Spaces:
Running
Running
| # Copyright 2024 EasyAnimate Authors and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| import re | |
| import urllib.parse as ul | |
| from dataclasses import dataclass | |
| from typing import Callable, Dict, List, Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| from diffusers import DiffusionPipeline, ImagePipelineOutput | |
| from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback | |
| from diffusers.image_processor import VaeImageProcessor | |
| from diffusers.models import AutoencoderKL, HunyuanDiT2DModel | |
| from diffusers.models.embeddings import (get_2d_rotary_pos_embed, | |
| get_3d_rotary_pos_embed) | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
| from diffusers.pipelines.stable_diffusion.safety_checker import \ | |
| StableDiffusionSafetyChecker | |
| from diffusers.schedulers import (DDIMScheduler, DPMSolverMultistepScheduler, | |
| FlowMatchEulerDiscreteScheduler) | |
| from diffusers.utils import (BACKENDS_MAPPING, BaseOutput, deprecate, | |
| is_bs4_available, is_ftfy_available, | |
| is_torch_xla_available, logging, | |
| replace_example_docstring) | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from einops import rearrange | |
| from PIL import Image | |
| from tqdm import tqdm | |
| from transformers import (BertModel, BertTokenizer, CLIPImageProcessor, | |
| CLIPVisionModelWithProjection, Qwen2Tokenizer, | |
| Qwen2VLForConditionalGeneration, T5EncoderModel, | |
| T5Tokenizer) | |
| from ..models import AutoencoderKLMagvit, EasyAnimateTransformer3DModel | |
| from .pipeline_easyanimate_inpaint import EasyAnimatePipelineOutput | |
| if is_torch_xla_available(): | |
| import torch_xla.core.xla_model as xm | |
| XLA_AVAILABLE = True | |
| else: | |
| XLA_AVAILABLE = False | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> pass | |
| ``` | |
| """ | |
| # Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid | |
| def get_resize_crop_region_for_grid(src, tgt_width, tgt_height): | |
| tw = tgt_width | |
| th = tgt_height | |
| h, w = src | |
| r = h / w | |
| if r > (th / tw): | |
| resize_height = th | |
| resize_width = int(round(th / h * w)) | |
| else: | |
| resize_width = tw | |
| resize_height = int(round(tw / w * h)) | |
| crop_top = int(round((th - resize_height) / 2.0)) | |
| crop_left = int(round((tw - resize_width) / 2.0)) | |
| return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg | |
| def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | |
| """ | |
| Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and | |
| Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 | |
| """ | |
| std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | |
| std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | |
| # rescale the results from guidance (fixes overexposure) | |
| noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | |
| # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images | |
| noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | |
| return noise_cfg | |
| # Resize mask information in magvit | |
| def resize_mask(mask, latent, process_first_frame_only=True): | |
| latent_size = latent.size() | |
| if process_first_frame_only: | |
| target_size = list(latent_size[2:]) | |
| target_size[0] = 1 | |
| first_frame_resized = F.interpolate( | |
| mask[:, :, 0:1, :, :], | |
| size=target_size, | |
| mode='trilinear', | |
| align_corners=False | |
| ) | |
| target_size = list(latent_size[2:]) | |
| target_size[0] = target_size[0] - 1 | |
| if target_size[0] != 0: | |
| remaining_frames_resized = F.interpolate( | |
| mask[:, :, 1:, :, :], | |
| size=target_size, | |
| mode='trilinear', | |
| align_corners=False | |
| ) | |
| resized_mask = torch.cat([first_frame_resized, remaining_frames_resized], dim=2) | |
| else: | |
| resized_mask = first_frame_resized | |
| else: | |
| target_size = list(latent_size[2:]) | |
| resized_mask = F.interpolate( | |
| mask, | |
| size=target_size, | |
| mode='trilinear', | |
| align_corners=False | |
| ) | |
| return resized_mask | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| sigmas: Optional[List[float]] = None, | |
| **kwargs, | |
| ): | |
| """ | |
| Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
| custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
| Args: | |
| scheduler (`SchedulerMixin`): | |
| The scheduler to get timesteps from. | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
| must be `None`. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
| `num_inference_steps` and `sigmas` must be `None`. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
| `num_inference_steps` and `timesteps` must be `None`. | |
| Returns: | |
| `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
| second element is the number of inference steps. | |
| """ | |
| if timesteps is not None and sigmas is not None: | |
| raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| elif sigmas is not None: | |
| accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accept_sigmas: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" sigmas schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| class EasyAnimateControlPipeline(DiffusionPipeline): | |
| r""" | |
| Pipeline for text-to-video generation using EasyAnimate. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| EasyAnimate uses one text encoder [qwen2 vl](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) in V5.1. | |
| EasyAnimate uses two text encoders: [mT5](https://huggingface.co/google/mt5-base) and [bilingual CLIP](fine-tuned by | |
| HunyuanDiT team) in V5. | |
| Args: | |
| vae ([`AutoencoderKLMagvit`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode video to and from latent representations. | |
| text_encoder (Optional[`~transformers.Qwen2VLForConditionalGeneration`, `~transformers.BertModel`]): | |
| EasyAnimate uses [qwen2 vl](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) in V5.1. | |
| EasyAnimate uses [bilingual CLIP](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.2-Diffusers) in V5. | |
| tokenizer (Optional[`~transformers.Qwen2Tokenizer`, `~transformers.BertTokenizer`]): | |
| A `Qwen2Tokenizer` or `BertTokenizer` to tokenize text. | |
| transformer ([`EasyAnimateTransformer3DModel`]): | |
| The EasyAnimate model designed by EasyAnimate Team. | |
| text_encoder_2 (`T5EncoderModel`): | |
| EasyAnimate does not use text_encoder_2 in V5.1. | |
| EasyAnimate uses [mT5](https://huggingface.co/google/mt5-base) embedder in V5. | |
| tokenizer_2 (`T5Tokenizer`): | |
| The tokenizer for the mT5 embedder. | |
| scheduler ([`FlowMatchEulerDiscreteScheduler`]): | |
| A scheduler to be used in combination with EasyAnimate to denoise the encoded image latents. | |
| """ | |
| model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae" | |
| _optional_components = [ | |
| "text_encoder_2", | |
| "tokenizer_2", | |
| "text_encoder", | |
| "tokenizer", | |
| ] | |
| _callback_tensor_inputs = [ | |
| "latents", | |
| "prompt_embeds", | |
| "negative_prompt_embeds", | |
| "prompt_embeds_2", | |
| "negative_prompt_embeds_2", | |
| ] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKLMagvit, | |
| text_encoder: Union[Qwen2VLForConditionalGeneration, BertModel], | |
| tokenizer: Union[Qwen2Tokenizer, BertTokenizer], | |
| text_encoder_2: Optional[Union[T5EncoderModel, Qwen2VLForConditionalGeneration]], | |
| tokenizer_2: Optional[Union[T5Tokenizer, Qwen2Tokenizer]], | |
| transformer: EasyAnimateTransformer3DModel, | |
| scheduler: FlowMatchEulerDiscreteScheduler, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| text_encoder_2=text_encoder_2, | |
| tokenizer=tokenizer, | |
| tokenizer_2=tokenizer_2, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| self.mask_processor = VaeImageProcessor( | |
| vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True | |
| ) | |
| def enable_sequential_cpu_offload(self, *args, **kwargs): | |
| super().enable_sequential_cpu_offload(*args, **kwargs) | |
| if hasattr(self.transformer, "clip_projection") and self.transformer.clip_projection is not None: | |
| import accelerate | |
| accelerate.hooks.remove_hook_from_module(self.transformer.clip_projection, recurse=True) | |
| self.transformer.clip_projection = self.transformer.clip_projection.to("cuda") | |
| def encode_prompt( | |
| self, | |
| prompt: str, | |
| device: torch.device, | |
| dtype: torch.dtype, | |
| num_images_per_prompt: int = 1, | |
| do_classifier_free_guidance: bool = True, | |
| negative_prompt: Optional[str] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| prompt_attention_mask: Optional[torch.Tensor] = None, | |
| negative_prompt_attention_mask: Optional[torch.Tensor] = None, | |
| max_sequence_length: Optional[int] = None, | |
| text_encoder_index: int = 0, | |
| actual_max_sequence_length: int = 256 | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| device: (`torch.device`): | |
| torch device | |
| dtype (`torch.dtype`): | |
| torch dtype | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| do_classifier_free_guidance (`bool`): | |
| whether to use classifier free guidance or not | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| prompt_attention_mask (`torch.Tensor`, *optional*): | |
| Attention mask for the prompt. Required when `prompt_embeds` is passed directly. | |
| negative_prompt_attention_mask (`torch.Tensor`, *optional*): | |
| Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly. | |
| max_sequence_length (`int`, *optional*): maximum sequence length to use for the prompt. | |
| text_encoder_index (`int`, *optional*): | |
| Index of the text encoder to use. `0` for clip and `1` for T5. | |
| """ | |
| tokenizers = [self.tokenizer, self.tokenizer_2] | |
| text_encoders = [self.text_encoder, self.text_encoder_2] | |
| tokenizer = tokenizers[text_encoder_index] | |
| text_encoder = text_encoders[text_encoder_index] | |
| if max_sequence_length is None: | |
| if text_encoder_index == 0: | |
| max_length = min(self.tokenizer.model_max_length, actual_max_sequence_length) | |
| if text_encoder_index == 1: | |
| max_length = min(self.tokenizer_2.model_max_length, actual_max_sequence_length) | |
| else: | |
| max_length = max_sequence_length | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| if prompt_embeds is None: | |
| if type(tokenizer) in [BertTokenizer, T5Tokenizer]: | |
| text_inputs = tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_attention_mask=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| if text_input_ids.shape[-1] > actual_max_sequence_length: | |
| reprompt = tokenizer.batch_decode(text_input_ids[:, :actual_max_sequence_length], skip_special_tokens=True) | |
| text_inputs = tokenizer( | |
| reprompt, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_attention_mask=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
| text_input_ids, untruncated_ids | |
| ): | |
| _actual_max_sequence_length = min(tokenizer.model_max_length, actual_max_sequence_length) | |
| removed_text = tokenizer.batch_decode(untruncated_ids[:, _actual_max_sequence_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {_actual_max_sequence_length} tokens: {removed_text}" | |
| ) | |
| prompt_attention_mask = text_inputs.attention_mask.to(device) | |
| if self.transformer.config.enable_text_attention_mask: | |
| prompt_embeds = text_encoder( | |
| text_input_ids.to(device), | |
| attention_mask=prompt_attention_mask, | |
| ) | |
| else: | |
| prompt_embeds = text_encoder( | |
| text_input_ids.to(device) | |
| ) | |
| prompt_embeds = prompt_embeds[0] | |
| prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) | |
| else: | |
| if prompt is not None and isinstance(prompt, str): | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [{"type": "text", "text": prompt}], | |
| } | |
| ] | |
| else: | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [{"type": "text", "text": _prompt}], | |
| } for _prompt in prompt | |
| ] | |
| text = tokenizer.apply_chat_template( | |
| messages, tokenize=False, add_generation_prompt=True | |
| ) | |
| text_inputs = tokenizer( | |
| text=[text], | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_attention_mask=True, | |
| padding_side="right", | |
| return_tensors="pt", | |
| ) | |
| text_inputs = text_inputs.to(text_encoder.device) | |
| text_input_ids = text_inputs.input_ids | |
| prompt_attention_mask = text_inputs.attention_mask | |
| if self.transformer.config.enable_text_attention_mask: | |
| # Inference: Generation of the output | |
| prompt_embeds = text_encoder( | |
| input_ids=text_input_ids, | |
| attention_mask=prompt_attention_mask, | |
| output_hidden_states=True).hidden_states[-2] | |
| else: | |
| raise ValueError("LLM needs attention_mask") | |
| prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| prompt_attention_mask = prompt_attention_mask.to(device=device) | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance and negative_prompt_embeds is None: | |
| if type(tokenizer) in [BertTokenizer, T5Tokenizer]: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif prompt is not None and type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| max_length = prompt_embeds.shape[1] | |
| uncond_input = tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| uncond_input_ids = uncond_input.input_ids | |
| if uncond_input_ids.shape[-1] > actual_max_sequence_length: | |
| reuncond_tokens = tokenizer.batch_decode(uncond_input_ids[:, :actual_max_sequence_length], skip_special_tokens=True) | |
| uncond_input = tokenizer( | |
| reuncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_attention_mask=True, | |
| return_tensors="pt", | |
| ) | |
| uncond_input_ids = uncond_input.input_ids | |
| negative_prompt_attention_mask = uncond_input.attention_mask.to(device) | |
| if self.transformer.config.enable_text_attention_mask: | |
| negative_prompt_embeds = text_encoder( | |
| uncond_input.input_ids.to(device), | |
| attention_mask=negative_prompt_attention_mask, | |
| ) | |
| else: | |
| negative_prompt_embeds = text_encoder( | |
| uncond_input.input_ids.to(device) | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds[0] | |
| negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) | |
| else: | |
| if negative_prompt is not None and isinstance(negative_prompt, str): | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [{"type": "text", "text": negative_prompt}], | |
| } | |
| ] | |
| else: | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [{"type": "text", "text": _negative_prompt}], | |
| } for _negative_prompt in negative_prompt | |
| ] | |
| text = tokenizer.apply_chat_template( | |
| messages, tokenize=False, add_generation_prompt=True | |
| ) | |
| text_inputs = tokenizer( | |
| text=[text], | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_attention_mask=True, | |
| padding_side="right", | |
| return_tensors="pt", | |
| ) | |
| text_inputs = text_inputs.to(text_encoder.device) | |
| text_input_ids = text_inputs.input_ids | |
| negative_prompt_attention_mask = text_inputs.attention_mask | |
| if self.transformer.config.enable_text_attention_mask: | |
| # Inference: Generation of the output | |
| negative_prompt_embeds = text_encoder( | |
| input_ids=text_input_ids, | |
| attention_mask=negative_prompt_attention_mask, | |
| output_hidden_states=True).hidden_states[-2] | |
| else: | |
| raise ValueError("LLM needs attention_mask") | |
| negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) | |
| if do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| negative_prompt_attention_mask = negative_prompt_attention_mask.to(device=device) | |
| return prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs( | |
| self, | |
| prompt, | |
| height, | |
| width, | |
| negative_prompt=None, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| prompt_attention_mask=None, | |
| negative_prompt_attention_mask=None, | |
| prompt_embeds_2=None, | |
| negative_prompt_embeds_2=None, | |
| prompt_attention_mask_2=None, | |
| negative_prompt_attention_mask_2=None, | |
| callback_on_step_end_tensor_inputs=None, | |
| ): | |
| if height % 16 != 0 or width % 16 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.") | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is None and prompt_embeds_2 is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds_2`. Cannot leave both `prompt` and `prompt_embeds_2` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if prompt_embeds is not None and prompt_attention_mask is None: | |
| raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.") | |
| if prompt_embeds_2 is not None and prompt_attention_mask_2 is None: | |
| raise ValueError("Must provide `prompt_attention_mask_2` when specifying `prompt_embeds_2`.") | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: | |
| raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.") | |
| if negative_prompt_embeds_2 is not None and negative_prompt_attention_mask_2 is None: | |
| raise ValueError( | |
| "Must provide `negative_prompt_attention_mask_2` when specifying `negative_prompt_embeds_2`." | |
| ) | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| if prompt_embeds_2 is not None and negative_prompt_embeds_2 is not None: | |
| if prompt_embeds_2.shape != negative_prompt_embeds_2.shape: | |
| raise ValueError( | |
| "`prompt_embeds_2` and `negative_prompt_embeds_2` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds_2` {prompt_embeds_2.shape} != `negative_prompt_embeds_2`" | |
| f" {negative_prompt_embeds_2.shape}." | |
| ) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
| def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None): | |
| if self.vae.quant_conv is None or self.vae.quant_conv.weight.ndim==5: | |
| if self.vae.cache_mag_vae: | |
| mini_batch_encoder = self.vae.mini_batch_encoder | |
| mini_batch_decoder = self.vae.mini_batch_decoder | |
| shape = (batch_size, num_channels_latents, int((video_length - 1) // mini_batch_encoder * mini_batch_decoder + 1) if video_length != 1 else 1, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
| else: | |
| mini_batch_encoder = self.vae.mini_batch_encoder | |
| mini_batch_decoder = self.vae.mini_batch_decoder | |
| shape = (batch_size, num_channels_latents, int(video_length // mini_batch_encoder * mini_batch_decoder) if video_length != 1 else 1, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
| else: | |
| shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| if hasattr(self.scheduler, "init_noise_sigma"): | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def prepare_control_latents( | |
| self, control, control_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance | |
| ): | |
| # resize the control to latents shape as we concatenate the control to the latents | |
| # we do that before converting to dtype to avoid breaking in case we're using cpu_offload | |
| # and half precision | |
| if control is not None: | |
| control = control.to(device=device, dtype=dtype) | |
| bs = 1 | |
| new_control = [] | |
| for i in range(0, control.shape[0], bs): | |
| control_bs = control[i : i + bs] | |
| control_bs = self.vae.encode(control_bs)[0] | |
| control_bs = control_bs.mode() | |
| new_control.append(control_bs) | |
| control = torch.cat(new_control, dim = 0) | |
| control = control * self.vae.config.scaling_factor | |
| if control_image is not None: | |
| control_image = control_image.to(device=device, dtype=dtype) | |
| bs = 1 | |
| new_control_pixel_values = [] | |
| for i in range(0, control_image.shape[0], bs): | |
| control_pixel_values_bs = control_image[i : i + bs] | |
| control_pixel_values_bs = self.vae.encode(control_pixel_values_bs)[0] | |
| control_pixel_values_bs = control_pixel_values_bs.mode() | |
| new_control_pixel_values.append(control_pixel_values_bs) | |
| control_image_latents = torch.cat(new_control_pixel_values, dim = 0) | |
| control_image_latents = control_image_latents * self.vae.config.scaling_factor | |
| else: | |
| control_image_latents = None | |
| return control, control_image_latents | |
| def smooth_output(self, video, mini_batch_encoder, mini_batch_decoder): | |
| if video.size()[2] <= mini_batch_encoder: | |
| return video | |
| prefix_index_before = mini_batch_encoder // 2 | |
| prefix_index_after = mini_batch_encoder - prefix_index_before | |
| pixel_values = video[:, :, prefix_index_before:-prefix_index_after] | |
| # Encode middle videos | |
| latents = self.vae.encode(pixel_values)[0] | |
| latents = latents.mode() | |
| # Decode middle videos | |
| middle_video = self.vae.decode(latents)[0] | |
| video[:, :, prefix_index_before:-prefix_index_after] = (video[:, :, prefix_index_before:-prefix_index_after] + middle_video) / 2 | |
| return video | |
| def decode_latents(self, latents): | |
| video_length = latents.shape[2] | |
| latents = 1 / self.vae.config.scaling_factor * latents | |
| if self.vae.quant_conv is None or self.vae.quant_conv.weight.ndim==5: | |
| mini_batch_encoder = self.vae.mini_batch_encoder | |
| mini_batch_decoder = self.vae.mini_batch_decoder | |
| video = self.vae.decode(latents)[0] | |
| video = video.clamp(-1, 1) | |
| if not self.vae.cache_compression_vae and not self.vae.cache_mag_vae: | |
| video = self.smooth_output(video, mini_batch_encoder, mini_batch_decoder).cpu().clamp(-1, 1) | |
| else: | |
| latents = rearrange(latents, "b c f h w -> (b f) c h w") | |
| video = [] | |
| for frame_idx in tqdm(range(latents.shape[0])): | |
| video.append(self.vae.decode(latents[frame_idx:frame_idx+1]).sample) | |
| video = torch.cat(video) | |
| video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) | |
| video = (video / 2 + 0.5).clamp(0, 1) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 | |
| video = video.cpu().float().numpy() | |
| return video | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def guidance_rescale(self): | |
| return self._guidance_rescale | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| def do_classifier_free_guidance(self): | |
| return self._guidance_scale > 1 | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def interrupt(self): | |
| return self._interrupt | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| video_length: Optional[int] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| control_video: Union[torch.FloatTensor] = None, | |
| control_camera_video: Union[torch.FloatTensor] = None, | |
| ref_image: Union[torch.FloatTensor] = None, | |
| num_inference_steps: Optional[int] = 50, | |
| guidance_scale: Optional[float] = 5.0, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: Optional[float] = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| prompt_embeds_2: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds_2: Optional[torch.Tensor] = None, | |
| prompt_attention_mask: Optional[torch.Tensor] = None, | |
| prompt_attention_mask_2: Optional[torch.Tensor] = None, | |
| negative_prompt_attention_mask: Optional[torch.Tensor] = None, | |
| negative_prompt_attention_mask_2: Optional[torch.Tensor] = None, | |
| output_type: Optional[str] = "latent", | |
| return_dict: bool = True, | |
| callback_on_step_end: Optional[ | |
| Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] | |
| ] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| guidance_rescale: float = 0.0, | |
| original_size: Optional[Tuple[int, int]] = (1024, 1024), | |
| target_size: Optional[Tuple[int, int]] = None, | |
| crops_coords_top_left: Tuple[int, int] = (0, 0), | |
| comfyui_progressbar: bool = False, | |
| timesteps: Optional[List[int]] = None, | |
| ): | |
| r""" | |
| Generates images or video using the EasyAnimate pipeline based on the provided prompts. | |
| Examples: | |
| prompt (`str` or `List[str]`, *optional*): | |
| Text prompts to guide the image or video generation. If not provided, use `prompt_embeds` instead. | |
| video_length (`int`, *optional*): | |
| Length of the generated video (in frames). | |
| height (`int`, *optional*): | |
| Height of the generated image in pixels. | |
| width (`int`, *optional*): | |
| Width of the generated image in pixels. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| Number of denoising steps during generation. More steps generally yield higher quality images but slow down inference. | |
| guidance_scale (`float`, *optional*, defaults to 5.0): | |
| Encourages the model to align outputs with prompts. A higher value may decrease image quality. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| Prompts indicating what to exclude in generation. If not specified, use `negative_prompt_embeds`. | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| Number of images to generate for each prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Applies to DDIM scheduling. Controlled by the eta parameter from the related literature. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| A generator to ensure reproducibility in image generation. | |
| latents (`torch.Tensor`, *optional*): | |
| Predefined latent tensors to condition generation. | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Text embeddings for the prompts. Overrides prompt string inputs for more flexibility. | |
| prompt_embeds_2 (`torch.Tensor`, *optional*): | |
| Secondary text embeddings to supplement or replace the initial prompt embeddings. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Embeddings for negative prompts. Overrides string inputs if defined. | |
| negative_prompt_embeds_2 (`torch.Tensor`, *optional*): | |
| Secondary embeddings for negative prompts, similar to `negative_prompt_embeds`. | |
| prompt_attention_mask (`torch.Tensor`, *optional*): | |
| Attention mask for the primary prompt embeddings. | |
| prompt_attention_mask_2 (`torch.Tensor`, *optional*): | |
| Attention mask for the secondary prompt embeddings. | |
| negative_prompt_attention_mask (`torch.Tensor`, *optional*): | |
| Attention mask for negative prompt embeddings. | |
| negative_prompt_attention_mask_2 (`torch.Tensor`, *optional*): | |
| Attention mask for secondary negative prompt embeddings. | |
| output_type (`str`, *optional*, defaults to "latent"): | |
| Format of the generated output, either as a PIL image or as a NumPy array. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| If `True`, returns a structured output. Otherwise returns a simple tuple. | |
| callback_on_step_end (`Callable`, *optional*): | |
| Functions called at the end of each denoising step. | |
| callback_on_step_end_tensor_inputs (`List[str]`, *optional*): | |
| Tensor names to be included in callback function calls. | |
| guidance_rescale (`float`, *optional*, defaults to 0.0): | |
| Adjusts noise levels based on guidance scale. | |
| original_size (`Tuple[int, int]`, *optional*, defaults to `(1024, 1024)`): | |
| Original dimensions of the output. | |
| target_size (`Tuple[int, int]`, *optional*): | |
| Desired output dimensions for calculations. | |
| crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to `(0, 0)`): | |
| Coordinates for cropping. | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
| otherwise a `tuple` is returned where the first element is a list with the generated images and the | |
| second element is a list of `bool`s indicating whether the corresponding generated image contains | |
| "not-safe-for-work" (nsfw) content. | |
| """ | |
| if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
| callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
| # 0. default height and width | |
| height = int((height // 16) * 16) | |
| width = int((width // 16) * 16) | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| height, | |
| width, | |
| negative_prompt, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| prompt_attention_mask, | |
| negative_prompt_attention_mask, | |
| prompt_embeds_2, | |
| negative_prompt_embeds_2, | |
| prompt_attention_mask_2, | |
| negative_prompt_attention_mask_2, | |
| callback_on_step_end_tensor_inputs, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._guidance_rescale = guidance_rescale | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| if self.text_encoder is not None: | |
| dtype = self.text_encoder.dtype | |
| elif self.text_encoder_2 is not None: | |
| dtype = self.text_encoder_2.dtype | |
| else: | |
| dtype = self.transformer.dtype | |
| # 3. Encode input prompt | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| prompt_attention_mask, | |
| negative_prompt_attention_mask, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| device=device, | |
| dtype=dtype, | |
| num_images_per_prompt=num_images_per_prompt, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| negative_prompt=negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| prompt_attention_mask=prompt_attention_mask, | |
| negative_prompt_attention_mask=negative_prompt_attention_mask, | |
| text_encoder_index=0, | |
| ) | |
| if self.tokenizer_2 is not None: | |
| ( | |
| prompt_embeds_2, | |
| negative_prompt_embeds_2, | |
| prompt_attention_mask_2, | |
| negative_prompt_attention_mask_2, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| device=device, | |
| dtype=dtype, | |
| num_images_per_prompt=num_images_per_prompt, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| negative_prompt=negative_prompt, | |
| prompt_embeds=prompt_embeds_2, | |
| negative_prompt_embeds=negative_prompt_embeds_2, | |
| prompt_attention_mask=prompt_attention_mask_2, | |
| negative_prompt_attention_mask=negative_prompt_attention_mask_2, | |
| text_encoder_index=1, | |
| ) | |
| else: | |
| prompt_embeds_2 = None | |
| negative_prompt_embeds_2 = None | |
| prompt_attention_mask_2 = None | |
| negative_prompt_attention_mask_2 = None | |
| # 4. Prepare timesteps | |
| if isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler): | |
| timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, mu=1) | |
| else: | |
| timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | |
| timesteps = self.scheduler.timesteps | |
| if comfyui_progressbar: | |
| from comfy.utils import ProgressBar | |
| pbar = ProgressBar(num_inference_steps + 2) | |
| # 5. Prepare latent variables | |
| num_channels_latents = self.vae.config.latent_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| video_length, | |
| height, | |
| width, | |
| dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| if comfyui_progressbar: | |
| pbar.update(1) | |
| if control_camera_video is not None: | |
| control_video_latents = resize_mask(control_camera_video, latents, process_first_frame_only=True) | |
| control_video_latents = control_video_latents * 6 | |
| control_latents = ( | |
| torch.cat([control_video_latents] * 2) if self.do_classifier_free_guidance else control_video_latents | |
| ).to(device, dtype) | |
| elif control_video is not None: | |
| video_length = control_video.shape[2] | |
| control_video = self.image_processor.preprocess(rearrange(control_video, "b c f h w -> (b f) c h w"), height=height, width=width) | |
| control_video = control_video.to(dtype=torch.float32) | |
| control_video = rearrange(control_video, "(b f) c h w -> b c f h w", f=video_length) | |
| control_video_latents = self.prepare_control_latents( | |
| None, | |
| control_video, | |
| batch_size, | |
| height, | |
| width, | |
| dtype, | |
| device, | |
| generator, | |
| self.do_classifier_free_guidance | |
| )[1] | |
| control_latents = ( | |
| torch.cat([control_video_latents] * 2) if self.do_classifier_free_guidance else control_video_latents | |
| ).to(device, dtype) | |
| else: | |
| control_video_latents = torch.zeros_like(latents).to(device, dtype) | |
| control_latents = ( | |
| torch.cat([control_video_latents] * 2) if self.do_classifier_free_guidance else control_video_latents | |
| ).to(device, dtype) | |
| if ref_image is not None: | |
| video_length = ref_image.shape[2] | |
| ref_image = self.image_processor.preprocess(rearrange(ref_image, "b c f h w -> (b f) c h w"), height=height, width=width) | |
| ref_image = ref_image.to(dtype=torch.float32) | |
| ref_image = rearrange(ref_image, "(b f) c h w -> b c f h w", f=video_length) | |
| ref_image_latentes = self.prepare_control_latents( | |
| None, | |
| ref_image, | |
| batch_size, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| self.do_classifier_free_guidance | |
| )[1] | |
| ref_image_latentes_conv_in = torch.zeros_like(latents) | |
| if latents.size()[2] != 1: | |
| ref_image_latentes_conv_in[:, :, :1] = ref_image_latentes | |
| ref_image_latentes_conv_in = ( | |
| torch.cat([ref_image_latentes_conv_in] * 2) if self.do_classifier_free_guidance else ref_image_latentes_conv_in | |
| ).to(device, dtype) | |
| control_latents = torch.cat([control_latents, ref_image_latentes_conv_in], dim = 1) | |
| else: | |
| if self.transformer.config.get("add_ref_latent_in_control_model", False): | |
| ref_image_latentes_conv_in = torch.zeros_like(latents) | |
| ref_image_latentes_conv_in = ( | |
| torch.cat([ref_image_latentes_conv_in] * 2) if self.do_classifier_free_guidance else ref_image_latentes_conv_in | |
| ).to(device, dtype) | |
| control_latents = torch.cat([control_latents, ref_image_latentes_conv_in], dim = 1) | |
| if comfyui_progressbar: | |
| pbar.update(1) | |
| # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 7 create image_rotary_emb, style embedding & time ids | |
| grid_height = height // 8 // self.transformer.config.patch_size | |
| grid_width = width // 8 // self.transformer.config.patch_size | |
| if self.transformer.config.get("time_position_encoding_type", "2d_rope") == "3d_rope": | |
| base_size_width = 720 // 8 // self.transformer.config.patch_size | |
| base_size_height = 480 // 8 // self.transformer.config.patch_size | |
| grid_crops_coords = get_resize_crop_region_for_grid( | |
| (grid_height, grid_width), base_size_width, base_size_height | |
| ) | |
| image_rotary_emb = get_3d_rotary_pos_embed( | |
| self.transformer.config.attention_head_dim, grid_crops_coords, grid_size=(grid_height, grid_width), | |
| temporal_size=latents.size(2), use_real=True, | |
| ) | |
| else: | |
| base_size = 512 // 8 // self.transformer.config.patch_size | |
| grid_crops_coords = get_resize_crop_region_for_grid( | |
| (grid_height, grid_width), base_size, base_size | |
| ) | |
| image_rotary_emb = get_2d_rotary_pos_embed( | |
| self.transformer.config.attention_head_dim, grid_crops_coords, (grid_height, grid_width) | |
| ) | |
| # Get other hunyuan params | |
| target_size = target_size or (height, width) | |
| add_time_ids = list(original_size + target_size + crops_coords_top_left) | |
| add_time_ids = torch.tensor([add_time_ids], dtype=dtype) | |
| style = torch.tensor([0], device=device) | |
| if self.do_classifier_free_guidance: | |
| add_time_ids = torch.cat([add_time_ids] * 2, dim=0) | |
| style = torch.cat([style] * 2, dim=0) | |
| # To latents.device | |
| add_time_ids = add_time_ids.to(dtype=dtype, device=device).repeat( | |
| batch_size * num_images_per_prompt, 1 | |
| ) | |
| style = style.to(device=device).repeat(batch_size * num_images_per_prompt) | |
| # Get other pixart params | |
| added_cond_kwargs = {"resolution": None, "aspect_ratio": None} | |
| if self.transformer.config.get("sample_size", 64) == 128: | |
| resolution = torch.tensor([height, width]).repeat(batch_size * num_images_per_prompt, 1) | |
| aspect_ratio = torch.tensor([float(height / width)]).repeat(batch_size * num_images_per_prompt, 1) | |
| resolution = resolution.to(dtype=dtype, device=device) | |
| aspect_ratio = aspect_ratio.to(dtype=dtype, device=device) | |
| if self.do_classifier_free_guidance: | |
| resolution = torch.cat([resolution, resolution], dim=0) | |
| aspect_ratio = torch.cat([aspect_ratio, aspect_ratio], dim=0) | |
| added_cond_kwargs = {"resolution": resolution, "aspect_ratio": aspect_ratio} | |
| if self.do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask]) | |
| if prompt_embeds_2 is not None: | |
| prompt_embeds_2 = torch.cat([negative_prompt_embeds_2, prompt_embeds_2]) | |
| prompt_attention_mask_2 = torch.cat([negative_prompt_attention_mask_2, prompt_attention_mask_2]) | |
| # To latents.device | |
| prompt_embeds = prompt_embeds.to(device=device) | |
| prompt_attention_mask = prompt_attention_mask.to(device=device) | |
| if prompt_embeds_2 is not None: | |
| prompt_embeds_2 = prompt_embeds_2.to(device=device) | |
| prompt_attention_mask_2 = prompt_attention_mask_2.to(device=device) | |
| # 8. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| self._num_timesteps = len(timesteps) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
| if hasattr(self.scheduler, "scale_model_input"): | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # expand scalar t to 1-D tensor to match the 1st dim of latent_model_input | |
| t_expand = torch.tensor([t] * latent_model_input.shape[0], device=device).to( | |
| dtype=latent_model_input.dtype | |
| ) | |
| # predict the noise residual | |
| noise_pred = self.transformer( | |
| latent_model_input, | |
| t_expand, | |
| encoder_hidden_states=prompt_embeds, | |
| text_embedding_mask=prompt_attention_mask, | |
| encoder_hidden_states_t5=prompt_embeds_2, | |
| text_embedding_mask_t5=prompt_attention_mask_2, | |
| image_meta_size=add_time_ids, | |
| style=style, | |
| image_rotary_emb=image_rotary_emb, | |
| added_cond_kwargs=added_cond_kwargs, | |
| control_latents=control_latents, | |
| return_dict=False, | |
| )[0] | |
| if noise_pred.size()[1] != self.vae.config.latent_channels: | |
| noise_pred, _ = noise_pred.chunk(2, dim=1) | |
| # perform guidance | |
| if self.do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| if self.do_classifier_free_guidance and guidance_rescale > 0.0: | |
| # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
| noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
| prompt_embeds_2 = callback_outputs.pop("prompt_embeds_2", prompt_embeds_2) | |
| negative_prompt_embeds_2 = callback_outputs.pop( | |
| "negative_prompt_embeds_2", negative_prompt_embeds_2 | |
| ) | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if XLA_AVAILABLE: | |
| xm.mark_step() | |
| if comfyui_progressbar: | |
| pbar.update(1) | |
| # Post-processing | |
| video = self.decode_latents(latents) | |
| # Convert to tensor | |
| if output_type == "latent": | |
| video = torch.from_numpy(video) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return video | |
| return EasyAnimatePipelineOutput(frames=video) |