Spaces:
Running
Running
| """A gradio app that renders a static leaderboard. This is used for Hugging Face Space.""" | |
| import argparse | |
| import json | |
| from datetime import datetime | |
| import gradio as gr | |
| import pandas as pd | |
| import pytz | |
| from constants import * | |
| from constants import column_names | |
| # get the last updated time from the elo_ranks.all.jsonl file | |
| LAST_UPDATED = None | |
| # with open("_intro.md", "r") as f: | |
| # INTRO_MD = f.read() | |
| INTRO_MD = "" | |
| with open("_header.md", "r") as f: | |
| HEADER_MD = f.read() | |
| raw_data = None | |
| original_df = None | |
| def df_filters(mode_selection_radio, show_open_source_model_only): | |
| global original_df | |
| original_df.insert(0, "", range(1, 1 + len(original_df))) | |
| return original_df.copy() | |
| def _gstr(text): | |
| return gr.Text(text, visible=False) | |
| def _tab_leaderboard(): | |
| global original_df, available_models | |
| if True: | |
| default_mode = "greedy" | |
| default_main_df = df_filters(default_mode, False) | |
| leaderboard_table = gr.components.Dataframe( | |
| value=default_main_df, | |
| datatype= ["number", "markdown", "markdown", "number"], | |
| # max_rows=None, | |
| height=1000, | |
| elem_id="leaderboard-table", | |
| interactive=False, | |
| visible=True, | |
| column_widths=[50, 150, 150, 100, 120, 120, 100,100,110,100], | |
| wrap=True | |
| # min_width=60, | |
| ) | |
| def _tab_submit(): | |
| markdown_text = """ | |
| Please create an issue on our [Github](https://github.com/allenai/super-benchmark) repository with output of trajectories of your model and results. We will update the leaderboard accordingly. | |
| """ | |
| gr.Markdown("## π Submit Your Results\n\n" + markdown_text, elem_classes="markdown-text") | |
| def build_demo(): | |
| global original_df | |
| with gr.Blocks(theme=gr.themes.Soft(), css=css, js=js_light) as demo: | |
| # convert LAST_UPDATED to the PDT time | |
| LAST_UPDATED = datetime.now(pytz.timezone('US/Pacific')).strftime("%Y-%m-%d %H:%M:%S") | |
| header_md_text = HEADER_MD.replace("{LAST_UPDATED}", str(LAST_UPDATED)) | |
| gr.Markdown(header_md_text, elem_classes="markdown-text") | |
| with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
| with gr.TabItem("π Leaderboard", elem_id="od-benchmark-tab-table", id=0): | |
| _tab_leaderboard() | |
| with gr.TabItem("π Submit Your Results", elem_id="od-benchmark-tab-table", id=3): | |
| _tab_submit() | |
| return demo | |
| def data_load(result_file): | |
| global raw_data, original_df | |
| print(f"Loading {result_file}") | |
| column_names_main = column_names.copy() | |
| # column_names_main.update({}) | |
| main_ordered_columns = ORDERED_COLUMN_NAMES | |
| # filter the data with Total Puzzles == 1000 | |
| click_url = True | |
| # read json file from the result_file | |
| with open(result_file, "r") as f: | |
| raw_data = json.load(f) | |
| # floatify the data, if possible | |
| for d in raw_data: | |
| for k, v in d.items(): | |
| try: | |
| d[k] = float(v) | |
| except: | |
| pass | |
| original_df = pd.DataFrame(raw_data) | |
| original_df.sort_values(by="Expert (Accuracy)", ascending=False, inplace=True) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--share", action="store_true") | |
| parser.add_argument("--result_file", help="Path to results table", default="ZeroEval-main/result_dirs/leaderboard.json") | |
| args = parser.parse_args() | |
| data_load(args.result_file) | |
| demo = build_demo() | |
| demo.launch(share=args.share, height=3000, width="100%") | |