lines) < 2:
return False
# Normalize whitespace and validate character set only.
normalized_lines = [re.sub(r"\s+", "", line) for line in lines]
for line in normalized_lines:
if not re.match(r"^[A-Z0-9<]+$", line):
return False
return True
@classmethod
def _determine_mrz_format(cls, mrz_text: str) -> str:
"""Determine MRZ format type.
Args:
mrz_text: Raw MRZ text
Returns:
Format type (TD1, TD2, TD3, etc.)
"""
lines = mrz_text.strip().split("\n")
lines = [re.sub(r"\s+", "", line) for line in lines]
line_count = len(lines)
line_length = len(lines[0]) if lines else 0
# Heuristic mapping: prioritize semantics over exact lengths for robustness
if line_count == 2 and lines[0].startswith("P<"):
return "TD3" # Passport format commonly starts with P<
if line_count == 2 and line_length == 36:
return "TD2" # ID card format
if line_count == 3:
return "TD1"
return "UNKNOWN"
@classmethod
def _adjust_mrz_confidence(cls, mrz_text: str, base_confidence: float) -> float:
"""Adjust MRZ confidence based on quality indicators.
Args:
mrz_text: Raw MRZ text
base_confidence: Base confidence from pattern matching
Returns:
Adjusted confidence
"""
confidence = base_confidence
# Check line consistency
lines = mrz_text.strip().split("\n")
if len(set(len(line) for line in lines)) == 1:
confidence *= 1.05 # Bonus for consistent line lengths
return min(max(confidence, 0.0), 1.0)
@classmethod
def _validate_mrz_checksums(
cls, mrz_text: str, format_type: str
) -> Tuple[bool, List[str]]:
"""Validate MRZ checksums (simplified implementation).
Args:
mrz_text: Raw MRZ text
format_type: MRZ format type
Returns:
Tuple of (is_valid, list_of_errors)
"""
# This is a simplified implementation
# In production, you would implement full MRZ checksum validation
errors = []
# Basic validation - check for reasonable character distribution
if mrz_text.count("<") > len(mrz_text) * 0.3:
errors.append("Too many fill characters")
# For now, assume valid if basic format is correct
is_valid = len(errors) == 0
return is_valid, errors
# Backward compatibility - use enhanced extractor as default
class FieldExtractor(EnhancedFieldExtractor):
"""Backward compatible field extractor using enhanced implementation."""
pass
|